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Abstract— As autonomous service robots become more af-
fordable and thus available also for the general public, there
is a growing need for user friendly interfaces to control the
robotic system. Currently available control modalities typically
expect users to be able to express their desire through either
touch, speech or gesture commands. While this requirement
is fulfilled for the majority of users, paralyzed users may not
be able to use such systems. In this paper, we present a novel
framework, that allows these users to interact with a robotic
service assistant in a closed-loop fashion, using only thoughts.
The brain-computer interface (BCI) system is composed of
several interacting components, i.e., non-invasive neuronal sig-
nal recording and decoding, high-level task planning, motion
and manipulation planning as well as environment perception.
In various experiments, we demonstrate its applicability and
robustness in real world scenarios, considering fetch-and-carry
tasks and tasks involving human-robot interaction. As our
results demonstrate, our system is capable of adapting to
frequent changes in the environment and reliably completing
given tasks within a reasonable amount of time. Combined with
high-level planning and autonomous robotic systems, interesting
new perspectives open up for non-invasive BCI-based human-
robot interactions.

I. INTRODUCTION

For patients with heavily impaired communication capa-
bilities, such as severly paralyzed patients, their condition
forces them to constantly rely on the help of human care-
takers. Robotic service assistants can re-establish some au-
tonomy for these patients, if they offer adequate interfaces
and possess a sufficient level of intelligence. Generally, an
intelligent system requires adaptive task and motion planning
modules to determine appropriate task plans and motion
trajectories for the robot, that implement a task in the real
world. Moreover, it requires a perception component, e.g.,
to detect objects of interest or to avoid accidental collisions
with obstacles. Typically used interfaces, such as haptic
(buttons), audio (speech) or visual (gesture) interfaces, to
command the robotic system are intuitive and easy options
for healthy users, but difficult to impossible to use for
paralyzed individuals.

In this paper, we present a novel framework, schemati-
cally depicted in Fig. 1, that allows closed-loop interaction
between users with minimal communication capabilities and
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Fig. 1. Framework unifying decoding of neuronal signals, high-level task
planning, low-level motion and manipulation planning, scene perception
with a centralized knowledge base at its core. Intuitive goal selection is
provided through an adaptive graphical user interface.

a robotic service assistant. To do so, we record neuronal
activity elicited in the human brain, the common origin of
all types of communication, with an electroencephalography
(EEG) system. Furthermore, we adopt a convolutional neural
network approach for online decoding of neuronal activity,
in order to allow users to navigate through a graphical user
interface (GUI) provided by a high-level task planner. The
set of feasible actions displayed in the GUI, depends in turn
on the current state of the world, which is stored in a central
knowledge base and continuously updated with information
provided by the robot and a camera perception system. Once
a task has been selected, it is decomposed into a sequence of
atomic actions by the high-level planner. Subsequently, each
action is resolved to a motion for the mobile manipulator us-
ing low-level motion and manipulation planning techniques.
In the following, the individual components shown in Fig. 1
will be described in detail, before presenting a quantitative
evaluation of the overall system regarding its performance.

II. RELATED WORK

Multiple previous studies have focused on robotic systems
assisting people with disabilities. For example, Park er al. [1]
implemented a system for the autonomous feeding of yogurt
to a person. Chung et al. [2] focused on autonomous drinking
which involved locating the drink, picking it up and bringing



it to the person’s mouth. Using a hybrid BCI and head
movement control, Achic et al. [3] studied a setup with a
moving wheelchair and an attached robotic arm. None of
these systems used pure BCI control. In contrast, Wang et
al. [4] used a motor imagery BCI with three classes to
achieve low-level control of a robotic arm. More relevant,
Schroer et al. [5] developed a robotic system which receives
a BCI command from a user and autonomously assists
the user in drinking from a cup. However, this approach
only considers a single object and a fixed-base manipulator.
More recently, Muelling ef al. [6] presented a shared-control
approach to assistive robotics, albeit focused on invasive
BClIs. Nonetheless, their approach could be combined with
the high-level planning approach presented in our work.

In these applications, robust decoding of brain signals is
required. Inspired by the successes of deep convolutional
neural networks (ConvNets) in computer vision [7], [8] and
speech recognition [9], [10], deep ConvNets have recently
been applied more frequently to EEG brain-signal decoding.
Deep ConvNets were already applied to decoding tasks
useful for building brain-computer interfaces. Lawhern et
al. [11] used a deep ConvNet to decode P300 oddball signals,
feedback error-related negativity and two movement-related
tasks. When evaluated cross-subject, i.e., trained on some
subjects and evaluated on others, their ConvNet yields com-
petitive accuracies compared with widely-used traditional
brain-signal decoding algorithms. Tabar and Halici [12] used
a ConvNet combined with a convolutional stacked auto-
encoder to decode motor imagery within-subject, yielding
better accuracies than several non-ConvNet decoding algo-
rithms. Schirrmeister et al. [13] used a shallow and a deep
ConvNet to decode both motor imagery and motor execution
within-subject, reaching or slightly surpassing the accuracies
of the widely used EEG motor-decoding algorithm filter bank
common spatial patterns [14]. Bashivan et al. [15] used a
ConvNet trained on fourier-transformed inputs to estimate
mental workload. In addition to the work on evaluating
ConvNet decoding accuracies, ConvNet visualization meth-
ods allow us to get a sense of what brain-signal features
the network is using [13], [15], [16]. Taken together, these
advances make deep ConvNets a viable alternative for brain-
signal decoding in brain-computer interfaces. Still, to our
knowledge, online control with deep ConvNets has not yet
been reported for an EEG-based brain-computer interface.

III. ONLINE DECODING OF NEURONAL SIGNALS

The system at hand is developed to control more com-
plex scenarios than the ones considered in previous work.
Particularly, we consider scenarios involving manipulation
of objects as well as human-robot interaction. Feasible goals
are determined by our GUI which is controlled by directional
commands. As reliable classification of brain signals into
navigation directions cannot yet be achieved directly with
non-invasive BCIs, we used a deep ConvNet approach for
decoding of multiple mental tasks from EEG (Schirrmeister
et al. [13]). This approach introduces a hybrid network,
combining a deep ConvNet with a shallower ConvNet ar-

chitecture. The deep part consists of 4 convolution-pooling
blocks using exponential linear units (ELU) [17] and max
pooling, whereas the shallow part uses a single convolution-
pooling block with squaring non-linearities and mean pool-
ing. Both parts use a final convolution with ELU to produce
output features. These features are then concatenated and
fed to a final classification layer. We trained the ConvNet
to decode five mental tasks: right hand finger and both feet
toe movements, object rotation, word generation and rest.
These mental tasks evoke discernible brain patterns and are
used as surrogate signals to control the GUI. Offline training
was done with a cropped training strategy using shifted time
windows within the trials as input data [13].

From our experience it is important to train the BCI
decoder and subjects in an environment that is as close
as possible to the real application environment to avoid
pronounced performance drops. Therefore, we designed a
gradual training paradigm within the high-level planner GUI
where the displayed environment, timing and actions are
identical to those of the real control task. The training
paradigm proceeds as follows: We first train each subject
offline using simulated feedback. Subjects are aware of not
being in control of the GUI. The mental tasks are cued
using grayscale images presented for 0.5s in the center
of the display. At all times a fixation circle is displayed
at the center of the GUI and the subject is instructed to
fixate on it to minimize eye movements. After a random
time interval of 1-7s the fixation circle is switched to a
disk for 0.2s, which indicates the end of the mental task.
At the same time the GUI action (go up, go down, select,
go back, do nothing) corresponding to the cued mental task
is performed to update the GUI. To keep training realistic
we include a 20 % error rate, i.e., on average every fifth
action is erroneous. We instruct the subjects to count the
error occurrences to assert their vigilancy. This offline data
is used to train the individual deep ConvNets. Then, the
subjects do online training by performing the decoded mental
tasks in the GUI. Finally, we stop cueing the mental tasks.
To evaluate the performance of the BCI control, we let
the subjects create instructed high-level plans in the GUIL
These tasks are then executed by a simulated robot or the
real mobile manipulator, when available. To provide more
control over the mobile manipulator and enhance the feeling
of agency, subjects have to confirm the execution of every
planned action and can interrupt the chain of actions at any
moment during their execution. BCI decoding accuracies
for the label-less instructed tasks are assessed by manually
rating each decoding based on the instructed task steps.
Statistical significance of the decoding accuracies were tested
using a conventional permutation test with 100k random
permutations of the labels (i.e., p-value is the fraction of
label permutations that would have led to better or equal
accuracies than the accuracy for the original labels).

IV. HIGH-LEVEL GOAL FORMULATION PLANNING

We use domain independent planning to derive the re-
quired steps for reaching a desired high-level goal in a



complex task. The user can formulate a high-level goal
without knowledge of the internal representation of objects
in the planning system and the exact capabilities of the robot.
This is achieved by an intuitive graphical user interface,
where the object parameters of the goal are specified by
incrementally refining the objects by referring to their type,
e.g., “cup” or attributes, e.g., “content = apple-juice”.

Domain independent planning identifies a sequence of
actions that transforms the current world state into a state
satisfying a goal condition. A planning task consists of: (i)
a planning domain describing static components such as the
object type hierarchy and the available actions and (ii) a
problem instance describing the objects present in the world
and their current state, as well as a goal description. While
the current state of the objects can be extracted from the
knowledge base, the goal has to be chosen in the GUIL

A restricted vocabulary is shared between the user and the
planning system. Objects or sets of objects are identified by
creating referring expressions to them composed of shared
references built on this vocabluary [18]. We briefly describe
the relevant aspects of our previous work in this area [19].
In general, a referring expression ¢ is a logical formula with
a single free variable. ¢ refers to an object o if ¢(o) is valid.
E.g., the reference ¢(x) = cup(x) A contains(z,water)
refers to all cups containing water. We restrict ourselves to
references that are simple conjunctions of facts, which is not
only preferable for computational reasons, but also allows us
to incrementally refine references by adding constraints. For
example, adding contains(x,water) to cup(x), restricts the
set of all cups to the set of cups containing water.

We distinguish between three types of fundamental object
references: individual references, typename references and
relational references. Individual references are identified by
name, such as the “omniRob” robot. Typename references
can be identified by the name of their type. While we cannot
refer to the cups in our scenario directly, we can refer to an
unspecific cup. Relational references are encountered when
objects can be referred to via predicates in which they occur
as an argument. The relations in our scenario are object
attributes. For example, the content of the cup is used to
clarify which cup is meant. These object references are
used to create references to goals. We start defining goals
with the action that achieves it as we found that this is
most natural to the user, e.g., put(x,y) A cup(z) A shelf (y).
After the initial selection of a goal type (e.g., drop) it is
necessary to determine the objects for all parameters of the
goal predicate or action. These parameters are refined by
constraining the previous choice until the argument is either
determined uniquely (i.e., it is impossible to constrain the
argument further) or the user declares that any remaining
option is acceptable. We exclude unreachable goals, but we
allow for goals that can only be achieved after a sequence
of preceding actions (e.g., drinking water could require to
fetch a cup, bring it to the patient, fetch a bottle and pour
the water into the cup in order to be executed). The goal
that is determined by the selection process of the GUI is
then passed to a custom domain independent planner.

V. ROBOT MOTION GENERATION

For generating paths for the mobile base, we apply the
sampling-based planning framework BI?’RRT* [20]. Given a
pair of terminal configurations, it performs a bidirectional
search using uniform sampling in the configuration space
until an initial sub-optimal solution path is found. This path is
subsequently refined for the remaining planning time, adopt-
ing an informed sampling strategy, which yields a higher
rate of convergence towards the optimal solution. Execution
of paths is implemented via a closed-loop joint trajectory
tracking algorithm using robot localization feedback.

To realize pick, place, pour and drink motions efficiently,
we adopt a probabilistic roadmap planner approach [21]. The
planner uses a graph of randomly sampled task poses (end-
effector poses), which are connected by edges. To find a plan
between two poses, the planner connects both poses with the
roadmap graph and uses the A* algorithm to find an optimal
path between the start and goal pose. The execution of the
plan maps the task space velocity commands to joint velocity
commands by employing a task space motion controller. We
sample random poses around the object to determine grasp
motions. For dropping objects we extract horizontal planes
from the camera’s point cloud and sample poses above those
planes to find a suitable drop location.

VI. IMPLEMENTATION DETAILS

Implementation of our framework in the real world re-
quires several components, such as neuronal signal decoding,
scene perception, knowledge base operations as well as
symbolic and motion planning, to run in parallel. There-
fore, we distributed the computation across a network of
7 computers, communicating among each other via ROS.
The decoding of neuronal signals has four components. EEG
measurements are performed using Waveguard EEG caps
with 64 electrodes and a NeurOne amplifier in AC mode.
Additionally, vertical and horizontal EOGs, EMGs of the
four extremities and ECG’s are recorded. For recording and
online-preprocessing, we used BCI2000 and Matlab. We
then transferred the data to a GPU server where our deep
ConvNet classified the data into 5 classes. The high-level
planner GUI consists of a back- and front-end. The back-
end of the GUI uses the Fast Downward planner [22] to
iteratively build goal references and to find symbolic plans
for the selected goal. As the planning time is not crucial
for the performance of our system, we used Fast Downward
with a basic configuration in our experiments. The central
knowledge base is implemented as a ROS node, which is
able to store objects with arbitrary attribute information. All
changes in the knowledge base automatically trigger updates
of the front-end, unexpected ones interrupt the current motion
trajectory execution. Finally, we used SimTrack [23] for
object pose detection and tracking.

VII. EXPERIMENTS

To evaluate our framework, we consider the environment
schematically depicted in Fig. 2, containing two shelves and
a table as potential locations for manipulation actions. The
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Fig. 2. Experimental environment: Two shelves and a table can be
considered by the robot for performing manipulation actions. Five RGBD
sensors observe the environment. A human operator selects a goal using
EEG control and the high-level planner GUI.

user sits in a wheelchair in front of a screen, displaying
the graphical interface of the high-level planner. The robot
used in the experiments is the omniRob omni-directional
mobile manipulator platform by KUKA Robotics, which is
composed of 10 degrees of freedom (DOF), i.e., 3 DOF
for the mobile base and 7 DOF for the manipulator. Ad-
ditionally, the Dexterous Hand 2.0 by Schunk is attached
to the manipulator’s flange and used to perform grasping
and manipulation actions. The tasks we considered in our
experiments required the robotic system to autonomously
perform the following actions: drive from one location to
another, pick up an object, drop an object (on a shelf or
table), pour liquid from a bottle into a cup, supply a user with
a drink. Moreover, we use a perception system composed of
five RGBD cameras. Three of them are statically mounted at
the shelves and the table, in order to observe the scene and
to report captured information to the knowledge base. The
other two cameras are carried by the robot on-board. The
first one is located at the mobile base and used to perform
collision checks in manipulation planning. The second cam-
era is mounted at the robot’s end-effector and used for tasks
involving physical human-robot interaction. A demonstration
of our framework can be found in the accompanying video:
http://www.informatik.uni-freiburg.de/~burgetf/ecmr17/.

A. Online Decoding of Neuronal Signals

We evaluated the BCI control setup with four healthy sub-
jects (S1-4, all right-handed, three females, aged 26.75+5.9).
At the time of writing the validation, S4 was still in
progress and no validation with the mobile manipulator
was performed. In total, 52 runs have been recorded (20
with the real robot) where the subjects executed various
instructed high-level plans. For 32 runs, we used simulated
feedback from the GUI in order to generate a significant
amount of data for the evaluation. The performance of the
BCI decoding during these runs was assessed using video

TABLE I
AGGREGATED MEAN=+STD RESULTS FOR 52 BCI CONTROL RUNS
(EXP. VII-A), * P-VALUE < 10~6

Runs Accuracy* Time Steps  Path Optimality Time/Step
# [%] [s] # [%] [s]
S1 18 84.1+6.1 125484 13.0+7.8 70.1£22.3 9+2
S2 14 76.8+14.1 150+32 10.142.8 91.3+12.0 9+3
S3 17 82.0+£74 200+159 17.6+£114  65.74+28.9 11+4
S4 3 63.8415.6 176+102 26.3£11.2 34.5+1.2 642
52 76.749.1 148450 16.747.1 65.44+23.4 9+2

recordings of interactions with the GUI. We rated GUI
actions as correct if they correspond to the instructed path
and incorrect otherwise. Actions which are necessary to
remediate a previous error are interpreted as correct if the
correction is intentionally clear. Finally, we rated rest actions
as correct during the (simulated) robot executions, incorrect
if the next robotic action had to be initialized and ignored
them during high-level plan creation. For evaluation, five
metrics have been extracted from the video recordings: (i)
the accuracy of the control, (ii) the time it took the subjects
to execute a high-level plan, (iii) the number of steps used
to execute a high-level plan, (iv) the path optimality, i.e., the
ratio of the steps used to the minimally possible number of
steps, and (v) the average time per step. We summarized the
results in Table I. In total, a 76.67 % correct BCI control
was achieved, which required 9s per step. Selecting a plan
using the GUI took on average 148s and required the user
to perform on average 16.74 steps in the GUI of the high-
level planner. The path formed by these steps is on average
34.6 % away from the optimal path. The decoding accuracy
of every subject is significantly above chance (p < 107°).

The subject-averaged EEG data used to train the hybrid
ConvNets and the decoding results of the train/test transfer
are visualized in Fig. 3. In Fig. 3(a) we show the signal-to-
noise ratio (SNR) of all 5 classes C of the labeled datasets.
We define the SNR for a given frequency f, time ¢ and
electrode e as

IQR ({median (M,)})
median ({IQR (M;)})

SNRj, = iec,

where M corresponds to the set of values at position (f, ¢, e)
of the i-th task, with | M| being the number of repetitions.
median(-) and IQR(-) is the median and interquartile range
(IQR), respectively. The upper part describes the variance of
the class medians, i.e., a large variance means more distin-
guishable class clusters and a higher SNR. The denominator
describes the variance of values in each class, i.e., a lower
variance of values results in a higher SNR. The low SNR in
EMG channels shows that the subjects did not move during
the tasks.

The decoding accuracies achieved on the test data after
initial training of the ConvNets are visualized in Fig. 3(b). To
further support the neural origin of the BCI control signals,
Fig. 3(c) shows physiologically plausible input-perturbation
network-prediction correlation results (see [13] for methods).
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Fig. 3. EEG data and decoding results. (a) SNR of the first 4s of data
used to train the hybrid ConvNet. Highest SNR can be observed in the
alpha (7-14Hz) and lower beta (16-26 Hz) bands. These frequency bands
are robust markers of task related mental tasks. Note that the non-EEG
channels (top row) were withheld from the ConvNets at any time and
are displayed as negative control. Not all channels are displayed because
of space constraints. (b) Confusion matrix of decoding accuracies for the
train/test transfer. Accuracies are well above the theoretical chance level of
20 %. (c) Topographically plausible input-perturbation network-prediction
correlation maps in the alpha (7-13 Hz) frequency band. For details on the
visualization technique we refer the reader to [13].

B. Fetch and Carry Task

The first experiment, considering the use of the real robot,
evaluates the complete system in fetch-and-carry tasks. The
goal was to transfer an object from one location to another,
e.g., from a shelf to the table, using the robot. To fulfill
such tasks the robot typically needs to execute four subtasks:
approach object location, grasp object, approach other loca-
tion, drop object. The user was instructed to select a pre-
defined goal using the EEG-controlled high-level planner.
Moreover, we selected a random initial placement for the
objects in each run, in order to cover different environment
states. The experiment was repeated ten times by the user.
Table II shows the averaged results for the experiment.
The second column indicates the overall number of desired
action calls, as scheduled by the high-level planner, as well
as the number of calls actually performed. The third to
fifth columns represent the success rate, mean and standard
deviation for the runtime of actions, respectively. Note,
that the number of scheduled and actually executed actions

TABLE I
AGGREGATED RESULTS FOR 10 RUNS (Exp. VII-B)

Actions # Executions Success Runtime [s]
(# Scheduled) Executions [%] Mean Std
Grasp 10 (10) 90.0 37.56 4.62
Drop 9 (10) 89.0 34.13 5.75
Approach 19 (20) 100.00 33.05 18.48
Total 38 (40) 94.74 3442 14.02
TABLE III

AGGREGATED RESULTS FOR 10 RUNS (ExP. VII-C)

Actions # Executions Success Runtime [s]
(# Scheduled) Executions [%] Mean Std
Grasp 34 (30) 91.0 4042  10.31
Drop 30 (30) 97.0 37.59 4.83
Approach 80 (80) 100.0 20.91 7.68
Pour 10 (10) 100.0 62.90 7.19
Drink 13 (10) 77.0 57.10 8.20
Total 167 (160) 95.86 3246  15.51

might differ for two reasons. A number of executed calls,
lower than the scheduled ones, indicates that a previous
action step has failed to succeed and plan recovery was not
possible. On the other hand, a higher number of executed
calls indicates that the user was able to achieve plan recovery
by commanding a repetition of the failed action. Moreover,
we recorded the largest standard deviation for the approach
action, which can be attributed to the diverse complexity of
the planning problem for the mobile base and the distance to
travel between the selected grasp and drop location. In total,
our system achieved a success rate of 80% for the entire task.
Planning and execution required on average 140.631+36.7s.
Errors were mainly caused by object detection issues, i.e.,
the system was not able to detect the object or the detection
was not precise enough to be able to successfully grasp or
drop an object.

C. Drinking Task

The last experiment evaluates the direct interaction be-
tween user and robot. Therefore, we implemented an au-
tonomous robotic drinking assistant. Our approach enables
the robot to fill a cup with a liquid, move the robot to the user
and finally provide the drink to the user by execution of the
corresponding drinking motion in front of the user’s mouth.
In addition to the techniques described above, successful
pouring and drinking using a robot requires the detection
of the liquid level in the cup and a reliable detection and
localization of the user’s mouth.

To detect the liquid level while pouring, we follow a
vision-based approach introduced by Do et al. [24]. Given
the camera’s viewing angle and the liquid’s index of refrac-
tion, the liquid height is determined from the depth measure-
ment using a relationship based on Snell’s law (see [25] for
more details). Using this knowledge, we first detect the cup,
extract the depth values for the liquid and finally estimate the
real liquid height. The type of liquid and hence the index of
refraction is assumed to be given beforehand. The viewing



angle can be determined from the depth data. A Kalman
filter is then used to track the liquid level and compensate for
noise. Once it is detected that the liquid level has exceeded
a user defined value, a stop signal is sent to terminate the
pouring motion.

For detection and localizing of the user’s mouth, we adopt
a two step approach. In the first step, we segment the image
based on the output of a face detection algorithm in order
to extract the image region containing the user’s mouth and
eyes. Afterwards, we detect the position of the mouth of the
user, considering only the obtained image patch. Regarding
the mouth orientation, we additionally consider the position
of the eyes in order to obtain a more robust estimation of the
face orientation, hence compensating for slightly changing
angles of the head. The face, mouth and eye detectors are
implemented in OpenCV by applying an algorithm that uses
Haar cascades [26], [27].

Table III shows the averaged results for the experiment.
Here, only 3.75% of the 160 scheduled actions had to be
repeated in order to complete the task successfully. In one
run, plan recovery was not possible leading to abortion of
the task. Thus, our system achieved in total a success rate of
90% for the drinking task. Planning and execution required
on average 545.56+67.38s. For the evaluation of the liquid
level detection approach, we specified a desired fill level and
executed 10 runs of the pour action. The resulting mean error
and standard deviation is 6.9£8.9 mm. In some instances the
bottle obstructed the camera view, resulting in poor liquid
level detection and a higher error.

VIII. CONCLUSIONS

In this paper, we presented a thought-controlled mobile
robotic service assistant, capable of successfully performing
complex tasks, including close range interaction with the
user, in a continuously changing environment to increase
the independence of severely paralyzed patients. Through the
use of a high-level planner as an intermediate layer between
user and autonomous mobile robotic service assistant, we
overcome the curse of dimensionality typically encountered
in non-invasive BCI control schemes, thus opening up new
perspectives for human-robot interaction scenarios.
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