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Abstract

In this paper, we discuss the particular characteristics of
planning for multiagent systems, and present a rich formal
model for describing features like concurrency, individual
and mutual beliefs of agents, acting under incomplete knowl-
edge, control, perception, and communication. Our model
allow agents to execute their individual plan fragments as
autonomously as possible while provably guaranteeing syn-
chronized behavior where necessary. Synchronization can be
achieved by as different methods as communication, metric
or quantitative temporal constraints, or copresence. We show
the semantic relation of multiagent plans to classical plans,
and informally describe a sound and complete variant of a
POCL algorithm for multiagent planning.

1 Introduction
In this paper, we discuss the particular characteristics of
planning for multiagent systems, and present a rich for-
mal model for describing features like concurrency, individ-
ual and mutual beliefs of agents, acting under incomplete
knowledge, control, perception, and communication. While
previous research has acknowledged most of these charac-
teristics to be relevant for multiagent planning (MAP), we
are not aware of prior work modelling and integrating all of
them and, above all, giving them a clear formal semantics
that can be used to prove properties of both plans and plan-
ning algorithms.

Our model allow agents to execute their individual plan
fragments as autonomously and flexibily as possible while
provably guaranteeing synchronized behavior where neces-
sary. Synchronization can be achieved by as different meth-
ods as communication, metric or quantitative temporal con-
straints, individual perception or copresence.

The purpose of this article is unusual in so far that it does
not contain algorithmical or empirical results, but “only”
provides a thorough discussion of MAP characteristics and,
consequently, a thoroughly defined logical model that al-
lows, e.g., to prove that a multiagent plan can by executed
by multiple agents without further coordination or external
synchronization. We believe that only based on such formal
qmodels, there can be theoretical, algorithmical, and empir-
ical progress in MAP. As one tool for this development we
have designed a variant of PDDL for the semantics defined
in this article. A parser and several sample domains (in-

cluding the one presented in the next section) will be made
available for download.

The next section will motivate and discuss the concepts
formalized in the remainder of the article. At the end of the
paper, we also sketch a sound and complete algorithm for
planning in our formalism.

2 Motivation
Example 1 A person wants to visit a friend. The friend’s
house can only be entered once its door has been opened.

Consider the scenario described in Example 1. We can
model it using the simple STRIPS-like operators given be-
low. If we assumeclosed ∧ outside ∧ ¬atHouse as the
initial state of the world (intuitively stating that the door is
closed and that the visitor has not yet reached the house)
the following is a valid STRIPS plan for the scenario:
〈move2house; open; enter〉.

action precondition effect
move2house outside∧¬atHouse atHouse
open closed ¬closed
enter outside ∧ atHouse

∧ ¬closed
¬outside

As the reader may have noticed, we have tried to obfus-
cate an important aspect of the scenario both in the ver-
bal and the formal description, namelywho is performing
which action. In fact, in classical STRIPS-like planning
there is no direct way to model theagentof an action (even
if telling action names suggest a specific reading). This is
unproblematic for Classical Planning which assumes cen-
tralized control of plan execution, but for MAP one must at
least distinguish the different capabilities of different agents.
Most prior MAP formalizations have recognized this and al-
low actions to be associated with anexecutingor controlling
agent. For our example, let us assume that the visitorx can
move to the house and enter it, but that only her friendy
can open the door. Then, most existing MAP formalisms
would accept the following as a valid plan for the scenario
(where each action is annotated with the controlling agent):
〈move2housex; openy; enterx〉.

However, the main point we will elaborate in the rest of
the paper is that this plan may actually not be executable
by the two autonomous agents! The reason is that the plan



constrains two autonomous agents to a specific temporal or-
der of actions, but does not guarantee that they can actu-
ally synchronizetheir behavior accordingly. Note that this is
not merely a problem of total-order (TO) vs. partial-order
(PO) plans: even a less constrained PO representation like
{move2housex≺ enterx, openy ≺ enterx} demands agent
x to synchronize herenteraction with a previousopenaction
by another agent. How is this synchronization achieved?

The example is so simple that the solution seems obvi-
ous: x knowswhen she can enter the house because she
can perceivethe door to be open once she is outside the
house. However, semantically there is no relation between
the propositionoutside describing wherex is and the propo-
sition closed describing what she is supposed to perceive.
There is not even a distinction between the door being open
andx being aware of it. The key to synchronization thus
lies in modeling not only the state of the world, but also the
beliefs that agents may have about it. Since facts can not
only be believed to be true or false, but alsounknown, we
use multi-valued state variables in our framework instead of
propositions. This has the additional advantage of leading to
smaller state spaces. In our scenario, the propositionsout-
sideandatHousecould be fused to one state variablelocx

with possible valuesinHouse, nearHouse,and elsewhere
(plus unknownin case of beliefs), thereby eliminating the
combination¬atHouse ∧ ¬outside which is meaningless
in our scenario.

Actually, many existing MAP formalisms, e.g. Shared-
Plans (Grosz & Kraus 1996), also employ beliefs and even
mutual beliefs among agents. However, to the best of our
understanding these concepts are only used there to describe
beliefsabouta plan (e.g. mutual beliefs about the joint com-
mitment to the plan), but not for describing how (mutual)
beliefs about the world develop and changein the plan. The
most basic way to change one’s beliefs is throughpercep-
tion. (In Section 5 we will also describe communication.)
We model perceptions bysensor rulesthat are automatically
triggered when the necessary conditions are satisfied. The
key realization underlying this approach is that perception
is not a consequence of one single action, but is an event
emerging from, firstly, something happening and, secondly,
somebody being there to watch it. In this sense, perception
is a special case of concurrency. Indeed, we will use other
kinds ofdomain rulesto describe non-trivial effects of con-
current events, as in the following variation of our scenario:

Example 2 Persony lives in a multi-storey building where
she can operate the entrance door by a buzzer.x can only
enter the house while the door is temporarily unlocked by
the buzzer. Furthermore,x must ring the doorbell first to
notifyy that she is there.

This example is fairly common in reality and introduces a
number of new aspects. Firstly, actions must be performed
concurrently in this scenario to achieve a nontrivial joint ef-
fect, namelyx must push the doorwhile the buzzer is acti-
vated to cause the door to swing open. Boutilier and Braf-
man (2001) show how such concurrent interacting actions
can be modelled using concurrency constraints and special
conditional effects. The authors note that post-planning syn-

chronization will be necessary to ensure the concurrency
constraints are obeyed by the executing agents. Since in
our model the plan itself is intended to guarantee synchro-
nization, we present an alternative model here which we call
the physical forces approachto concurrency. The underly-
ing idea is that action have only individual effects that do
not directly interact, but which in combination may create
a kind of “force” or “instability” that causes a natural event
according to thecausal rulesof the domain. Fig. 1 shows
the Causal Domain Rule (CDR) of our scenario in PDDL-
like syntax. The rule is modeled as an action caused by the
unique agentenv representing the environment.

(:action swing-open
:agent env
:precondition (and (doorstate = pushed)

(buzzer))
:effect (doorstate = open))

Figure 1: Causal Domain Rule

When synchronization by means of sensing is not possi-
ble, an alternative may be to agree on absolute time points
for action execution. This is just one reason for including
metric time in our model. For most practical problems fea-
turing concurrency it is important to reason not only about
whether some actions can be parallelized, but also about the
quantitative relation between their durations. However, we
also want to describe flexible or unknown durations; to en-
sure synchronized behavior in that case of uncertainty we
must be able to reason about the qualitative relations be-
tween events. The temporal model used in this paper allows
to describe both qualitative and quantitative temporal rela-
tions between events.

Example 3 The door toy’s house often stands open. If this
is the case whenx arrives she can simply walk in instead of
ringing.

One major reason for the difficulty of multiagent plan-
ning is the high dynamics of MAS and, consequently, the
many facts that may be unknown atplanning time– even
if the planner in question centralizes knowledge of several
executing agents. Usually, however, many things unknown
at planning time will become perceivable to at least one ex-
ecuting agent atexecution time. This fact can be exploited
by a planner, since perception models form an explicit part
of our model, and plans can thus include actions foractive
knowledge gathering. However, since the actual perceptions
to be made are unknown at planning time,conditional ac-
tion executionmust be possible depending on the outcome
of the perception. In Ex. 3,x must first move to the en-
trance ofy’s house to perceive the state of the door (open or
locked) before she can decide whether she can simply walk
in or must ring first. A multiagent plan for Ex. 3 is shown
in Fig. 2; the sensor rule describing the circumstances under
which the agent can perceive the state of the door is shown
in Fig. 3 in the extended PDDL syntax we have defined for
our model.



Figure 2: A multiagent plan for scenario 3.
For clearness, temporal constraints and facts supported by causal
links have been omitted. Labelsd = l (d = o) denote the door
being initally locked (open). Events labeledperc are perception
rules, the CDRswing corresponds to the door swinging open when
being pushed and kept unlocked (by buzzing) simultaneously.

3 Integrating Agency with Planning
In this section, we will describe how basic notions of agency
can be integrated into a Planning formalism. We will, how-
ever, not attempt a definition of what constitues an “agent”.
Instead, an unspecified set of agentsA will be the basic
building block for all further definitions.A is always as-
sumed to include the unique agentenv, the environment
agentwith special characteristics described in Sec. 5.

Some necessary components of agency (like beliefs and
capabilities for sensing and acting) will be defined and at-
tributed to agentsa ∈ A. For this we use a function
agt(x) := a wherex can be any such component. We will
use the index notationxa to denoteagt(x) = a and also
extend this notation straightforwardly to sets.

Facts, beliefs, and mutual beliefs Instead of the proposi-
tional representation used in most Planning formalisms, our
model usesnon-boolean state variables(cf. (Bäckstr̈om &
Nebel 1995; Helmert 2004) for a discussion of the SAS+

formalism where this extension is borrowed from). There
are several reasons for this design choice:

1. Multi-valued state variables occur naturally in most plan-
ning domains. For example, the positions of an agenta
can be encoded by one state variableloca with a set of
possible values, thedomain of loca, domloca . Not only
becomes modeling such domains considerably easier, also
the size of the state space can often be dramatically re-
duced (Helmert 2004). Moreover, since propositions are
state variables over the domain{true,false}, proposi-
tional planning formalisms like STRIPS, ADL and PDDL
are subsumed by state-variable model, anyway. Syntac-
tically, compatibilty with propositional planning can be
maintained by allowing the notations(prop) and(not
(prop)) instead of(prop = true) and (prop =

false) .

2. Beliefsof agents can straightforwardly be modeled, with-
out the need for a possible world semantics, by simply
allowing state variables to assume a specific additional
valueunknown1. We will call such variablesbelief state
variables.

3. Distributed Systems are usually modelled by means of
private and shared variables. Classical concepts likeread-
write conflictsor variablelockscan be easily recognized
in multiagent plans when using a state variable represen-
tation. For example, the Classical Planning concept of
mutually exclusivepropositions (Blum & Furst 1997) can
then be expressed asread-write locksbetween state vari-
ables. This shift in perspective is helpful especially when
applying Distributed Algorithms concepts to Multiagent
Planning (Brenner 2003).

Let V be a set ofstate variables, eachv ∈ V with an
associate finitedomain domv. A partial variable assign-
ment (PVA) overV is a functions on some subset ofV such
thats(v) ∈ domv wherevers(v) is defined.undefs is the set
of undefined variablesin s. If s(v) is defined for allv ∈ V,
s is called astate. If s(v) is defined (with valuex) then the
pair(v, x) is called anassignment(also writtenv

.=x). Two
PVAs s ands′ are calledconsistentif the following holds:
if both s(v) ands′(v) are defined thens(v) = s′(v).

STRIPS, PDDL, and other languages based on proposi-
tional logic use sets of propositions where our model (due
to having non-boolean variables) must use PVAs. To make
this relation easier to see, we will often use set notations
for PVAs, too, e.g. we write(v .= x) ∈ pree instead of
pree(v) = x, and denote the completely undefined PVA by
∅. In particular, we define theunion of two consistentPVAs
s1 ands2 as the PVAs = s1 ∪ s2 in which if s1(v) = x or
s2(v) = x then alsos(v) = x.

For a given agenta ∈ A \ {env}, a setV of state vari-
ables induces a set ofbelief state (BS) variablesVa where
for eachv ∈ V there is ava ∈ Va with domva = domv ∪
{unknown}. The functionagt, defined asagt(va) := a, re-
turns theowner of a BS variable. The environmentenv does
not have beliefs; to keep some of the following definitions
simple, we defineVenv := V andagt(v) = env for v ∈ V.

We can further generalize this concept to beliefs shared
among subgroups ofA: the setsV andA induce a set of
mutual belief state (MB) variables VA where for each
v ∈ V and each subgroupA ⊆ A there is avA ∈ VA with
domvA = domv ∪ {unknown}. The definition of MB vari-
ables includes mutual belief among a singleton set of agents
which is equivalent to individual belief. Thus the definition

1It must be noted that some beliefs can be expressed within
a possible world semantics, but not in our model, in particular
constraintsbetweenstate variables. For example, the constraint
loca

.
= x ↔ locb 6 .= x could describe that no two agents can

be believed to be at the same position at the same time. Often,
though, such constraints can be modeled by introducing comple-
mentary state variables, for exampleoccupantx would describe
who is standing at positionx and could have valuea or b (plus
some dummyunoccupied), but not both.



of MB variables subsumes the one for BS variables of in-
dividual agents. For convenience, however, we will keep
the distinction between individual and mutual beliefs, and
also continue to use the notationva := v{a} for individual
beliefs. Since furthermoreVenv = V, the PVAs overVA
enumerate all possible states, beliefs, and mutual beliefs for
a given domain2. A PVA s is knowledge consistentif all
mutual beliefs correspond to the facts, i.e. they are actu-
ally common knowledge. Formally, a PVAs is knowledge
consistent ifs(vA) = x implies that alsos(v) = x for all
variablesv and allA ∈ A. In particular, knowledge con-
sistency impliesMB consistency, i.e. if s(vA) = x then
s(vA′) = x for all A′ ⊆ A.

4 Modelling Multiagent planning domains
We can now define what constitutes a MAP domain. While
the definition contains many agent-specific particularities
that will be explained in the rest of this section, it was nev-
ertheless designed to be compatible wherever possible with
PDDL 2.1 (Fox & Long 2003). Roughly, our definitions
extend PDDL 2.1, level 1 and 3, and by “compatibility” we
mean that there is a large class of domains that are both MAP
and PDDL domains. The main difference, apart from the no-
tions of agency described in the previous sections, is a tem-
poral model that allows more “qualitative” relations between
events than the solely metric time model of PDDL 2. For a
similar treatment of time, see (Younes & Simmons 2003).
We have discussed the importance of a “qualitative” tempo-
ral framework in addition to a quantitative one like PDDL 2
in (Brenner 2003).

Definition 1 A multiagent planning domainis a tupleD =
(A,V, E ,O) where
• A is the set ofagents
• V is the set ofstate variables, eachv ∈ V with an asso-

ciate finitedomaindomv

• E is the set ofevents, each e ∈ E of the forme =
(a, pre, eff ) where
– a ∈ A is thecontrolling agent
– pre is a knowledge consistent PVA overV ∪ Va called

theprecondition
– eff is a knowledge consistent PVA overV ∪ VA called

theeffectof e.
• O is the set ofprocesses, eacho ∈ O of the formo =

(a, es, ee,∆, inv) where
– a ∈ A is thecontrolling agent
– es ∈ E (with agt(es) = a) is thestart event
– ee ∈ E (with agt(ee) ∈ {a, env}) is theend event
– inv is a PVA overV ∪ Va called theprocess invariant
– the interval∆ ⊆ R+ is called theduration rangeof o

2The reader will note that we only define individual and mutual
beliefs, but do not attempt to model arbitrary nested beliefs (like “A
believes that B believes that C believes that x”). Firstly, this would
lead to an infinite number of nested belief variables. Secondly,
nested beliefs (other than mutual beliefs) almost never seem to play
a role in multiagent behavior. Thirdly, if, for specific problems or
domains, beliefs nested to some finite level were needed, the model
could easily be extended.

Events Roughly, events corresponds to instantaneous ac-
tions in PDDL. We use the neutral term “event” to hint at
the fact that what for one agent constitutes an action that she
can execute at will is an uncontrollable event for another.

Events differ from classical actions in havingknowledge
preconditionsandknowledge effects. Interestingly, knowl-
edge preconditions are more restricted than knowledge ef-
fects. The reason for this is that the controlling agent can
only refer to her own beliefs when checking whether she can
execute an action. In contrast, we allow agents tochangethe
beliefs of other agents directly, at least in principle: this is
the most basic way to modelcommunication, i.e. actions
with knowledge effects can be regarded as speech acts.

We have already seen that for an action to be executable
by an agenta not only must its usual preconditions be satis-
fied, but the agenta must also know about it3. We therefore
demand the following for allea ∈ E : if (v .= x) ∈ pre(ea)
then also(va

.= x) ∈ pre(ea). For effects, we will en-
force a similar constraint: if(v .= x) ∈ eff (ea) then also
(va

.= x) ∈ eff (ea). The meaning, however, is somewhat
different: an agent will know when it has executed an action
and therefore will believe in its effects to have occured. Of
course, both kinds of constraints can be automatically com-
puted and need not be specified explicitly.

Processes Processes are similar to durative actions in
PDDL, but must be extended for MAP with the notion of
control which was introduced by Vidal and Fargier (1999)
and is extended to the multiagent case here. Control de-
scribes the kind of influence that an agent has on a process.
For some processo wherea = agt(es) we say thata has
occurrence control over o. If, additionally, a = agt(ee)
thena also hasduration control overo. The key semantic
difference can be illustrated by the two processes of reading
a book and boiling water with a kettle: I can decide for both
processes whether I want to execute them in my plan (and
thus have occurence control over both), but I have duration
control only of my reading the book, i.e. I can tighten dura-
tion interval∆ at will in my plan. In contrast, for boiling the
water the plan must be guaranteed to work for all possible
durationsδ ∈ ∆.

The process invariantinv is used just as in PDDL to de-
scribe facts that must hold throughout the whole process. To
model this semantics an artifical eventeinv = (env, inv , ∅)
will be used. einv , es, andee together form the setEo of
events appearing in processo. The set of all events appear-
ing in a set of operatorsO is denotedEO.

To simplify our later definition of multiagent plans, we
model instantaneous actions as processes, too: ifea 6∈ EO
then we extendO by (a, ea, ea, ∅, [0, 0]).

Semantics of events The semantics of events is defined
exactly as in other planning formalisms: given a states
and an evente, e is applicable in s if whenever (v .=
x) ∈ pree then also(v .= x) ∈ s. Applying an appli-
cable evente in a states results in stateapp(s, e) where
(v .= x) ∈ app(s, e) iff (v .= x) ∈ effe or [(v .= x) ∈ s and

3Although sometimes one may want to give up this constraint,
resulting in a “leap-before-you-look” approach (Golden 1998).



v ∈ undefeffe
]. The occurence of asequenceof events can

be defined inductively in the usual manner:res(s, 〈〉) := s
and res(s, 〈e1, ..., en〉) := app(res(s, 〈e1, ..., en−1〉), en)
if en is applicable in res(s, 〈e1, ..., en−1〉), otherwise
res(s, 〈e1, ..., en〉) is undefined. We will later show how this
Classical Planning semantics relates to our complex tempo-
ral multiagent plans.

5 Modeling Causal Laws of MA Systems
The events and processes controlled by the environment
agentenv differ from those of all other agents in one cru-
cial aspect: the environment does not act deliberately and
willfully; instead events necessarily occur according to the
“physical laws” of the domain, itscausal domain rules
(CDRs). Formally the CDRs simply consist of all pro-
cessesOenv controlled byenv. The semantic difference is
the fact that preconditions of normal actions describe condi-
tions necessaryfor an action to be exectubable, while con-
ditions of CDRs aresufficientto trigger the corresponding
event or process. (The concept of automatically triggered
events was inspired by research in the Theory of Actions
community, in particular by Thielscher (1995)).

Causal domain rules are meant to model the “laws of na-
ture” of a domain. Whenever a rule is triggered the world
is considered to be in anunstablestate leading to an event
or the start of a process which in turn removes the insta-
bility (but might create a new one). To capture that aspect
and to prevent the same rule to be triggered repeatedly with
infinitesimal delays, we enforce rules to destroy their own
triggering conditions.pre(es) andeff (es) must be incon-
sistent, i.e.es destroys one of its preconditions.

Furthermore, two rulesr1, r2 ∈ Oenv that are triggered by
the same situation could have inconsistent effects, thereby
introducing nondeterminism into our model. Just as in Clas-
sical Planning we will forbid this, and formally constrain:
If eff (r1) and eff (r2) are inconsistent, thenpre(r1) and
pre(r2) must be inconsistent, too.

Within the constraints just defined (destroying the own
precondititon, no rules leading to nondeterminism), causal
domain rules are a powerful tool. In particular, we can use
them to naturally model interactions between concurrent ac-
tions as was demonstrated in Ex. 2. Due to lack of space,
a detailed comparison to alternative models of concurrency
like the one of Boutilier and Brafman (2001) will be done in
an extended version of this paper.

Perception, communication, and mutual belief
Causal domain rules are also used to describe sensor mod-
els of agents. In contrast to other “physical laws” of a do-
main,perception ruleshaveknowledge effects. To simplify
reasoning about perception rules we will enforce the follow-
ing format for them: perception rulesr ∈ Oenv must be
instantaneous actions, i.e.r = (env, e, e, ∅, [0, 0]). Fur-
thermoree has exactly one effect(va

.= x) wherea ∈ A
and (v .= x) ∈ pree. We call pree \ {(v .= x)} the per-
ception condition for (v .= x). Usually, we can assume
that perception does not depend on a specific valuex of v
and that there are corresponding rules for allx ∈ domv.

The set of these rules is called asensor modeland we write
sensor(a, v, cond) to denote that for allx ∈ domv there is a
rule (env, cond ∪ {(v .=x)}, {(va

.=x)}). Fig. 3 shows how
the sensor modelsensor(a, doorstate, {loca

.= entrance})
is described in PDDL-like syntax. It specifies that an agent
will perceive the state of the door (openor closed) when she
is at the entrance.

(:sensor door-sensor
:agent ?a
:precondition (loc ?a = entrance)
:sense (doorstate))

Figure 3: Perception rule

We have previously explained how knowledge effects can
be used as an easy means to model speech acts. Addition-
ally, we have assumed that an agent executing an action will
believe its effect to be true afterwards. In combination, those
premises lead to an interesting effect. Assuming that agenta
communicates a factp = (v .=x) to agentb, the effectvb

.=x
could be expressed asBbp in some standard epistemic logic.
However, sincea knows this to be the effect of his action
alsoBaBbp will be true. We have explicitly not included
such nested beliefs in our framework, but we can do some-
thing else: If me make the additional assumption (not yet
explicit in the semantics) thatb will know who has commu-
nicatedp to her, she will be able to inferBbBaBbp, which
in turn a may infer, etc. In short, under the assumption of
perfect communication and speaker detection, our modeling
of speech acts induces mutual belief. This is not surpris-
ing (Faginet al. 1995), yet welcome, since it allows us to
replace simple knowledge effects with mutual belief effects
(among the speaker and hearer) in speech acts.

Communication is not the only way to achieve mutual be-
lief. Another possibility,copresence(or coperception) was
described already by Lewis (1969). Informally, agents are
copresent when they are in a common situation where they
can not only perceive the same things but also each other.
Such a situation can lead to mutual belief since the agents
can mutually infer their perceptions, the beliefs about other
agents’ perceptions, etc.

We can describe copresence situations as special kinds
of sensor modelssensor(A, v, cond) that have effects on a
mutual belief variablevA for a group of agentsA. A ba-
sic example could be a copresence model stating that agents
achieve mutual belief about their respective locations when-
ever those are identical. Based on this “precursory” MB
more MB can be inferred wherever a perception rule is trig-
gered the condition of which does not only hold, but is al-
ready mutual belief. In that situation all copresent agents
could infer the perceptions of the others, plus their infer-
ences, etc. A more formal treatment of this topic will be
given in a future publication where we also describe an ap-
proach to automatically deriving copresence models from
individual sensor models.



6 Plans, Problems, and Solutions
Definition 2 A multiagent plan for a domain D =
(A,V, E ,O) is a tuplePD = (A,O, T, L, B) where
• A ⊆ A is the set ofagents
• O ⊆ O is the set ofoperators
• T is a set of temporal constraintsof the form t =

(e, e′, ∆) wheree, e′ ∈ EO and∆ ⊆ R.
• L = L+∪L− is a set ofpositiveandnegative causal links

of the forml = (e, v .=x, e′) where(v .=x) ∈ pre(e′) and
– (v .=x) ∈ eff (e) if l ∈ L+

– (v .=x′) ∈ eff (e) if l ∈ L− (for somex′ 6= x)
• B is a function labeling each event and each causal link

with a PVA. It is called thebranching context.
This definition of MA plans is related to single-agent for-

malisms for conditional temporal planning (Tsamardinos,
Pollack, & Horty 2000), but extends prior work with mul-
tiple agents, causal domain rules, and (mutual) beliefs. To
show the relation to classical PO representations of plans,
we say an evente is precedesanother onee′ if (e, e′, ∆) ∈
T and∆ ⊆ R+. In that case, we also write(e ≺ e) ∈ T .

In the following, we will assume that in every given plan
P the set of constraintsT is complete and unambiguous, i.e.
that there is exactly one constraint(e, e′, ∆) for all e, e′ ∈
EO. This is no restriction, but can be achieved easily by
extendingT with (e, e, [0, 0]) for all eventse ∈ EO and with
(e, e′, (−∞,∞)) for previously unrelated eventse 6= e. We
further assume thatT is pairwise consistent, i.e.(e, e′, ∆) ∈
T iff. (e′, e,−∆) ∈ T . If (e, e′, ∆) ∈ T and∆ ⊆ R+, we
say thate must occurbeforee′ and write(e ≺ e) ∈ T .

The temporal constraintsT of a planP form a Simple
Temporal Network (STN) (Dechter, Meiri, & Pearl 1991). A
basic prerequisite for giving the plan a meaningful semantics
is that the underlying STN isconsistent. Consistency can
be checked in small polynomial time; cf. (Younes & Sim-
mons 2003) for a description of how STNs can be used in
a state-of-the-art single-agent planner. In the following we
will assume only plans with consistent underlying STN.

Temporal constraints in a plan must not only form con-
sistent STNs, they must also not violate the duration range
defined for the processesO as defined inD. The du-
ration range, however, has a different semantics depend-
ing on who hasduration control of a processo: if env
controls the duration, the plan must be be valid for any
possible duration in the duration range. If, on the other
hand, the agent controlling the duration ofo is different
from env the planner may tighten the duration constraints
at will4. Formally, we define a planPD to be process-
consistentwithD if for all processeso = (a, es, ee,∆, inv)

4This definition ofcontrol is sufficient for the situation assumed
in this paper where there are basically only twoplanning(but many
executing) agents: a centralized planner who can add and remove
actions for all executing agents, and the environment agentenv.
Our model ofcontrol is, however, designed to be used also in a
Distributed Planning paradigm where some plannerPlannera is
responsible but for one executing agenta. In that case,Plannera
may not change the duration range of any processo controlled by
agentsb 6= a. In fact,Plannera can not even simply removeo from
its current plan, since this would not force the planner controlling

in PD, T ⊇ {(es, ee, ∆1), (es, einv , ∆2), (einv , ee,∆3)}
where∆1, ∆2,∆3 ⊆ ∆. If agt(ee) = env then∆1 = ∆.

Following the literature on conditional planning we de-
mand thatB must be defined such that labels are propagated
along temporal constraints in the plan (Peot & Smith 1992;
Tsamardinos, Pollack, & Horty 2000; Tsamardinos, Vidal,
& Pollack 2002).

The reader may have noted that, in contrast to, e.g, PDDL
2, there is no way in our formalism to specify absolute time
points for events. However, absolute time points can be de-
scribed by referring to a special, mutually knowntempo-
ral reference evente0, virtually occuring before all other
actions. Note, however, that in many domains exact time
points will only complicate plan monitoring, since in gen-
eral it cannot be determined whether a plan should still be
considered correct when some event occured with a slight
temporal difference to its precise scheduled time. The quali-
tative model we propose is thus more flexible than the metric
one of PDDL 2.

We can now generalize the POCL notions of threats and
open conditions to our metric temporal and conditional plan
formalism.

Definition 3 In a planP = (A,O, T, L, B), an evente has
an open conditionc = (v .= x) if c ∈ pre(e) and there is
no causal linkl ∈ L which supportsc, i.e. which is of the
form l = (e′, c, e) for somee′. An eventet ∈ Eo threatensa
causal linkl = (ep, v

.=x, ec) ∈ L if

• et has an effectv
.=x′ wherex′ 6= x if l ∈ L+, andx′ = x

if l ∈ L−

• et might occur betweenep andec, i.e. there exist∆, ∆′ ⊆
R+ for whichT ∪ {(ep, et, ∆), (et, ec,∆′)} is consistent

• ep andet occur in consistent branching contexts

Natural eventsnecessarilyfollow the causal rules defined
for the domain. As a consequence, valid plans must not only
contain actions that achieve the goals, but must also ensure
that no harmful natural events can be triggered. An oper-
ator o is said toenablea ruler if it achieves some trigger
condition of r. Formally, we define a relationenables ⊆
O × Oenv whereenables(o, r) if there exists(v .= x) with
(v .= x) ∈ eff (o) and(v .= x) ∈ pre(r). Note thato might
itself be a causal rule which enables another one. Note fur-
ther that since there may be several trigger conditions forr,
occurence ofo alone is not sufficient to actually triggerr.

Definition 4 A plan PD = (A,O, T, L, B) for a domain
D = (A,V, E ,O) is closed wrt. the domain rulesOenv if
the following holds:

• if env ∈ A thenenv ∈ A

• if enables(o, r) thenr′ ∈ O and (o, r′,R+) ∈ T (where
o ∈ O, r ∈ Oenv andr′ is a unique copy ofr)5.

In words, a closed plan contains instances of all rules that
might possibly be triggered during its execution. Since rules
may themselves trigger other rules, computing the closure

o, namelyPlannerb, to do likewise.
5Such a copy of (or mapping to) a base action is usually called

a step. Following most of the planning literature, we will ignore
the distinction between steps and base events wherever possible.



for a given planP amounts to a fixpoint computation, i.e.P
is extended with the enabled rules repeatedly until a stable
plan is reached6.

A MAP problem instance is a tupleΠ = (D, I, G)
whereD = (A,V, E ,O) is a MAP domain. I andG are
knowledge consistent PVAs overVA called theinitial and
goal knowledge distribution and which, as usual, will be
represented by the dummy actionseI = (env, ∅, I) and
eG = (env, G, ∅). I might be incompletely specified (al-
though the deman for knowledge consistency at least en-
forces that there are no false beliefs). Therefore, a solution
plan for Π must be valid for all possible undefined values.
To ensure this we define the set of possible additional ini-
tial eventsE?

I := {(env, ∅, {(v .= x)}) | v ∈ undefI ∧ x ∈
domv}. All of these events will conditionally appear in the
plan, labeled with their own effect, thereby defining the only
branching context where they can occur.

Definition 5 A planPD = (A,O, T, L, B) is a solution to
Π = (D, I, G) if

• O = O′ ∪ {eI , eG} ∪ E?
I whereO′ ⊆ OA

• eI ≺ e ≺ eG ande? ≺ e for all e ∈ O′ and alle? ∈ E?
I

• B(eI) = B(eG) = ∅ andB(e) = eff (e) for all e ∈ E?

• T is process-consistent withD and forms a consistent
STN

• P is closed wrt. the domain rulesOenv

• P contains no threatened causal links
• the only open conditions inP are in rulesr ∈ Oenv not

supporting causal links

This definition is a straightforward extension of what con-
stitutes solutions in POCL planning. One major difference
is the role of individual beliefs in a plan, expressed by the
knowledge preconditons and effects of events. A solution
plan must, in particular, not contain open knowledge con-
ditions. Thus, the definition forces planners to make sure
that knowledge necessary for synchronized actions is shared
among the executing agents. Either agents must be brought
into positions to perceive changes themselves or commu-
nicative actions must be previewed in a plan.

Another novelty is the role of control (embedded in the
notion of process-consistency) that different agents have
over different actions in the plan, and especially the role that
natural events play for modelling concurrency, perception,
and, generally, complex ramifications of events caused by
agents. Since natural events need not happen necessarily, the
definition allows conditions of CDRs not used in causal links
to be left open. In this respect, CDRs are similar to condi-
tional effects in POCL planning whose conditions must only
be supported if their effect is needed in a causal link.

6Since we do not prevent cyclic triggering of rules, the closure
of a planP might be infinite. For example,daymay be a durative
action with an end event triggering another process,night, which
in turn triggersdayagain. This is a natural way to model recurring
events. For space reason, we will not discuss it in detail here, but
assume that either cyclic rules do not exist or that the planning and
execution horizon is restricted to sometime windowwithin which
the closure is finite.

As the final result of all formalizations, the only theo-
rem in this paper confirms our definition of a “solution”
to a MAP problem to be consistent with the state transition
model of Classical Planning.

To show this relation, we firstly need complete states
to compute transitions on. For a problem instanceΠ =
(D, I, G), a completely defined PVAs is apossible initial
state if s(v) = I(v) wheneverI(v) is defined.IΠ is the set
of possible initial statesfor Π.

Secondly, we must clarify the relation between the tem-
poral constraint networks of MA plans and the transition
sequences of Classical Planning. We first note that each
possible initial states ∈ IΠ is a branching context for the
execution of a solution planP , i.e. s induces an uncon-
ditional planPs = (A,O′, T ′, L′, ∅) which only contains
those processes that in the original solutionP where la-
belled consistently withI ′. Formally: e ∈ EO′ iff B(e)
is consistent withs. An execution schedule for an uncondi-
tional planPs = (A,O′, T ′, L′, ∅) is a plansched(Ps) =
(A, O′, T ′′, L′, ∅) whereT ′′ is an extension ofT ′ such that
for each pair of eventse1, e2 ∈ EO′ either(e1 ≺ e2) ∈ T ′′,
(e2 ≺ e2) ∈ T ′′, or (e1, e2, [0, 0]) ∈ T . An execution
schedule is valid, if, despite the new constraints, the underly-
ing STN remains consistent and process-consistent. A valid
execution schedule describes a possible sequence of events
when executingPs. This schedule, however, may still in-
clude simultaneous events. This is, however, unproblematic
since the definition of threats (Def. 3) prevents simultane-
ous occurence of conflicting events. Therefore, to construct
a transition sequence, it is possible to allow those events to
virtually occur in arbitrary order: we define the set of to-
tally ordered transition sequences ofPs to consist of all se-
quencesseq = 〈e1, . . . , en〉 that are topological sortings of
valid execution schedulessched(Ps).

Given the set of possible initial states and the induced set
of possible transition sequences for a planP , we can finally
relate the semantics of multiagent plans to classical plans by
the following theorem:

Theorem 1 Let PD = (A,O, T, L, B) be a solution to a
MAP problemΠ = (D, I, G). Then, for all possible initial
statess ∈ IΠ, G ⊆ res(s, p) for all p ∈ TO(Ps).

Proof sketch: Analogously to the semantics of classic
POCL plans which is also defined in terms of topological
sortings of a partially ordered sequence of events, we use
valid execution schedulessched(Ps) to define what Fox &
Long (2003) call a “happening sequence” of a temporal plan.
Def. 5 explicitly orders the possible initial eventsE?

I be-
fore all other events in a solution plan. Therefore, since
those events do not threaten any others inPs (otherwisePs

would violate Def. 5 and thus would not be a solution), each
sched(Ps) must be executable ins. SincePs must also con-
tain neither open conditions nor threats,Ps is executable in
s (Penberthy & Weld 1992). In particular, the goal eventeG

that is scheduled after all other events will be the last event
occuring in a topological sortings ofsched(Ps). Therefore
G is true in the final state of the execution.

We have left out another, more interesting theoretical re-
sult, namely how individually executable plan fragments can



be generated from a global plan that are guaranteed to be
jointly executable. While the result is rather obvious (since
knowledge preconditions ensure that agents wait until they
perceivethe satisfied preconditions, even if they don’t know
about events that have caused the perception) its description
in terms of mergeable individual plans is beyond the space
of this paper.

7 Planning for Multiple Agents
To show that planning is indeed possible for MAP domains
we will now sketch an algorithm for planning in our formal-
ism. It is, however, not specifically tailored to MA Planning,
but mainly consists in a transformation of the planning prob-
lem to a well-known representation (POCL plans with con-
ditional effects) and the subsequent application of a standard
POCL Planning algorithm. As such, the algorithm is cer-
tainly less efficient than the special-purpose MAP algorithm
we will present in forthcoming work.

In a preprocessing step, all induced belief and mutual be-
lief variables are generated, and all knowledge preconditions
and effects a added explicitly to events. In particular, mutual
belief effects are added to speech acts, and copresence rules
are derived from sensor models. Then for each instantaneous
CDR r that is enabled by an evente we extende by a con-
ditional effect corresponding tor. Afterwards, the original
CDRs are removed from the MAP domain.

The actual planning algorithm works like UCPOP (Weld
1994): it resolves open conditions by supporting them with
causal links, thereby adding processes to the plan if nec-
essary, and threats by promotion, demotion, or confronta-
tion. In particular, confrontation will ensure that no harm-
ful CDRs are triggered. If the current partial plan enables
non-instantaneous CDRs its closure must explicitly be com-
puted for threat and validity checking. Generally, when a
non-instantaneous processo is added, this means that all
eventsEo and constraints between them must be added to
the plan. Similarly, when promoting or demoting processes,
their duration constraints must be preserved by moving the
start, end, and invariant event simultaneously.

Based on the soundness and completeness of UCPOP we
can easily prove soundness and completeness of the mod-
ified algorithm for the case where duration constraints are
merely ordering constraints. For metric duration constraints,
we must further guarantee that the Simple Temporal Net-
work underlying the plan is consistent. This can be achieved
in low polynomial time (Dechter, Meiri, & Pearl 1991;
Younes & Simmons 2003). The definition of threats from
Def. 3 which uses temporal instead of relational ordering
constraints, ensures that every plan found by the algorithm
can indeed be executed in every possible total order without
endangering causal links.

8 Related Work
This work integrates ideas from several research communi-
ties, in particular Classical and Distributed Planning, Multi-
agent Systems, Epistemic Logic, and Reasoning about Ac-
tions and Change.

Boutilier & Brafman (Boutilier & Brafman 2001) devel-
oped a formalism for multi-actuator plans and a planning
algorithm based on classical POCL techniques. They model
interacting effects of concurrent actions by specific kinds of
conditional effects of the individual agents. A plan must
provide simultaneity constraints ensuring that the interaction
really takes place as planned. The authors assume that an
external synchronization mechanism will ensure that during
execution the constraints are met by the agents. Our formal-
ism, however, rests on the assumption that executing agents
are truly autonomous and there is no external instance to
synchronize them. Therefore it must allow agents to syn-
chronize on their own. This is achieved by explicit repre-
sentation of changing knowledge and reasoning about indi-
vidual and joint perceptions.

The events and temporal constraints in multiagent plans
form a Simple Temporal Network (STN) (Dechter, Meiri,
& Pearl 1991). Earlier work using this approach to ex-
tending PO plans with quantitative temporal constraints
include (Ghallab & Laruelle 1994; Younes & Simmons
2003). These approaches subsume the temporal model of
PDDL 2 (Fox & Long 2003), but extend it with flexi-
ble action durations that are necessary for our “qualitative”
approach multiagent synchronization based on perception,
rather than on absolute time points.

Conditional single-agent plans based on STNs were used
by Tsamardinos et al. (Tsamardinos, Pollack, & Horty 2000;
Tsamardinos, Vidal, & Pollack 2002). The notion of dif-
ferent kinds ofcontrol over intervals in a temporal con-
straint network was introduced by Vidal and Fargier (Vidal
& Fargier 1999). In this paper we provide an extension to
these approaches by specifying conditional temporalmulti-
agentplans. However, we permit flexible action durations,
but no other temporal constraints, which, for the time being,
allows us to abstract from the subtler points of control and
plans with observation nodes.

We do not know of other work on (multiagent) planning
that formalizes the notion of causal domain laws or provides
a similar approach to describing complex ramifications of
concurrent multiagent actions. Our approach is inspired by
work of Thielscher (Thielscher 1995) in the Theory of Ac-
tions community.

None of the above mentioned research describes execu-
tion time synchronization, sensor modeling, or communica-
tion. Our approach to planning in the presence of sensing
is inspired by work of Etzioni, Weld & colleagues (Etzioni
et al. 1992; Golden & Weld 1996; Smith & Weld 1999),
Levesque (Levesque 1996), and Petrick & Bacchus (Petrick
& Bacchus 2002; 2004). Again, we extend previous work
to the multiagent case, thereby providing the basis for syn-
chronized action at execution time. In particular, our ex-
plicit modeling of sensing and communication in multiagent
environments complements BDI-inspired MAP models like
(Grosz & Kraus 1996) that describe the role of (mutual) be-
liefs in necessary conditions for planful MA behavior, but
do not explain how these conditions can be achieved during
plan execution.

Since the focus of this paper is Distributed Plan Execu-
tion rather Distributed Planning, we will only briefly relate



our representation to some of the formal models used in
that area. An excellent survey on techniques for Distributed
Planning can be found in the paper by desJardins et. al. (Des-
Jardinset al. 2000). Within this field there is a huge body of
work relying on a hierarchical representation of multiagent
plans (Durfee & Lesser 1987; Durfee & Montgomery 1991;
DesJardins & Wolverton 1999; Clement & Durfee 1999b;
1999a). Hierarchical plans are very important in practical
applications and therefore we are planning to extend our for-
malism to account for action decompositions. We believe
that this extension should prove not to be complicated, since
durative actions and their “invariant conditions”, as used in
our model, may be employed to “hide” an action decompo-
sition and its “inconditions”.

9 Conclusion and Future Work
We have presented a rich formal model of multiagent plan-
ning that includes and clarifies many important characteris-
tics of MAP missing or underspecified in previous work. In
particular, our model describes sensing and communication,
and how both explain the evolution of (common) knowledge
during a plan. Perceptions and knowledge provide the ba-
sis for “qualitative” synchronization of plans, i.e. quanti-
tative notions like exact time points and durations become
less important, thereby giving multiagent plans the flexibil-
ity needed by truly autonomous agents.

We have sketched a planning algorithm for MAP do-
mains. A more elaborate algorithm will be presented soon.
It is based on an extension of state-space forward-search
techniques to POCL planning which we call Progressive
Partial-Order Planning. This technique also allows to easily
reason about triggered domain rules (or prevent their firing).

Although efficient algorithms and empirical results are yet
missing in this paper, it is our hope that by defining not only
the formal semantics, but also providing sample domains, a
parser, and a plan validator for a concrete PDDL-like syntax,
we can provide helpful tools for other MAP researchers and
thus help to advance this interesting field of research.

References
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