
Situation-Aware Interpretation, Planning and Execution of
User Commands by Autonomous Robots

Michael Brenner
Institute for Computer Science

Albert-Ludwigs-University
Freiburg, Germany

Abstract— For a robot to be able to first understand and then
achieve a human’s goals, it must be able to reason about a) the
context of the current situation (with respect to which it must
interpret the human’s commands) and b) the future world state
(as intended by the human) and how to achieve it. Since humans
express their intentions and plans using qualitative symbolic
representations, robots must be enabled to reason and interact
on the same representational level. In this paper, we describe
the use of classical AI Planning techniques for situation-aware
interpretation and execution of human commands. We show
how, based on a Planning domain, a robot can be enabled
to understand commands in natural language, plan for their
situation-dependent realization and revise its plans based on
new perceptions. We show the effectiveness of this approach
in several HRI scenarios modeled as Planning domains as well
as with examples from a real robot system developed in the
EU-funded CoSy project.

I. INTRODUCTION

Intelligent service robots are expected, in the near fu-
ture, to understand natural language (NL) commands and
to find situation-dependent ways to perform these tasks
autonomously. This vision can only become true if robots
can reason about tasks on the same high level of abstraction
that the humans they interact with use to specify them. In
particular, a robot must be able

• to interpret an NL command as a goal it must achieve,
• to intelligently plan how to achieve that goal based on

its knowledge about the current situation,
• and to execute the planned behaviour
• or realize that it lacks information, needs help in per-

forming the task or simply does not understand the
command.

Additionally, to enable the broadest possible range of
application domains for such robots and to ease changing
and extending them,

• these capabilities should be independent of a particular
application domain,

• rather, the general NL and problem-solving knowledge
of a robot should be easily applicable to any particular
domain of expertise.

Consider, for example, the commands in Ex. 1. They be-
long to largely differing application domains, each of which
requires situation-aware task interpretation and planning.

(1) a. Please put the dirty plates into the dishwasher.
b. Show me the exit, please.

c. Put the small cube near the red ball on the big
blue cube.

d. Would you open the windows in the bedroom,
please?

In this paper, we present a generic approach for enabling
robots to talk, reason and act in such different domains. It is
based on modelling a robot’s capabilities as an AI Planning
domain. The main new contributions of our approach are

• a method for analysing a given planning domain and
automatically generating a basic NL parser and lexicon
for talking about it,

• an algorithm for the semantic interpretation of a NL
command as a goal formula in the corresponding plan-
ning domain.

Together, these methods enable a robot to understand and
execute NL commands that correspond to complex situation-
dependent activities. If, for example, the robot is given the
command in Ex. 1a and has just sensed two dirty plates,
it may devise the following plan: 〈pick-up plate1; pick-
up plate2; move-to kitchen; open dishwasher; put plate1
dishwasher; put plate2 dishwasher〉. If, during execution of
this plan, the robot perceives more dirty plates, it will update
the plan automatically in order to achieve the human’s goal.

Our approach has been implemented and tested for various
planning domains. For example, our implemented system
can understand and find goal descriptions for all commands
in Ex. 1. It can also detect, e.g., that Ex. 1c is ambiguous
and resolve that ambiguity depending on the context of the
current situation – i.e. should the small cube be put near the
red ball or is it there already and should be put on the big
blue cube?

The paper is structured as follows. In Sec. II we discuss
the application of AI Planning to robotics, especially in a
situation-aware continual planning process. Sec. III describes
how a Planning domain can be used to enable a robot to
syntactically parse NL commands for that domain. For being
able to execute these task, the robot must be able to interpret
the command semantically. This is described in Sec. IV. An
outlook to current and future work is given in Sec. V.

II. AI PLANNING FOR INTELLIGENT ROBOT
BEHAVIOUR

The purpose of an AI Planning system, i.e. a planner,
can, in its most basic form, be described as follows: to find

Fig. 1 The household domain in MAPL (excerpt)
(:types

phys˙obj property - object
size dirtiness - property
agent movable unmovable room - phys˙obj
kitchen living˙room - room
dishwasher table - unmovable
plate cup - movable)

(:constants
big small medium - size
clean dirty - dirtiness)

(:state-variables
(colour ?o - phys˙obj : ?c - colour)
(size ?o - phys˙obj : ?s - size)
(dirtiness ?o - phys˙obj : ?d - dirtiness)
(pos ?o - phys˙obj : ?p - phys˙obj))

(:action open-dishwasher
:agent (?a - agent)
:parameters (?d - dishwasher)
:variables (?r - room)
:precondition (and (not (open ?d))

(pos ?d : ?r) (pos ?a : ?r))
:effect (open ?d))

(:action put
:agent (?a - agent)
:parameters (?obj - movable ?p - unmovable)
:precondition (pos ?obj : ?a)
:effect (pos ?obj : ?p))

(:action pick-up
:agent (?a - agent)
:parameters (?obj - movable ?p - unmovable)
:precondition (pos ?obj : ?p)
:effect (pos ?obj : ?a))

Fig. 2 A state in the household domain (excerpt)
(:objects

robot - agent
k - kitchen
lr - living˙room
plate1 plate2 plate3 - plate
dw - dishwasher)

(:init
(pos robot : lr) (pos dw : k)
(pos plate1 : lr) (dirtiness plate1 : dirty)
(pos plate2 : lr) (dirtiness plate2 : dirty)
(pos plate3 : lr) (dirtiness plate3 : clean))

a sequence of actions that transform a given initial state
into another state which satisfies some goal condition. A
state can be regarded as a databases of logical facts and
actions as transactions manipulating that database. The power
of Planning lies in its domain independence: states, actions
and goals are described in a formal language (nowadays this
is usually PDDL [1]) and all given as input to a general-
purpose Planning algorithm.

Integrating an AI planner into a robot is key to making it
“intelligent”: it enables the robot reason about how to achieve
its goals on its own, instead of having to use pre-programmed
solutions. Fig. 1 shows part of a Planning domain for a
household robot. The formal language used is a slight variant
of PDDL called MAPL that was developed for modelling
multiagent environments and interactions between agents [2].
The robot is intended to deal with commands like Ex. 1a. The
domain defines an ontology of concepts (the types hierarchy),
a number of state variables for describing states and goals

Algorithm 1 Continual planning agent
function CONTINUAL-PLANNING-AGENT(S, G)

while S does not satisfy G do (1)
if res(S, P) does not satisfy G (2)

REMOVEOBSOLETESUFFIXFROM(P)
P ′ = PLANNER(A, res(S, P), G)
P = CONCAT(P, P ′)

if P = ∅ then
return “cannot achieve goal G”

a = REMOVEFIRSTLEVELACTION(P)
EXECUTE(a) (3)
perc = GETSENSORDATA()
S = UPDATESTATE(S, perc) (4)

return “goal reached”

in the domain, and a set of actions for altering states.
Fig. 2 contains the description of one such state. While the
planner enables the robot to reason about achieving its goals
intelligently, what of course still must be programmed is the
individual behaviours (or skills) that the robot is capable of
performing. For each planning action there must be a skill
(or pre-programmed combination of skills) that is guaranteed
to achieve the desired effects. Additionally, a mapping must
be defined between the continuous real world (as perceived
by the robot’s sensors and as manipulated by its actuators)
and the qualitative Planning representation [3].

Alg. 1 shows a basic algorithm for including a planner into
an autonomous agent. It is a Continual Planning algorithm,
i.e. it integrates planning, execution and revision of plans in
light of changing situations. Continual Planning is essential
for robotic agents (while not being restricted to them), since
both the robot’s own as well as other agents’ actions may
turn out unexpectedly. We will explain the algorithm only
briefly here: As long as the current situation does not satisfy
the robot’s goal (step 1) it executes its plan (step 3) and
revises it if it believes the plan to no longer achieve the goal
(step 2). During execution it constantly updates its beliefs
about the current state (step 4). Because of the continual
integration new perceptions and the immediate verification of
the plan Alg. 1 can be said to be situation aware. This makes
it suitable for use in a robotic system. Consider, for example,
the robot shown in Fig. 3, which was developed in the EU
project CoSy1 and can be commanded in NL to to manipulate
objects. The Continual Planning algorithm allows the robot to
adapt its plans even when the situation is externally changed,
e.g. if a cube is removed from or added to the scene.

Fig. 3 “Put the blue cubes to the left of the red ball.”

(a) The initial situation. (b) Task achieved.

1www.cognitivesystems.org

However, in such situations it is not enough that the robot
revises its beliefs about the current state, it must also re-
interpret the task it was given, i.e. the goal it wants to
achieve. If, for example, the robot detects a third blue cube in
the scene that it was previously not aware of, it must be able
to realize that it should move this cube, too. Re-interpreting
a goal, however, requires that it is represented in a way
enabling it. In essence, this means that referring expressions
(REs) used by the human are not resolved once and for
all before starting the Continual Planning process. Instead,
the planner must be enabled to find situation-dependent
interpretations and, consequently, plans for achieving them.
To illustrate this with another example, consider Ex. 2a
where the robot is told to put dirty plates into the dishwasher.
If for the robot the current situation consists of two such
plates plate1 and plate2 and a dishwasher dw, a correct
representation of the command would be the simple formula
in Ex. 2b.

(2) a. Please put the dirty plates into the dishwasher.
b. (and (in plate1 dw) (in plate2 dw))
c. (forall (?v1 - plate)

(implies (dirtiness ?v1 : dirty)
(exists (?v2 - dishwasher) (in ?v1 ?v2))))

However, Ex. 2b does not allow any re-interpretation, since
the RE used in the original command is lost when binding it
to the two plates known to be dirty in the beginning. Ex. 2c
provides a much more flexible goal description that allow the
planner to resolve the RE on its own. It also does not rely
on fixed object names, i.e. IDs, that may change quickly in a
robotic system because vision may not be able to guarantee
object constancy. Alg. 1 does not need to be changed to
deal with more complex RE-preserving planning goals like
Ex. 2c. However, it is not obvious how the robot can generate
them from an NL command. The remainder of this paper
provides an answer to this question.

III. TALKING ABOUT PLANNING DOMAINS

In this section, we describe how concepts defined in
a MAPL planning domain can be used for automatically
generating a vocabulary and grammar for talking about that
domain. The components in PDDL and MAPL domains are
fairly close to grammatical concepts: types roughly corre-
spond to nouns and actions to verbs. State variables describe
objects or inter-objects relations, i.e. they correspond to
adjectives and prepositions. In fact, it is because of this corre-
spondence that components of planning domains are usually
intuitively named in analogy to their NL counterparts. For
example, action names are conventionally chosen as verbs
and object types as nouns. In order to generate grammars
and lexica automatically from planning domains, we stipulate
these conventions formally as follows:

A) Subtypes t of the MAPL type noun are nouns.
B) A state variable v referring to two or more nouns is a

preposition.
C) A MAPL object (or constant) o of a subtype of

adjective category is an adjective.

Fig. 4 Auto-generated lexicon for the household domain
(excerpt)
Adjective → dirty | clean | small | big | medium
Noun → plate | cup | dishwasher | table | room | kitchen
PrepositionalExpression → Pos PE | Left Of PE
Pos PE → in | from | into | on
Left Of PE → to the left of | left of

The types noun and adjective category are pre-defined
in MAPL. Note that since MAPL (like PDDL) supports
multiple inheritance, declaring a type as a noun or adjec-
tive category does not restrict the domain definition in any
way. In particular, the basic MAPL type phys obj (used
for declaring physically existing objects) is a subtype of
noun; so subtypes of phys obj need not be declared as nouns
explicitly. Adjective categories, e.g. colour or size, group
several mutually exclusive adjectives describing an object.
For each adjective category cat declared in the type ontology
of a MAPL domain there must be a state variable of the same
name and whose value domain is cat. This state variable is
used to describe the specific properties of an object. See,
e.g. the declaration of the state variables colour and colour
in Fig. 1.

Based on these conventions, we have implemented a tool
that parses a MAPL domain, analyses the definitions found
there and translates them to grammar rules as shown in
Fig. 4. Since the tool performs a straightforward mapping
according to the conventions stated above, we omit a formal
algorithmic description. Note, however, that the grammar
rules produced are trivially simple (in comparison to gram-
mar formalism used in Computational Linguistics). There are
two reasons for this: firstly, the generated grammar is not
intended for NL generation; therefore it can be allowed to
be over-general, but simple. Secondly, it is domain-specific
and thus can often enumerate constructs rather than generally
model them in the grammar.

Our tool also allows to annotate the planning domain
with synonyms for particular expressions. These annotations
are given as MAPL comments so that they are ignored by
planners. For the household domain, from, into, on and in
have been defined as synonyms for pos. A similar concept
exists for multi-word expressions: for example, “to the left
of” will be treated as a synonym for the preposition “left of”
that corresponds to the state variable left of. Again, since the
grammar is not used to NL generation, it does not matter
that the preposition “left of” does not exist.

Our treatment of adjectives merits some brief explanation.
While individual properties of objects could be modeled
by boolean state variables or propositions (e.g. (blue cup),
(red cup), etc.) instead of state variables corresponding to
adjective categories (e.g. (colour cup : blue)), the latter model
enables interpretation of wh-questions like “What colour is
the cup?” or “Where is the dishwasher?”. Such questions can
be modeled as a goal to know the value of the corresponding
state variable. Our implementation does not yet support
questions, so we will postpone discussions of this issue to
future work.

Fig. 5 The base grammar (excerpt)
S → Command | Statement | Question | S Conjunction S
Command → VP
Statement → NP VP
NP → Pronoun | Modified Noun | NP RelClause | NP PP | NP
Conjunction NP
Modified Noun → Noun | Article Noun | Adjective Noun | Article
Adjectives Noun
Noun → Noun Singular | Noun Plural
PP → PrepositionalExpression NP
RelClause → RelPronoun VP

Fig. 6 Parse tree for “a blue cube near a ball”.
NP

NP

ModifiedNoun

Article

a

Adjective

blue

Noun

cube

PP

PrepositionalExpression

near

NP

ModifiedNoun

Article

a

Noun

ball

The generated grammar rules are complemented with rules
from a simple base grammar, parts of which are shown in
Fig. 5. Using a simple chart parser [4] our system is now
able to parse NPs describing objects from a given planning
domain. For example, in the object manipulation scenario
from Fig. 3, this may result in the parse tree shown in Fig. 6.
The only part of the grammar that must be explicitly specified
for a given domain is the individual VP structure for a given
verb. For example, open must be followed by an NP (what),
but put by and NP and PP (what and where). While we
could easily describe the most common VP structures in the
base grammar, we enforce a domain-dependent definition
for two reasons: firstly, verb-specific VP structures largely
reduce ambiguity of parsing; secondly, we later need the
individual VP complements anyway, in order to match them
with parameters of the corresponding planning operator.
So, similarly to synonyms, we use annotations actions in
the planning domain to define the corresponding grammar
rules. For example the action put from 1 is annotated
“Put Complement = NP PP”. Based on this annotation, a
couple of new grammar rules are automatically generated
that, e.g., allow the parser to generate the parse tree shown
in Fig. 7. In the next section, we describe an algorithm for
translating such parse trees into planning goals.

IV. MAPPING NL COMMANDS TO PLANNING
GOALS

Tab. I contrasts the way humans express what they intend
another agent to do with how AI Planning systems are
presented with the goal they must achieve: Firstly, while
humans talk about actions, planning goals are formulae
constraining acceptable states. Secondly, objects in the real
world usually do not have a unique, commonly known name

Fig. 7 Parse tree for “Put the dirty plates into the dishwasher.”
S

Command

VP

V

put

put Complement

NP

the dirty plates

PP

into NP

the dishwasher

or ID, so humans use REs to (hopefully) refer to a distinctive
object unambiguously. We will discuss both differences in
this section. Based on our insights, we will then present an
algorithm to translate NL commands to goal formulae.

Human Dialogue Planning
Goal de- Imperative commands logical formula
scription Ex. “Wash ...” Ex. ∀x.(clean x)
Object re- referring expressions unique object names
ferences Ex. “the dirty plate” Ex. plate17

TABLE I
EXPRESSION OF INTENTIONS: HUMAN DIALOGUE VS. AI PLANNING

When a human issues a command, this usually does not
mean that another agent can directly execute it. Ex. 1a, for
example, involves first picking up plates and moving to the
dishwasher before the only action mentioned in the command
“put” can be carried out. Moreover, by referring to several
objects, the command implicitly also refers to several actions
that the human wants to be performed. Thus, one command
implicitly corresponds to a whole plan. This plan, however,
is not specified, since the robot must devise it on its own,
depending on the situation, its knowledge and capabilities. In
other words, all the human can do is to describe a goal state –
yet in the much more compact form of a command: the name
of an action substitutes the more complex enumeration of its
effects. Alg. 2 is based on this insight: the desired goal state
will satisfy the effects of the action the robot is commanded
to perform.

The second difference between NL commands and plan-
ning goals is the use of REs in NL. Since in a Planning
problem (e.g. Fig. 2) all objects are uniquely named, REs are
usually not needed when specifying a goal state. However,
this need arises in Human-Robot Collaboration where the
unique object names are usually artificial IDs generated by
the robot’s vision system that a human can not refer to
directly. Thus, the robot must be enabled to resolve REs
itself. However, binding the RE to concrete objects is not
always possible at the time the robot is given the command,
but sometimes only during plan execution. Thus, to enable
the robot to find a plan in the first place, the semantics of
REs must be preserved in the planning goal to allow for

a situation-aware re-interpretation during execution. How to
capture the semantics of REs is an important field of study in
(Computational) Linguistics, Philosophy and AI; we take a
rather simple approach here and model them using first-order
predicate logic, respectively its Planning counterpart, the
ADL formalism [5]. Luckily, most modern planners support
ADL, in particular its ability to express quantified goal
formulae. Quantified formulae allow to keep bindings with
actual objects unresolved until, for a given situation, a plan is
constructed of verified. We call this lazy reference resolution.
This process is situation aware in the sense that it can lead
to different reference bindings in different situations which
may prompt changes of plans or clarification questions.

Algorithm 2 Translating parse trees to MAPL goal formulae
function TRANSLATEPT(pt)

o = FINDMATCHINGOPERATOR(pt, D) (1)
e = effect(o) (2)
formula = e
forall free variables v in e do

match v to NP np in pt (3)
find type and constraints in np (4)
if ARTICLE(np) = definite ∧ NUMBER(np) = plural then (5)

formula = ∀v − type.constraints → formula (6)
else

formula = ∃v − type.constraints ∧ formula (7)
return formula

Alg. 2 provides a high-level description of our trans-
lation algorithm. Called with a possible parse tree for a
command, it first matches that parse tree to an operator
(step 1). FINDMATCHINGOPERATOR() implements a pattern
matching algorithm that looks for specific syntax patterns in
the parse tree and, if one is found, maps it to an operator from
the planning domain. These patterns can refer to arbitrary
levels of the parse tree and may even use concrete lexicon
entries. For example, in the household domain as presented
in Fig. 1, the syntax pattern “put NP PP” will always map
to the put operator. If there were more specific operators,
like put-on, put-to-the-left-of as needed, e.g. in the CoSy
object manipulation scenario, more distinctive patterns could
be used for this mapping, e.g. “put NP on NP”. When
a matching operator was found, step 2 of Alg. 2 extracts
its effect and uses it as the goal formula, e.g. (pos ?obj
: ?p) in the case of put. Since this formula contains free
variables, it must be embedded in a quantified formula which
constrains the values for the variables – in other words: a
formula containing referring expressions. The remainder of
the algorithm is thus concerned with finding and translating
the REs corresponding to operator parameters. In step 3 an
NP corresponding to the parameter is detected. Note how the
planning operator can provide important guidance for this,
e.g. by constraining the parameter to a particular type or by
demanding preconditions that might appear in the NP, too.

Once the NP is detected it must be translated into a
quantified formula (step 4). The details of this process are
omitted from the algorithm, but we will explain them briefly
here. There are basically three kinds of constraints that can
be derived from an NP: adjective constraints, type constraints
and constraints from subordinate phrases, i.e. relative clauses

and prepositional clauses. Adjectives can be mapped back
straightforwardly to the state variable they are a value of,
e.g. if the NP characterising parameter ?obj is modified by
dirty, this maps to the constraint (dirtiness ?obj : dirty). Nouns
are directly mapped to types. Generating constraints from
sub-phrases involves recursively translating the NPs in the
sub-phrase into a sub-formula that is linked to the outer
formula by a constraint depending on verb of the relative
clause or the preposition of the PP. For example, the PP
“on the table” applied to the parameter ?obj would give
the constraint (exists (?v2 - table) (on ?obj ?v2)). The last
important pieces of information that can be extracted from an
NP is the definiteness of the article and number of the noun
used. They determine the kind of quantification to be used in
the final formula describing the NP. Step 5 of Alg. 2 shows
the simple distinction made in our current implementation:
only nouns used with definite articles and in plural form, like
“the cubes” will be universally quantified. See Sec. V for a
discussion of our use of quantifiers.

While the REs are translated to quantified formulae, the
global formula is iteratively extended (steps 6 and 7). There
is no general rule to determine the order in which this
must be done [4, p. 815], so we currently assume that
NPs appearing earliest in the command, will appear in the
outermost scope of the formula.

The translation algorithm, as described so far, does not
account for an important distinction: REs usually describe the
present whereas the result of executing a command describes
the future. This can lead to ambiguous or even contradictory
goal formulae: For example, Ex. Ex. 3a describes the plate
both as being on the table and in the dishwasher – the former
describing the current situation, the latter the future. If this
distinction is not made explicit, the generated formula Ex. 3b
is self-contradictory. Therefore MAPL MAPL supports re-
ferring back to the initial state in the goal description with
the initially keyword, as shown in Ex. 3c. All sub-formulae
modelling REs will be in the scope of initially, whereas the
operator effect describing the future goal state will be left
unmodified.

(3) a. Put the plate on the table into the dishwasher.
b. (exists (?v1 - plate)

(and (exists (?v2 - table) (pos ?v1 ?v2))
(exists (?v3 - dishwasher) (pos ?v1 ?v3))))

c. (exists (?v1 - plate)
(and (initially (exists (?v2 - table) (pos ?v1 ?v2)))

(exists (?v3 - dishwasher) (pos ?v1 ?v3))))

Usually, NL commands are syntactically ambiguous. The
semantic interpretation provided by Alg. 2 for each possible
parse can support the situation-aware disambiguation of the
command [6]. For example, if no plan at all can be found for
a particular goal formula this can be interpreted as a possible
misunderstanding of the command in the first place. This is
of particular importance on a real robot that is communicated
with by speech. There the commands given to our system are
often ungrammatical and word detection is unreliable.

But the planner can also be used to resolve semantic
ambiguities in a situation-aware manner. Consider Ex. 4a

which is syntactically ambiguous. However, it is also seman-
tically ambiguous: Alg. 2 produces too logically different
goal formulae for the two parse trees (Ex. 4b and Ex. 4c).

(4) a. Put the big block to the left of the big pyramid to the
left of the small pyramid.

b. (exists (?v1 - cube) (and (initially (and (size ?v1 : big)
(exists (?v2 - pyramid) (and (size ?v2 : big) (leftof ?v1 ?v2)))))
(exists (?v3 - pyramid) (and (size ?v3 : small) (leftof ?v1 ?v3)))))

c. (exists (?v1 - cube) (and (initially (size ?v1 : big))
(exists (?v2 - pyramid) (and (size ?v2 : big) (exists (?v3 - pyramid)
(and (size ?v3 : small) (leftof ?v2 ?v3))) (leftof ?v1 ?v2)))))

Interestingly, both formulae are correct interpretations of
the command – yet for different situations. Fig. 8 shows
two such situations. In each of them, only one of the goal
formulae makes sense (formula 4b in Fig. 8(a) and formula
4c in Fig. 8(b)). When both are given to the planner as goals,
the “correct” one for the situation can be determined, since
the planner is not able the resolve the RE for the other one,
let alone find a plan for achieving the goal.2

Fig. 8 “Put the big block to the left of the big pyramid to
the left of the small pyramid.”

(a) Situation 1 (b) Situation 2

V. CONCLUSION AND FUTURE WORK

In this paper, we have described new methods enabling
robots to understand a natural language command, au-
tonomously plan how to achieve it, and execute the plan
– all of these in a situation aware manner that allows to
re-interpret the task in light of changing circumstances. The
paper has contributed a method to analyse a formal planning
domain in such a way that a robot can understand state-
ments in natural language about this domain. Our approach
is orthogonal to many existing HRI systems, since it is
deliberately kept quite simplistic in terms of Computational
Linguistics. However, as a result, it provides a number of
important advantages:

• It is completely domain independent in the sense that
for any existing Planning domain little or no additional
information is necessary to make an artificial agent
understand commands describing tasks in that domain.

• On the other hand, by virtue of the generated grammars
and semantic interpretations being domain-dependent,
the potential ambiguity of interpretations is reduced.

• In addition, since the generated interpretations have
meaning for a powerful causal-temporal reasoning sys-
tem, i.e. the planner, this system can be used to possibly

2While in this example an external module for reference resolution would
also be able to determine the correct interpretation, we can also imagine
a situation where the semantic ambiguity is not resolvable in the current
situation, but applies to the goal state, i.e. for one interpretation there is
no way to achieve the goal. This kind of ambiguity is only resolvable by
causal-temporal reasoning as provided by a planner.

further disambiguate possible interpretations semanti-
cally and pragmatically.

There are many avenues for future work. An important
one is the further relaxation of the grammar rules used,
i.e. to allow grammars to accept even more phrases as
syntactically correct. While this may sound unintuitive, it
is necessary for understanding spoken input which is often
ungrammatical. It is our hope that ambiguities arising from
(mildly) ungrammatical sentences can be resolved on the
semantic-pragmatic level provided by the planner.

The formulae created by the current system are over-
general in the sense that singular definite references (“the
ball”) are quantified with ∃ instead of the more common ∃!.
We believe that definite references do not directly map to a
logical restriction like “exactly one”. Instead, we believe it to
indicate that the speaker (believes she) has given additional
information that permits unambiguous reference resolution.
We aim to extend the system such that it can make use of
such additional information (deixis, discourse context, etc.)
if it is indeed available. Such an extension could consist in
a artifical restriction of the domain of certain types, i.e. its
possible instances.

If the robot does not have the necessary information
for resolving references, we want to enable it to formulate
appropriate clarification questions. To that end, the system
must be able to generate distinguishing REs. Since the plan
state provides all necessary information, integration of an
algorithm for generating referring expressions (GRE), like
e.g. [7], is straightforward and has already been partly
accomplished. Integration of a GRE algorithm will also be
the first step to enable the robot with more sophisticated
dialogue capabilities. For example, the robot may verbalise
its plan in order to give the human user feedback about the
robot’s understanding of the command.

ACKNOWLEDGMENTS

This work was supported by the EU FP6 IST Cognitive
Systems Integrated Project “CoSy” FP6-004250-IP.

REFERENCES

[1] D. McDermott, “PDDL – the planning domain definition language,”
Yale Center for Computational Vision and Control, Tech. Rep. TR-98-
003, 1998.

[2] M. Brenner, “Planning for multiagent environments: From individual
perceptions to coordinated execution,” in Proc. Wsh. Multiagent Plan-
ning and Scheduling, ICAPS ’05, Monterey, USA, 2005.

[3] M. Brenner, N. Hawes, J. Kelleher, and J. Wyatt, “Mediating between
qualitative and quantitative representations for task-orientated human-
robot interaction,” in Proc. IJCAI-07, 2007.

[4] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2003.

[5] E. P. D. Pednault, “ADL: Exploring the middle ground between STRIPS
and the situation calculus,” in Proc. KR’89, 1989.

[6] G.-J. Kruijff and M. Brenner, “Modelling spatio-temporal comprehen-
sion in situated human-robot dialogue as reasoning about intentions and
plans,” in AAAI Spring Symposium on Intentions in Intelligent Systems,
Stanford, CA, 2007.

[7] E. Krahmer, S. van Erk, and A. Verleg, “Graph-based generation of
referring expressions,” Computational Linguistics, vol. 29, no. 1, 2003.

