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Abstract

We present an ACT-R model of spatial reasoning based on 
the SRM model (Spatial  Reasoning by Models). This model 
maps spatial working memory to a two-dimensional array and 
uses a spatial focus to place objects in the array, manipulate 
the position of objects, and  inspect the array to find spatial 
relations that are not given in the premises. Since the SRM 
explains  many  experimental  findings  only  on  a  qualitative 
level, we implemented it into an ACT-R model. Not only does 
the model show some well-known effects in spatial reasoning 
and  offers  a  good  insight  into  the  processes  in  the  SRM 
model, but in addition it also allows us to predict reasoning 
times.  The  Model  is  accessible  through  a  Java  interface, 
which  can  be  found  and  run  from  the  following  website 
http://www.informatik.uni-freiburg.de/~srm.

Introduction
Spatial reasoning is fundamental for the human species. It is 
not  only important  for  navigating through small  or  large-
scale  environments,  but  also  for  navigation  through  the 
internet. It describes the deduction process of individuals for 
a  given  set  of  premises  consisting  of  spatial  relations. 
Consider, for example, the binary spatial relations 

The hammer is to the right of the pliers
The screwdriver is to the left of the pliers
The wrench is in front of the screwdriver
The saw is in front of the pliers

and  the  question  “which  relation  holds  between  the 
wrench and the saw?”, one can conclude that “the wrench is 
to the left of the saw”. The latter sentence is accordingly 
called the  conclusion while the former four sentences are 
the  premises.  These  reasoning  processes  can  be 
accomplished by applying formal rules of inference to the 
linguistic representation of the premises or – based on the 
mental  model  theory  (MMT)  (Johnson-Laird  &  Byrne, 
1991;  Johnson-Laird,  2001)  –  by  constructing  and 
inspecting a spatial array representing the relations of the 
objects to each other as described in the premises. Here an 
ACT-R  5.0  model  is  presented.  It  simulates  spatial 
reasoning by using the MMT. While we explain the models 
architecture,  the specific implementation of such a spatial 

array that acts as the spatial working memory will be the 
main focus.

The SRM Model
The SRM model (Spatial Reasoning by Models), which this 
ACT-R simulation is  based on (Ragni,  Knauff,  & Nebel, 
2005),  provides  a  view of  how mental  models  of  spatial 
relations are constructed from premises and offers an easy 
to  apply complexity  measure  that  fits  many experimental 
findings. There are two basic assumptions from which the 
grounds for the SRM model are derived.

First  the  spatial  working  memory  containing  the 
representation of the premises as objects with their relations 
is conceptualized as a spatial array. In this spatial array the 
spatial  information is  represented only in  relational  – not 
metrical  –  terms,  thus  following  the  line  of  spatial 
representations (Schlieder, 1995) and rejecting concepts of 
visual mental images. Binary spatial relations are defined as 
a triplet (X, r, Y) in which

X is the referent,
r is a binary relation, and
Y is the relatum.

X is  called the  “to  be  located  object”  (LO) and Y the 
“reference object” (RO) (Miller & Johnson-Laird, 1976). As 
relations “r” we use only the most parsimonious one: “left 
of”, “right of”, “in front of”, or “behind”. We interpret these 
relations  uniquely,  i.e.  no two of  these  relations  interfere 
with one another so that “left of”, for instance, indicates that 
the considered objects (the RO and the LO) are in the same 
horizontal line with any number of (zero to many) empty or 
filled cells between them.

Second, all operations on the spatial array – namely the 
reasoning processes – are considered as moves of a spatial 
focus. This focus can place an element into the model or 
inspect the model to find new information (Schaeken et. al., 
1996), or write annotations to objects in cases of ambiguity 
(Vandierendonck  et  al.,  2004).  We  assume  that  the 
reasoning  process  proceeds  in  three  steps.  In  the 
construction phase, reasoners construct a mental model that 
reflects  the  information  from  the  premises.  For  the 
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preceding  example,  they,  for  instance,  construct  the 
following model:

screwdriver pliers hammer
wrench saw

In  agreement  with  many  experimental  findings,  we 
assume that  if  new information is  encountered during the 
reading  of  the  premises,  it  is  immediately  used  in  the 
construction of the model (Johnson-Laird & Byrne, 1991). 
In the inspection phase, this model is inspected to find new 
information  that  is  not  explicitly  given  in  the  premises. 
From this model it follows: the wrench is to the left of the 
saw.  In  the  variation  phase, alternative  models  are 
constructed  from  the  premises  that  refute  this  putative 
conclusion. In our example no such model exists and thus 
the conclusion is valid. The formal reason for this phase is 
that  a  conclusion “follows” from a set  of premises if  the 
conclusion is true in all models of the premises. There are 
two  concepts  that  explain  how  all  these  models  can  be 
checked – by a repeated iteration of  the  first  two phases 
without using the prior constructed model, (Johnson-Laird 
& Byrne, 1991), or following our own account by saying 
that  there is no iteration process but rather a process that 
starts  from the  preferred  mental  model  (PMM)  and  then 
varies this model to find alternative interpretations of the 
premises (Rauh, Hagen, Knauff, Kuß, Schlieder, & Strube, 
2005). There is a great number of arguments favoring the 
latter  approach,  the  most  important  argument  is  of 
representational economy, i.e. most relational aspects can be 
reused – there is no need for them to be  generated from 
scratch.  The  term  PMM  refers  to  a  phenomenon 
encountered  during  reasoning  with  multiple-model 
problems in which reasoners often construct only one single 
model – the PMM. This model is the one that is easier to 
construct  and  to  maintain in  working memory  than  other 
possible models (Knauff, Rauh, Schlieder, & Strube, 1998). 
As it is known from  many studies  indeterminate problems 
are more difficult than determinate ones, and the PMM may 
frequently  lead  to  incorrect  conclusions  because  other 
possible models are ignored (Rauh et al., 2005).

The SRM model works on an input in the following way: 
(1)Initially the SRM receives the first premise.
(2)The  SRM  model  inserts  the  first  object  of  the  first 

premise in cell (0, 0). Then it uses this object as RO and 
adds  the  second  object  into  the  next  adjacent  cell 
according to the relation.

(3)The “parser” reads the next premise
(4)The SRM model decides on the type of premise: 

• If an object of the premise is already in the spatial 
array, the focus moves to the RO and inserts into 
the next cell according to the relation the LO. If 
there is already an object, the focus moves to the 
next free cell according to the relation and inserts 
the object there. It also adds an annotation to this 
object,  indicating  that  more  than  one  position  is 
possible.

• If none of the objects of the premise exists a new 
spatial  array  is  generated  and  both  objects  are 
inserted as in step 2 (Schaeken et al., 1996).

• If both objects of the premise exist in the spatial 
array,  the focus groups one  model  and inserts  it 
into the other model (Bara et al., 2001).

When the model construction is finished, the  inspection 
phase  works  for  our  example  in  the  following  way:  a 
conclusion must be generated that defines the relation that 
holds between the wrench and the saw. So the focus moves 
to the wrench (RO) and then inspects the model to find the 
saw (LO). In previous studies, we were able to determine 
how this  inspection  process  works  (Knauff  et  al.,  1998). 
After constructing the mental model, the focus is positioned 
on the last end-term of the last premise which should also be 
the starting point for the scanning of the RO. In our model, 
then the scanning for the LO proceeds in the same direction 
as before when it found the RO. This saves the costs of re-
focusing  (see  below).  If  the  LO cannot  be  found  in  this 
direction the focus changes its direction and proceeds until it 
has  found the  LO.  It  is  important  that  in  our  model,  the 
focus only checks the cells of the array in which an object 
is. Empty cells are not scanned. In other words, the system 
“knows” which cells are occupied but not which object is in 
the  cell.  If  the  LO is  found  from the  scan  direction  the 
relation between the two objects is known (the meaning is 
again provided by the external module). 

What happens if a possible conclusion must be verified? 
This  is  the  case  when  the  question  for  the  relation  is 
replaced by a conclusion that must be verified. Assume that 
the model must check whether the conclusion “The wrench 
is  to the left  of the saw” is valid.  In this case,  the focus 
moves to the saw (RO) and then scans the array to the left to 
find  the  wrench  (LO).  Since  the  conclusion  is  valid  the 
model generates the output “valid conclusion”. 

It  is  important  to  notice  that  in  the  SRM  model  no 
variation  of  the  model  is  assumed  if  a  conclusion  is 
generated. The SRM model stops when it has found just one 
model – which often leads to errors. Model variation only 
comes into play if a conclusion must be verified, or if more 
than one model can be constructed from the premises. We 
are still working on the exact details of the variation phase, 
but we definitely assume that there is no iteration of the first 
two phases in which alternative models are generated and 
inspected in turn (Johnson-Laird & Byrne, 1991). Instead, 
the current version of the SRM model starts from the PMM 
and  then  successively  generates  alternative  models  by 
modifying  the  PMM with  minimal  changes  (Rauh  et  al. 
2005).  The  minimal  changes  follow  the  principle  of 
“conceptual  neighborhood”  which  we  have  empirically 
determined  in  recent  studies  (Rauh  et  al.  2005).  The 
principle says that alternative models are generated by local 
transformations,  i.e.  moving one  object  in  the  model.  To 
find the next alternative model, the SRM model starts from 
the RO of the conclusion and first checks if the next objects 
have  annotations  with  respect  to  the  LO.  As  already 
mentioned, this annotation basically stores the relation that 
must hold between RO and LO. If so, (this is always the 
case in indeterminate problems because the premises itself 
are forgotten) the SRM model starts to change the position 
of the objects as long as the constraint from the annotation 
is satisfied. This leads stepwise to alternative models. As a 



consequence models which are difficult  to  reach are thus 
more  likely  to  be  neglected  than  models  which  are  only 
minor  revisions  of  the  PMM.  This  phenomenon  was 
reported in recent experiments (Rauh et al., 2005).

The SRM model also implies a complexity measure which 
could be described in short as a function of the number of 
relations  to  handle  and  the  number  of  operations  in  the 
array. Abstract units are introduced for all operations on the 
model. This cost function reflects qualitatively the different 
difficulty  of  tasks,  but  there  is  no  prediction  of  response 
times. For this reason we have implemented the SRM into 
an ACT-R model. 

The ACT-R Model
The modeling task consisted in how to translate the formal, 
symbolic SRM of spatial reasoning to the production system 
ACT-R that comes as its own architecture of cognition. If 
this task is done properly, the model would allow statements 
about  how  close  the  complexity  measures  of  the  SRM 
model of spatial reasoning tasks are to experiments. Effects 
like  premise-  and  term-order,  indeterminacy,  and 
verification-errors (all described below, see results) should 
be observable by means of processing times. 

Like every production system, ACT-R offers a theory for 
the  organization  of  knowledge.  The  knowledgebase  is 
divided into a declarative and a procedural component. In 
the declarative part passive knowledge about facts is stored 
in  so  called  chunks,  sets  of  a  given  type  with  a  given 
number  of  attribute-value  pairs,  the  slots.  Procedural 
knowledge comes as productions, condition-action pairs that 
usually  modify  chunks  if  their  conditions  are  satisfied 
(Anderson et al., 2004). The problem to solve was how to 
model  the elements of  the SRM model in terms of  these 
structures.  This  means  how,  i.e.  with  which  of  those 
components, should the spatial array that the SRM model 
describes as the spatial working memory (and that holds the 
representation of the mental model) be modeled;  how the 
objects; how the relations; and how the focus which does all 
the operations in the array?

The presented ACT-R model works with the focus stored 
in the goal buffer that moves around in a virtual spatial array 
and manipulates object (and annotation) chunks. The spatial 
array is made up by a two-dimensional space in which both 
the focus and each object has its position. The coordinate 
values exist only for accessibility as there is no plane with 
fixed cells or the like. The focus has got slots for the object 
it is currently on, the direction it points to, and for position 
values. Every time an object is inserted into the spatial array 
a new object chunk is created and added to the declarative 
memory.  These  chunks  have  slots  for  the  name  of  the 
object,  for  position  values,  and  for  annotation  references. 
The spatial array is spun implicitly by these object chunks, 
empty  cells  do  not  exist.  The  implementation  of  the 
semantics  of  the  relations  between  objects  is  described 
below. First let us see how the model works in the different 
phases – in other words how the productions are modeled.

At the beginning of the construction phase when the first 
premise  has  been  read1 the  first  object  is  inserted.  This 
object is then used as the RO, and the focus sets its direction 
according to the relation given by the premise. The focus 
then moves one step in this direction and inserts the second 
object (the LO). As soon as the next premise has been read, 
the  focus  first  has  to  check  whether  none,  one,  or  both 
objects  of  this  premise  already  exist  in  the  spatial  array. 
Usually one of the two objects can be retrieved. In this case 
the focus first moves to the existing object that is now the 
RO. Next it turns to the indicated direction and searches for 
a  free  cell  for  the  LO  in  that  direction.  Here  the 
implementation follows the theory of  the PMM explicitly 
and applies the first free fit principle (FFF). As soon as this 
first free cell  is  found the LO is inserted. The alternative 
would be the  first fit (FF) principle which would place the 
LO in the first cell next to the RO and if this cell is filled a 
more expensive shifting operation would be necessary. The 
fff principle, in contrast, means that the object is placed in 
the first free cell and if this cell is not the adjacent one to the 
RO,  then  the  LO  also  gets  an  annotation  containing  the 
relational  information  of  the  current  premise,  i.e.,  an 
annotation  chunk  for  which  object  is  added  to  the 
declarative memory. If none of the objects of the premise 
could be retrieved, then the focus jumps to another level and 
starts a new spatial array. If both objects could be retrieved 
the  focus  searches  the  outermost  objects  in  both  spatial 
arrays  of  the  objects  in  the  direction  according  to  the 
indicated relation and then groups these two spatial arrays 
into one.

In the inspection phase the focus first moves from its most 
recent position (which is the last position of the construction 
phase) to the first object to inspect. This is accomplished by 
a search process that includes all objects in the worst case. 
When the desired object is reached it acts as the RO and the 
second object – the LO – is searched. In this second search 
process the steps that the focus takes are stored for every 
direction so that afterwards when the LO is found the model 
can tell the relation between the two objects.

The variation phase comes into play if the premises allow 
the construction of multiple models – that is if there are any 
annotations  –  i.e.  annotation  chunks  –  in  the  constructed 
model. Moreover the variation phase is started only if there 
is a valid conclusion to be verified. The variation then acts 
very similarly to the inspection but with the search going 
solely  in  the  direction  indicated  by  the  relation  in  the 
conclusion.  If  the  LO  is  found  in  this  direction,  the 
conclusion is verified; otherwise it is falsified.

Maybe  the  biggest  question  during  the  implementation 
process was how to model the relations. On the one hand 
they should not be represented in any near-linguistic terms 
as this would contradict the main assumption of our model 
theory.  On  the  other  hand  it  was  very  important  not  to 
model them in any way close to visual imagery. Knauff and 
Johnson-Laird  (2002)  have  shown  that  models  have  a 
different structure than images. Models represent the spatial 

1The process of reading a premise itself is not modeled. Premises 
are read from a file and accordingly premise chunks are created at 
model initialization.



relations among entities, i.e., they represent what things are 
where,  but  in  inferential  tasks,  they are likely to  exclude 
visual detail,  to represent only the information relevant to 
inference. 

We first developed an account to model the relations as 
relation-chunks,  all  of  one  of  four  chunk types  –  left-of, 
right-of, in-front-of, or behind. The advantage was that there 
was no need for coordinates anymore. The actual positions 
of the objects could be left undiscovered while all objects 
were  accessible  simply  by  retrieving  according  relation-
chunks.  However,  as  there  was  an  almost  exact 
representation of the read premises and, worse, the model 
tended to be a simple rule-based system, this account was 
soon put aside. The current solution works with coordinates 
that specify the position of the objects and the focus. But 
rather than representing the relations as declarative units as 
in  the  previous  account  they  are  now  modeled  in  a 
procedural way. Whenever the focus requests to move into 
one  of  the  four  possible  directions  a  production  fires  to 
retrieve an object that lies somewhere in that direction. If 
the focus is to move to the left, for instance, all objects that 
are defined to be left of the focus are candidates for the next 
retrieval.  Which  object  is  retrieved  depends  on  the 
association strengths of the focus (or the object the focus is 
currently  on)  and  the  objects  to  the  left.  Because  the 
association strengths are higher for neighboring objects the 
adjacent object to the left of the focus will probably be the 
one that is retrieved.

Another interesting feature of the model is its limitation of 
the  maximum number  of  objects  and  annotation  chunks. 
The values come as parameters that can be set in the Java 
Interface – the default is a maximum of eight object chunks 
and two annotation chunks. The parameters can be used to 
adjust ACT-Rs retrieval threshold and the initial activations 
of object and annotation chunks. The base level activation 
of all chunks decays over time and increases whenever the 
chunk  is  retrieved.  Also  all  chunks  get  activation  from 
related chunks. If an activation of an object or annotation 
chunk  falls  below  the  retrieval  threshold  the  according 
object or annotation will – at a higher level of description - 
not be present in the spatial array anymore. Thus, of course, 
the parameters mentioned above only give approximations 
of the actual limits. Chunks which fall below the threshold 
are typically those that are retrieved less often, that is, those 
that the focus visited less often. In limiting the capacity of 
those chunks the model is able to simulate errors. First of all 
(with  the  limited  number  of  annotations)  the  common 
verification  errors  that  arise  when  the  validation  of  a 
generated conclusion in alternative models – by varying the 
constructed PMM – is omitted. The variation phase cannot 
start  if  there  are  no  more  (retrievable)  annotations  to 
resolve.

The Java Interface

While the model itself runs solely in ACT-R (i.e. Lisp) there 
is a comfortable user interface written in Java. On the one 
hand  it  offers  some  easy  to  use  input  mechanisms  for 
premises and conclusions as well as parameter settings, and 

on  the  other  hand  it  provides  a  controllable  graphical 
representation of the constructed mental model at each time 
of the three phases. The communication with the ACT-R / 
Lisp processes was kept as simple and reliable as possible: 
There  are  script  files  and  temporary data  files  which are 
called, or read, or written, from both systems as needed. The 
program can be downloaded and executed via the website 
http://www.informatik.uni-freiburg.de/~srm.  Versions  for 
MacOSX, Linux, and Windows are available. The program 
gives the opportunity to load preprocessed model files and 
thus to run those models likewise offline.  But if  the user 
wants  to  run  models  with  their  own  set  of  premises  the 
program depends on a working ACT-R 5.0 installation of 
course.  The  path  to  the  Lisp  interpreter  has  to  be  set 
according  to  the  configuration  of  the  client.  The  figure 
below gives an impression of the interface:

A Processing Example
To get a better insight to the ACT-R model we provide in 
the  following  a  description  of  an  exemplary  run.  Three 
premises shall be given:

A is to the left of B
C is to the right of A
D is to the right of C

The construction phase starts by processing the first premise 
“A is to the left of B”. Since the spatial array is empty the 
first object, “A”, is just placed by the focus at the current 
position. Then the focus turns into the direction the relation 
of the premise indicates by using the first object as the RO 
so  the  desired  direction  is  the  opposite  of  the  relation, 
namely “right”. Now the focus moves one step to the left 
and inserts the LO, “B”, at position (1,0). After the second 
premise, “C is to the right of A” has been read, it first has to 
check whether one, none, or both objects already exist in the 
spatial array. In this case only the second object, “A”, exists, 
known by a successful retrieval of its chunk. The focus now 
moves to this object. To prevent (in some cases infinitive) 
loops the position of the searched object in relation to the 
focus  is  always  known  by  an  approximation  of  the 
horizontal  or  vertical  direction.  Thus  the  focus  sets  its 



direction to “left” and moves from object to object (empty 
cells are ignored by the activation matrix function) as long 
as its object slot does not match the searched object. While 
now object number one of the premise, “C”, is the LO the 
focus then changes its direction to “right” - in accordance 
with the relation of the premise. Now an empty cell for the 
LO is searched in this direction. As the next cell is occupied 
by an object, “B”, the focus continues moving till it finds a 
free cell following the named principle of first free fit (FFF) 
rather than that of first fit (FF) where the LO would have 
been inserted right next to “A” shifting “B” aside. Because 
at this point it is clear that the premises apparently allow the 
construction of more than one model the LO, “C”, gets an 
annotation  holding the  premise  information.  Therefore  an 
annotation chunk for object “C” is created which later can 
be retrieved to create one or more alternative models. The 
third premise is processed much as the second one, but now 
the adjacent cell to the RO, “C”, is empty. Nevertheless the 
new object  “D”  gets  an  annotation  because  its  neighbor, 
“C”, is annotated. This method of handing down annotations 
is necessary to be able to resolve all alternative models (see 
the  variation  phase  below).  The  figure  below  shows  the 
representation of the constructed model:2

Now consider the question “Which relation holds between 
B  and  D?”  shall  be  answered.  The  model  starts  the 
inspection phase. The focus moves around the spatial field 
(it inspects the spatial field) to find a relation between “B” 
and “D”.  First  the  reference  object  (RO),  “B”,  has  to  be 
found. The focus starts at its last position at object “D”. It 
turns  to  the  left  and  moves  object  to  object  till  “B”  is 
reached. Now the LO, “D”, is searched. While performing 
this  search  all  steps  in  both  dimensions  (horizontal  and 
vertical) of the focus are remembered. So when the focus 
finally reaches “D”, the relation between “B” and “D” can 
be generated on the basis of these steps. In this example the 
move from “B” to “C” results in a positive value for steps in 
the horizontal dimension and a zero value for those in the 
vertical dimension. With this setting a production fires that 
resolves  the  movement  as  a  move to  the  right.  Thus  the 
relation “B is to the left of D” is given as the answer.

This  conclusion  is  only  valid  if  it  holds  in  all  possible 
models  which  can  be  created  from the  premises.  So  the 
verification  and  variation  phase  becomes  important.  The 
constructed model – the PMM – is varied step by step and in 
each  alternative  model  the  conclusion  is  verified.  The 
annotations mark objects to be possibly placed on another 
cell. So the variation process works by searching annotated 
objects  and  then  resolving  these  annotations  to  get  to 
alternative models. The focus starts at the last position of the 
inspection  phase,  this  is  object  “D” or  cell  (3,0).  First  it 
checks whether any annotations, namely annotation chunks, 
exist in the model or not. Here two annotation chunks exist 

2All  figures  showing  the  representation  of  the  model  are  taken 
from the Java interface clipped with the screen part to the right.

so that the retrieval is successful. Now an annotated object 
is  searched.  Starting  at  object  “D”  the  first  attempt  is  a 
success. The annotation of object “D”, “D is to the right of 
C”  (in  short  “D  R  C”),  is  retrieved  and  then  the  focus 
switches “D” and its adjacent object – in the direction the 
annotated relation indicates – “C”. But because “C” is the 
second object of the annotation this variation is not possible 
in  the current  model.  So while  “D” is  the first  annotated 
object the first annotation to resolve is that of “C” for “A”, 
the  second  object  of  “C’s”  annotation  is  not  adjacent  to 
object  “C”.  The  actual  variation is  done  by changing the 
cells of the two objects – in cases where there are adherent 
objects in the orthogonal directions whole object structures 
have to be moved. Thus the positions of objects “C” and 
“B”  are  switched,  meaning  their  according  slots  are 
modified. The model now looks as shown below:

Now the conclusion “B is to the left of D” is verified in the 
new model. For this the focus first moves to object “B” and 
then  searches  object  “D”  somewhere  to  the  right,  the 
direction the conclusion gives. Here “D” is to the right of 
“B” so the verification of the conclusion succeeds. Next the 
model is varied further considering the annotation of “D”. 
Since now the second object of “D’s” annotation, namely 
“C”, is not adjacent to “D”, “D” can switch positions with 
“B”. The figure below shows the resulting model:

In this model the found conclusion “B is to the left of D” 
apparently does not hold. The verification process ends with 
a  negative  result,  thus  the  conclusion  is  falsified  for  the 
model  given  by  the  premises.  No  more  verification  or 
variation is necessary.

Comparison with the performance of human 
subjects

The model shows at least three different effects that are 
typical  in  spatial  deduction  processes.  First,  the  premise 
order  effects  the  processing  times  significantly.  If  the 
premises are ordered in a continuous way the model takes 
less time to run than in cases where the premises are ordered 
discontinuously. A continuous order such as “A is to the left 
of B”, “B is to the left of C”, and “C is to the left of D”, for 
instance,  takes  a  total  of  3,709  seconds  –  with  the  first 
premise at 1,303 s, the second one at 1,204 s, and the third 
one at 1,202 s. In contrast, the discontinuous order “A is to 
the left of B”, “C is to the left of D”, and “B is to the left of 
C” of the same model takes a total of 5,488 seconds – with 
the first premise at 1,303 s, the second one at 1,523 s, and 
the third one at 2,662 s. In the latter case, the third premise 
took longer because in processing the second premise two 
separate spatial arrays had been created which then had to 



be  integrated  into  one  again.  These  times  agree  with 
findings from Knauff, et al. (1998). 

Second,  indeterminate  problems  are  harder  (they  take 
longer) than determinate ones. Indeterminate problems are 
those that allow the construction of more than one model 
from  the  premises  (Byrne  &  Johnson-Laird,  1998).  The 
model of the processing example in the last section (“A is to 
the left of B”, “C is to the right of A”, “D is to the right of 
C”), apparently an indeterminate problem, for instance, has 
a time for the construction phase of 5,573 seconds – more 
than those times of the determinate continuous and semi-
continuous problems above. While this difference is due to 
the  creation  of  annotations  this  model  also  has 
verification/variation phases joining the instruction phase.

Third, people often make errors when they have to draw a 
conclusion and omit  to verify it  in all  alternative models. 
They only take into account the PMM (Knauff et al., 1998). 
This effect is simulated by the limited amount of annotation 
(and  object)  chunks  available  at  each  time  during  the 
processes. The approximate maximum number of object and 
annotation  chunks  can  each  be  specified  in  the  settings 
dialog of the Java interface. These parameters are used to 
adjust  the  retrieval  threshold  of  ACT-R.  If  an  object  or 
annotation chunk falls below this threshold the chunk can 
not  be  retrieved  anymore.  ACT-Rs  chunk  activation  is 
calculated as a function of the chunk's creation time and the 
number (and points in time) of references of the chunk and 
the spreading activation of related chunks. Therefore, those 
chunks will probably fall below the retrieval threshold that 
are retrieved the less and are far away from the focus. These 
chunks will  not be available in the variation phase which 
means  that  the  alternative  models  that  could  have  been 
created from a lost annotation will not be considered at all.

Discussion
The ACT-R model  works fine  for  the  named effects.  It 

shows that the SRM model is able to predict the complexity 
of a given problem in terms of processing times (or units of 
cost measures) and error  patterns.  The presented times of 
the  exemplary  runs  quantitatively  match  times  of 
experiments except for an almost constant factor – the times 
for each premise of the experiment are higher than those of 
the  ACT-R model.  In  the  following  table  the  processing 
times are compared to experimental data from Knauff et al. 
(1998):

Premise order Premise 1 Premise 2 Premise 3
continuous 13.0 (1.303) 11.2 (1.204) 10.9 (1.202)
semi-continuous 13.6 (1.303) 11.0 (1.204) 14.4 (1.794)
discontinuous 12.4 (1.303) 13.9 (1.523) 19.5 (2.662)

Mean reading times of premises in seconds from Knauff et al., 1998. The 
values in parenthesis are the processing times of the ACT-R model.

 
To some extent this may be due to the fact that the default 

ACT-R  mechanisms  are  set  too  fast  for  such  complex 
spatial  reasoning  tasks.  Furthermore,  an  important  reason 
may be that the model contains no simulation of the reading 
and interpreting process of the premises. The premises are 
created as chunks at initialization of the model.  The time 

gap  could  be  closed  by  adjusting  according  ACT-R 
parameters. While the current implementation indeed uses 
no  such  parameter  adjustments  the  processing  times  are 
qualitatively comparable to experimental results.

Further  work  on  the  model  could  concentrate  on  an 
implementation of  the reading and encoding processes  of 
the  premises  and  an  integration of  the  phonological  loop 
(Baddeley & Hitch, 1974) in which the annotations could be 
remembered  to  get  an  even  better  simulation  of  the 
verification errors.
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