
The Complexity of Multiple Inheritance
in Complex Object Data Models

Sonia Bergamaschi
CIOC-CNR

viale Risorgimento 2
I-40136 Bologna

Italy
sonia@deis64.cineca.it

Bernhard Nebel
DFKI GmbH

Stuhlsatzenhausweg 3
W-6600 Saarbrücken

Germany
nebel@dfki.uni-sb.de

Abstract

We specify a data model for complex objects, following closely recent
approaches in the areas of object-oriented and deductive database re-
search. The main extensions with respect to previous proposals are,
firstly, the conjunction operator, which permits one to express multi-
ple inheritance between types as a semantic property, and, secondly,
a distinction between primitive and derived classes, the latter corre-
sponding to database views. We sketch how such a data model can
be exploited in schema design and specify an algorithm for computing
specialization relationships between classes. Using results from for-
mal analyses of knowledge representation languages, we note that the
computational properties of interesting problems, such as detection of
emptiness of a class interpretation and computation of a specialization
ordering, appear to be computationally intractable from a theoretical
point of view, but are feasible in almost all practical cases.

1 Introduction

The proposed model incorporates well-known notions such as types, complex
values, classes, and objects with identity, in full analogy with recent complex
object models proposed in the areas of deductive databases [ACCT90, AG88,
AH87, CCCTZ90] and object oriented databases [LRV88, LR89a, LR89b].
The main extensions are, firstly, the conjunction operator, which permits
one to express multiple inheritance as part of a class description. This avoids
the specification of explicit redefinitions when multiple inheritance leads to
the intersection of embedded types. Secondly, we make a distinction between
primitive and derived classes,1 where descriptions of derived classes are inter-
preted as a set of necessary and sufficient conditions on their elements. Thus,
derived classes resemble database views. Note that the presence of derived
classes can lead to situations such that additionally to the explicitly given
inheritance relations some implicit specialization relationships are implied by
a schema, i.e., all elements of one class are also elements of another class. In
the following we call this relationship subsumption relation.

Traditionally, class descriptions are interpreted as necessary conditions
in database models, which correspond to primitive classes in our terminol-
ogy. A more active role on databases can be performed with derived classes.
Given a new class, this class can be automatically classified (i.e., its right
place in an already existing taxonomy can be found) by determining the set
of its most specific subsumers and the set of its most general subsumees.
Thus, minimality of a schema w.r.t. inheritance can be easily computed and
inconsistency can be avoided by preventing the introduction of incoherent,
i.e., necessarily empty classes [BCST88, BS91]. Additionally, classification is
relevant for query optimization [BBMR89, BGN89]. The idea is that a query
can be expressed as a class description and by classifying it in the given tax-
onomy, it is possible to directly access the set of objects satisfying the query.
We will not address these issues in this paper, however.

The rest of the paper is organized as follows. In Section 2 we develop the
formal specification of the data model, and Section 3 contains the necessary
algorithms to solve the subsumption and coherence problems. Finally, Sec-
tion 4 contains an analysis of the computational complexity of the problems.

1This distinction corresponds to the distinction between primitive and defined concepts
in terminological representation languages [BrSc85]

1

2 A Data Model for Complex Objects

In the following, we will specify our data model. Instead of using a concrete
syntax as in the example given above, an abstract syntax is used. However,
the reader should have no problems mapping the expressions of the concrete
syntax to the abstract syntax.

Basically, we follow [LR89b]. However, we assume a richer structure for
the base type system, the system of nondecomposable, basic types. Besides
the basic types integer, boolean, string, and mono-valued types, we consider
also the possibility that subsets of the basic types are used, e.g., intervals of
integers. The only restriction is that the system of base types is closed w.r.t.
intersection and that the intersection of two base types can be computed in
polynomial time.

Based on these basic types, tuple, sequence, set, and class types can be
created. The latter denote sets of objects with an identity and a value, while
the former three types – also called value types denote sets of complex, finitely
nested values without object identity. Additionally, a conjunction operator
can be used to create intersections of previously introduced types. This
operator can be used to specify multiple inheritance. For instance, a research
assistant can be defined as a student and a researcher.

Finally, types can be given names. For value types, no circular refer-
ences are permitted in order to guarantee that values are always only finitely
nested. Class types, on the other hand, can be defined making circular ref-
erences. Named class types come in two flavors. A named class type may be
primitive, which means that the user has to specify the membership of an
object in the interpretation of a class. Second, a named class can be a derived
class, in which case the class interpretation is computed—corresponding to
a database view. Since the interpretation of such a class is completely speci-
fied by the class description, the place in the specialization hierarchy can be
automatically computed.

2.1 Base Type System

Let D be the countably infinite set of base-values (which will be denoted by
d1, d2, . . .), e.g., the union of the set of integers, the set of strings, and the
booleans. We will not distinguish between base-values and their encoding.

Let B be a countable set of base-type designators that contains D (i.e.,

2

all mono-valued types), and let IB be the (fixed) standard interpretation
function from B to 2D such that for all d ∈ D: IB[d] = {d}. Let “⊓” be an
operation on B defined by:

B′ ⊓B′′ = B iff IB[B
′] ∩ IB[B

′′] = IB[B].

We say that B is a base-type system iff B is complete with respect to ⊓.
The special type that has an empty interpretation will be called empty type
and is denoted by ⊥.2 We will say that B is a PTIME base-type system iff
B′ ⊓B′′ = B can be decided in polynomial time. In the following we assume
that a base type system has this property.

Sometimes we will also talk about base-type systems with a particular
simple structure, namely, systems such that for each subset X ⊆ B with
⊓X = B, there are two elements B′, B′′ ∈ X such that B′ ⊓ B′′ = B. Such
base-type systems will be called binary compact.

Consider the following set of base-type designators, which we will use in
all examples:

B = {Int, String, Bool, i1–j1, i2–j2, . . . , d1, d2, . . .},

where the ik–jk’s denote all possible ranges of integers, and the dk’s denote all
the elements of Int∪String∪Bool. Assuming the standard interpretation of
the base-type designators, B is obviously a binary compact base-type system.

2.2 Types and Values, Classes and Objects

We suppose a countable set A of attributes (denoted by a1, a2, . . .) and a
countable set N of type names (denoted by N,N ′) such that A, B, and N
are pairwise disjoint. Further, N is partitioned into the sets C, D, and T,
where C consists of names for primitive class-types (denoted by C,C ′ . . .),
D consists of names for derived class-types (denoted by D,D′ . . .), and T
consists of value-type names (T, T ′, . . .). Furthermore, N contains the special
symbol ⊤C denoting the universal class.

S(A,B,N) denotes the set of all finite type descriptions (S, S ′, . . .),
also briefly called types, over given A,B,N, that are built according to the

2This type must be part of B because the conjunction of different mono-valued types
is empty.

3

following abstract syntax rule assuming(ai ̸= aj for i ̸= j):

S → B |N | {S} | ⟨S⟩ | [a1:S1, . . . , ak:Sk] | S ⊓ S ′ | △ S.

Given the base-type system introduced above and

A = {street, number, city, . . .}
N = {Division, Employee, Department, Secretary, Address, . . .}

the following are examples of well-formed type descriptions:

Int, 5–10, Department, {Secretary}, ⟨Address⟩
[street: String, number: Int, city: String],
Secretary ⊓ Employee, △Address.

We assume a countable set O of object identifiers (denoted by o, o′, . . .)
disjoint from D and define the set V(O) of all values over O (denoted by
v, v′) as follows (assuming p ≥ 0 and ai ̸= aj for i ̸= j):

v → d | o | {v1, . . . , vp} | ⟨v1, . . . , vp⟩ | [a1: v1, . . . , ap: vp],

where [a1: v1, . . . , ai: vi, . . . , ap: vp] denotes the set of pairs (ai, vi). Using the
above assumptions and O = {o1, o2, . . .}, the following expressions are pos-
sible values:

1 , 2 , true, ”Bologna”, o128, {1 , 2 ,”Bologna”, o128}, ∅, ⟨true, false⟩, ⟨⟩,
[street: ”Stuhlsatzenhausweg”, number: 3 , city: ”Saarbrücken”].

Object identifiers are assigned values by a (total) value function δ from
O to V(O). For instance, we may have the following assignments of values
to objects:

δ:

o1 7→ [a: ”xyz”, b: 5]
o2 7→ ⟨true, false⟩

...
o128 7→ {o1, o2}

...

4

For a given set of object identifiers O and a value function δ, the interpreta-
tion function I is a function from N to 2V(O) such that:

I[B] = IB[B]

I[C] ⊆ O
I[D] ⊆ O
I[T] ⊆ V(O)−O.

The interpretation of types is defined inductively for all S, S ′ ∈ S(A,B,N)
by:

I[{S}] =
{
{v1, . . . , vp}

∣∣∣vi ∈ I[S], 0 ≤ i ≤ p
}

I[⟨S⟩] =
{
⟨v1, . . . , vp⟩

∣∣∣vi ∈ I[S], 0 ≤ i ≤ p
}

I
[
[a1:S1, . . . , ap:Sp]

]
=

{
[a1: v1, . . . , aq: vq]

∣∣∣ p ≤ q, vi ∈ I[Si], 0 ≤ i ≤ p,

vj ∈ V(O), p+ 1 ≤ j ≤ q
}

I[S ⊓ S ′] = I[S] ∩ I[S ′]

I[△S] =
{
o ∈ O

∣∣∣δ(o) ∈ I[S]
}

I[⊤C] = O.

Note that the interpretation of tuples implies an open world semantics for
tuple types similar to [Card84]. For the example above, it follows that

o1 ∈ I
[
△[a: String]

]
, o1 ∈ I

[
△[a: String, b : Int]

]
,

o2 ∈ I[△⟨Bool⟩], o128 ∈ I[{△⊤C}].

2.3 Database Schema

Given a base-type system B and finite sets of attributes A and names
N = C ∪D ∪T, a schema σ over S(A,B,N) is a total function from N to
S(A,B,N). We will require some well-formedness conditions on a schema,
namely, well-foundedness of value-type definitions and of the inheritance re-
lation. Let τ be a function from S(A,B,N) to S(A,B,N) such that

τ(S) = S if S ∈ B ∪C ∪D or S = △S ′

τ(S) = σ(S) if S ∈ T

5

τ({S}) = {τ(S)}
τ(⟨S⟩) = ⟨τ(S)⟩

τ([a1:S1, . . . , ak:Sk]) = [a1: τ(S1), . . . , ak: τ(Sk)]

τ(S ⊓ S ′) = τ(S) ⊓ τ(S ′).

We say that the schema σ is type well-founded iff there is a natural number
n such that τn = τn+1. This condition guarantees that value-types defined
using other value-type names describe always finitely nested values.

Similarly to type well-foundedness, we will require that the inheritance
relation expressed by conjunctions in a value-type or class-type definition is
well-founded. Let ρ be a function from S(A,B,N) to 2N defined as follows:

ρ(S) =

{S} if S ∈ N
ρ(S ′) ∪ ρ(S ′′) if S = S ′ ⊓ S ′′

{} otherwise.

We say N inherits directly from N ′, written N≺|σN ′, iff N ′ ∈ ρ(σ(N)). A
schema is inheritance well-founded iff the transitive closure of ≺|σ, which is
denoted by ≺σ, is a strict partial order.3 The reflexive and transitive closure
will be denoted by ⪯σ. If a schema is type well-founded and inheritance
well-founded we call it well-formed.

2.4 Interpretation of a Schema

In the following, we will specify the structures described by our schemata—
the legal database states—by defining the notion of legal instances of a
schema.

We say that an interpretation function I as defined above is a possible
instance of a schema σ iff the set O is finite, and for all C ∈ C, D ∈ D, T ∈ T:

I[C] ⊆ I[σ(C)]

I[D] = I[σ(D)]

I[T] = I[σ(T)].

Given a schema σ over S(A,B,N), a set of object identifiers O, a value
function δ, and a partial interpretation defined over C, there is at most

3Although this restriction is not necessary from a purely technical point of view, it is
a restriction which ensures that the intuitive meaning of inheritance is satisfied.

6

one possible instance provided the schema is cycle-free. In the general case,
however, there are many possible instances. Since the interpretation of de-
rived classes shall be uniquely computable for a given assignment of object
identifiers to interpretations of primitive classes, we have to single out one
particular instance.

The natural candidate for such a “canonical” interpretation would be
the smallest possible interpretation (corresponding to the least fixpoint of
an operator on interpretations). There are drawbacks of such an approach,
however. The least possible instance is often “too small”, namely, empty.

Let P be the set of possible instances with identical O and δ such that
for all I, I ′ ∈ P:

I[C] = I ′[C] for all C ∈ C.

Further, let “
P

�” be a relation over P such that for all I, I ′ ∈ P:

I
P

� I ′ iff I[N] ⊆ I ′[N] for all N ∈ N.

Then (P,
P

�) forms a partial ordering. We say that I is a legal instance of a

schema σ iff it is the unique greatest instance of the set P w.r.t.
P

�.

Theorem 1 If I is a possible instance, then there exists a legal instance I ′

such that I
P

� I ′.

2.5 Inheritance, Subsumption, and Coherence

Given a schema σ, there is the question for the semantic relationship between
types. For example, we would expect that a named type N that inherits from
another named type N ′, i.e., N ⪯σ N ′, is always interpreted as a subset of
the interpretation of N ′. The converse, however, does not hold necessarily. In
order to capture this formally, let us define the subsumption relation, written
S ⊑σ S ′ for S, S ′ ∈ S(A,B,N) of a schema σ:

S ⊑σ S ′ iff I[S] ⊆ I[S ′] for all legal instances I of σ.

It follows immediately that ⊑σ is a preorder (i.e., transitive and reflexive)
that induces an equivalence relation

.
=σ on types

S
.
=σ S ′ iff S ⊑σ S ′ and S ′ ⊑σ S

7

Proposition 1 For a given well-formed schema σ and N,N ′ ∈ N:

If N ⪯σ N ′ then N ⊑σ N ′.

Thus, the converse does not hold in general. One reason is the presence
of derived classes. Another reason is the fact that a type can be equivalent
to ⊥, the empty type. Class types and value types equivalent to ⊥ will be
called incoherent. We will require that all named class types and value types
in a schema are coherent (i.e. ̸ .=σ ⊥), in which case the schema is called
coherent. With this definition we can give a partial converse of the above
proposition.

Proposition 2 For a given well-formed and coherent schema σ, for all prim-
itive classes C,C ′ ∈ C: C ⊑σ C ′ iff C ⪯σ C ′.

3 Algorithms

Checking whether a schema is well-formed is quite easy. It amounts to check-
ing for cycle-freeness of the graphs induced by value-type declarations and
the inheritance relation. Testing for coherence of a schema and computing
subsumption between types is more difficult, however. Instead of specifying
algorithms for these problems directly, we will take the detour of defining an
algorithm on canonical extensions of a given schema. A canonical schema
ν over S(A,B,N), where N = C ∪ D ∪ T, has the following form (for all
C ∈ C, D ∈ D, T ∈ T):

ν(C) = ⊤C

ν(D) = ⊓Ci ⊓△N where Ci ∈ C, 0 ≤ i, N ∈ D ∪T

ν(T) =

⊥ or
B where B ∈ B, or
{N} where N ∈ N, or
⟨N⟩ where N ∈ N, or
[a1:N1, . . . , ap:Np] where p ≥ 0, Ni ∈ N, 1 ≤ i ≤ p.

A schema ν over S(A,B,N) is a conservative extension of a schema σ
over S(A,B,N) iff N ⊆ N and for any legal instance I of σ there exists a
legal instance I ′ of ν and vice versa such that

I[N] = I ′[N] for all N ∈ N.

8

Note that this implies that the subsumption relations on N are identical. A
schema ν is a called canonical extension of σ iff ν is canonical and ν is a
conservative extension of σ.

Theorem 2 Any schema σ over S(A,B,N) can be effectively transformed
into a schema ν over S(A,B,N) that is a canonical extension of σ.

Using canonical schemata, checking coherence of a schema and computing
subsumption is easy. As a matter of fact, both problems can be solved in
time polynomial in the size of the canonical schema. For the purpose of
coherence checking, let us define the notion of conditional incoherence of a
type name N in a canonical schema ν based on a set of type names I ⊆ N.
N is conditionally incoherent in ν based on I iff4

ν(N) =

⊥ or
[. . . , a′:N ′, . . .] where N ′ ∈ I, or
⊓Ci ⊓△N ′ where N ′ ∈ I.

Let I0 = ∅ and define

I i+1 = I i ∪ {N ∈ N|N is incoherent in ν based on I i.}

Since I i grows monotonically and N is finite, there exists a natural number
n such that In = In+1 and we set Ĩν = In.

Theorem 3 If ν is a canonical schema on S(A,B,N), then ν(N)
.
=σ ⊥ iff

N ∈ Ĩν.

Corollary 1 Let σ be schema over S(A,B,N), and let ν be a schema over
S(A,B,N) that is a canonical extension of σ. Then σ is coherent iff Ĩν∩N =
∅.

Turning now to subsumption computation, we define conditional sub-
sumption based on a relation ≤ ⊆ N × N. We say that S is conditionally

4Note that {⊥} and ⟨⊥⟩ are coherent types denoting the empty set and the empty
sequence, respectively.

9

subsumed by S ′ based on ≤, written S ⊑≤ S ′ under the following conditions:

B ⊑≤ B′ iff B ⊓B′ = B

{N} ⊑≤ {N} iff N ≤ N ′

⟨N⟩ ⊑≤ ⟨N ′⟩ iff N ≤ N ′

[. . . , ai:Ni, . . .] ⊑≤ [. . . , a′j:N
′
j, . . .] iff ∀j∃i: (ai = a′j ∧Ni ≤ Nj)

⊓iCi ⊓△N ⊑≤ ⊓jC
′
j ⊓△N ′ iff N ≤ N ′ ∧ ∀j∃i:Ci = C ′

j.

Let ≤0= D
2 ∪T

2 ∪ {(C,C)| C ∈ C} and define ≤i+1 in the following way:

≤i+1=
{
(N,N ′) ∈ N×N

∣∣∣ ν(N) ⊑≤i ν(N ′) ∨N ∈ Ĩν
}
.

As above, there exists always a natural number n such that ≤n=≤n+1 and
we set <∼ν =≤n.

Theorem 4 Given a canonical schema ν over S(A,B,N), for all N ∈ N:

N ⊑ν N ′ iff N<∼νN
′.

Further, using the property that a canonical extension of a schema is a con-
servative extension, it follows immediately that subsumption in an arbitrary
schema can be computed by computing <∼ν on its canonical extension.

Corollary 2 Let σ be schema over S(A,B,N), and let ν be a schema over
S(A,B,N) that is a canonical extension of σ. Then for all N,N ′ ∈ N:

N ⊑σ N ′ iff N<∼νN
′.

4 Computational Complexity

Although coherence checking and subsumption computation can be easily
performed on canonical schemata, there are probably no efficient algorithms
for the general case. Considering coherence checking first, it turns out that
binary compactness of the base-type system (see Section 2.1) is a crucial
condition for efficiency.

10

Theorem 5 Checking coherence of a schema can be done in polynomial time
provided the base-type system is binary compact, and is NP-hard in the gen-
eral case.

The NP-hardness result follows from a reduction of the emptiness of in-
tersection problem for finite state automata, which is NP-hard [GJ79], to co-
herency of a schema. Subsumption computation is even more difficult. Even
a restriction to binary compact base-type systems does not help because
the language inclusion problem for finite state automata can be reduced to
subsumption (see [Neb90, Baa90, Neb91]).

Theorem 6 Subsumption is PSPACE-hard.

Although these results may suggest that subsumption computation may
be not feasible in our model, it turns out that the intractability of the prob-
lem does not show up very often in practice—an observation also made in
the area of knowledge representation [Neb90], where we have to deal with
quite similar problems. The reason is probably that schemata are usually
formulated in a way such that they are almost canonical, and, as is obvious
from the description of the algorithms, coherence checking and subsumption
computation on such schemata can be done in polynomial time.

More evidence for the fact that subsumption computation can be done
efficiently in most practical cases can be found in related data models. In
the data model O2 [LR89a], for instance, a relation called refinement is com-
puted. This relation is identical to our subsumption relation if we assume
that there are no primitive classes. Multiple inheritance in O2 leads always
to a request for a “conflict resolution” by the user [LR89a]. Thus, instead of
automatically using conjunctions of types—as we do—the user has to provide
a type that refines the inherited types. The computation of the refinement
relation is then performed on an internal normalized description, where no
further inheritance is needed [LR89b]. It is easy to see that this can be done
in polynomial time.5 Since the internal form can be handled efficiently, it
must be the case that there exist schemata that would lead to exponentially
many conflict-resolution requests. However, such schemata are not very likely
to appear in practice (a worst case example is given in [Neb90]).

5Ignoring the disjunction operator discussed in that paper, which leads to NP-hardness.

11

5 Conclusion

We specified a database model for complex objects following recent ap-
proaches in the areas of object-oriented and complex object data models.
Instead of viewing inheritance as a syntactic transformation, inheritance is
expressed by conjunctions of types. Additionally, we introduce the notion of
derived classes, which is similar to database views. Since the interpretation
of such classes is completely determined by their description, their place-
ment in the specialization hierarchy has to be computed according to the
subsumption ordering on classes. As we have sketched, this process can also
be exploited in schema design and query optimization.

After specifying an algorithm for computing the subsumption relation, we
analyzed the computational complexity of the subsumption and coherence
problems. Using recent results from knowledge representation research, we
showed that these problems are computationally intractable. The results
apply, of course, also to syntactic treatments of inheritance. Since in practical
applications this problem does not seem to occur, we conclude that schemata
are probably almost always formulated as “almost canonical” schemata, for
which subsumption can be computed efficiently.

References

[ACCT90] Atzeni, P., Cacace, F., Ceri, S., and Tanca L. The LOGIDATA+

model. Technical Report 5/20, CNR, Progetto Finalizzato Sistemi
Informatica e Calcolo Parallelo, Sottoprogetto 5, 1990.

[AG88] Abiteboul, S. and Grumbach, S. Col: a logic based language
for complex objects. In EDBT’88 International Conference on
Extending Database Technology, pages 271–293, Springer-Verlag,
Berlin, 1988.

[AH87] Abiteboul, S. and Hull, R. B. Ifo: a formal semantic data model.
ACM Transactions on Database Systems, 12, 4 (1987), 297-314.

[AitK86] Aı̈t-Kaci, H. Type Subsumption as a Model of Computation. In
Kerschberg, L., editor, First International Workshop on Expert
Database Systems, Benjamin Cummings, Menlo Park, Cal., 1986.

12

[Baa90] Baader, F. Terminological cycles in KL-ONE-based KR-
languages. In Proceedings of the 8th National Conference of the
American Association for Artificial Intelligence, Boston, Mass.,
1990.

[BBMR89] Borgida, A.,Brachman, R. J., McGuinness, D. L. and Resnick,
L. A. CLASSIC: a structural data model for objects, in: Pro-
ceedings of the 1989 ACM SIGMOD International Conference on
Mangement of Data, pages 59–67, Portland, Oreg. (1989). .

[BCST88] Bergamaschi, S., Cavedoni, L. Sartori, C., and Tiberio, P. On tax-
onomical reasoning in E/R environments. In Batini, C., editor,
Entity Relationship Approach, pages 443–453, Elsevier, Amster-
dam, 1989.

[BS91] Bergamaschi, S., Sartori, C. On taxonomic reasoning in concep-
tual design, Transactions on Database Systems. To appear.

[BGN89] Beck, H. W., Gala, S. K., and Navathe, S. B. Classification as
a query processing technique in the CANDIDE semantic data
model. In Proceedings of the International Data Engineering Con-
ference, IEEE, pages 572–581, Los Angeles, Cal., 1989.

[BrSc85] Brachman, R. J. and Schmolze, J. G. An overview of the KL-ONE
knowledge representation system, Cognitive Science 9, 2 (1985),
171–216.

[Card84] Cardelli, L. A. Semantics of multiple inheritance. In Semantics of
Data Types, pages 51–67, Springer-Verlag, Berlin, 1984.

[CCCTZ90] Cacace, F., Ceri, S., Crespi-Reghizzi, S., Tanca, L., and Zi-
cari, R. Integrating object-oriented data modeling with rule-based
programming paradigm. In Symposium on Principles of database
Systems, ACM SIGMOD, pages 225–236.

[GJ79] Garey, M. R. and Johnson, D. S. Computers and Intractability,
Freeman, San Francisco, Cal., 1979.

[LRV88] Lécluse C., Richard, P., and Velez, F. O2, an object-oriented data
model. In Proceedings of the 1988 ACM SIGMOD International

13

Conference on Mangement of Data, pages 424–433, Chicago, Ill.,
1988.

[LR89a] Lécluse, C. and Richard, P. The O2 database programming lan-
guage. In Proceedings of the 15th International Conference on
Very Large Data Bases, pages 411–422, Amsterdam, 1989.

[LR89b] Lécluse, C. and Richard, P. Modeling complex structures
in object-oriented databases. In Proceedings of the 8th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database-Systems, pages 360–367, March 1989.

[Neb90] Nebel, B. Terminological reasoning is inherently intractable. Ar-
tificial Intelligence, 43:235–249, 1990.

[Neb91] Nebel, B. Terminological cycles: Semantics and computational
properties. In J. Sowa, editor, Principles of Semantic Networks.
Morgan Kaufmann, San Mateo, Cal., 1991. To appear.

14

