
Acquisition and Validation

of Complex Object Database Schemata

Supporting Multiple Inheritance

�

Published in Applied Intelligence 4(2): 185{204, 1994.

Sonia Bergamaschi

Facolt�a di Ingegneria

Universit�a di Modena

CIOC-CNR

Italy

sonia@deis64.cineca.it

Bernhard Nebel

German Research Center for

Arti�cial Intelligence (DFKI)

Stuhlsatzenhausweg 3

D-66123 Saarbr�ucken

Germany

nebel@dfki.uni-sb.de

Abstract

We present an intelligent tool for the acquisition of object oriented sche-

mata supporting multiple inheritance, which preserves taxonomy coherence

and performs taxonomic inferences. Its theoretical framework is based on

terminological logics, which have been developed in the area of arti�cial

intelligence. The framework includes a rigorous formalization of complex

objects, which is able to express cyclic references on the schema and in-

stance level; a subsumption algorithm, which computes all implied specia-

lization relationships between types; and an algorithm to detect incoherent

types, i.e., necessarily empty types. Using results from formal analyses of

knowledge representation languages, we show that subsumption and inco-

herence detection are computationally intractable from a theoretical point

of view. However, the problems appear to be feasible in almost all practical

cases.

�

This work was partially supported by the Italian project Sistemi informatici e Calcolo

Parallelo, subproject 5, objective LOGIDATA

+

, of the National Research Council (CNR) and

by the German Ministry for Research and Technology (BMFT) under grant ITW 8901 8.



1 Introduction and Motivation

The organization of types in an inheritance taxonomy in order to describe an

application domain constitutes a basic modeling principle in the database area

and in arti�cial intelligence [2, 5, 17, 16, 20, 11, 8, 12]. In the database area, the

type taxonomy is built by the designer: a type must be described by an explicit

declaration of its parent types and its di�erentiae properties. The interpretation

of such a type description is that it only gives the necessary conditions for objects

to be instances of the described type. Much research e�ort has been devoted

to formally de�ne and guarantee inheritance consistency of database schemata,

based on strict inheritance taxonomies [2, 20, 5]. In the O

2

object-oriented DBMS

[21], for example, the introduction of new types which violate strict inheritance

semantics is prevented by means of well-known type checking techniques [14] (i.e.,

A can only be a specialization of B if the type of A is a re�nement of the type of

B).

In the area of arti�cial intelligence, a class of knowledge representation sy-

stems, called Terminological Logic Systems [23] (henceforth TL) has been deve-

loped, which are based on the ideas developed in connection with the kl-one

system [13].

1

These systems assign a more active role to type taxonomies. First,

it is possible to specify necessary and su�cient conditions in a type description.

Second, based on this, the task of creating the type hierarchy can be delegated

to the system.

The knowledge-base designer gives a type description as a free composition

of ancestor types (not necessarily parents) and of di�erentiae properties, and the

system automatically classi�es it, i.e., determines the \right" place of the new

type in the already existing taxonomy, between its most speci�c generalizations

and its most generalized specializations. Classi�cation is performed by the so

called taxonomic reasoner which �nds all specialization relationships (also called

isa relationships) between a new type description and the types in the taxonomy

already given.

In TL languages is is possible to de�ne types by specifying only necessary

conditions resulting in what we call base class-types or by specifying necessary

and su�cient conditions leading to what we call virtual class-types. The former

kind of class type corresponds to ordinary class-types used in object-oriented

database systems, while the latter are similar to relational database views or

to virtual classes, recently introduced by Abiteboul and Bonner [1]. With both

base and virtual class-types, the taxonomic reasoner plays the passive role of

an inheritance consistency checker and the more active role of an automatic

classi�cator.

Applying taxonomic reasoning to traditional semantic data models led to a

number of promising results for database schema design [17, 16, 11] and other

1

For a recent survey on di�erent TL systems see [19].
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relevant topics as query processing and data recognition [8, 12]. In particular,

in [11] a very general theoretical framework (able to express the data semantics

of the well-known conceptual models E/R [15], taxis [22], galileo [3], ifo [2]),

is presented, which supports conceptual schema acquisition and organization by

preserving coherence and minimality w.r.t. inheritance exploiting the framework

of terminological reasoning.

Complex object data models, recently proposed in the areas of deductive

databases [2] and object oriented databases [21, 20] are more expressive than

implemented terminological logic languages in some aspects. For instance, most

of the complex object data models introduce a distinction between values and

objects with identity and, thus, between value types and class types (which are also

brie
y called classes). This distinction is not present in TL languages. Further,

complex object models often support additional type constructors, such as set

and sequence. Most importantly, complex object data models usually support

the representation and management of cyclic classes, i.e., classes which directly

or indirectly make references to themselves.

The aim of this paper, following the approach of [11], is to propose a theo-

retical framework based on taxonomic reasoning for complex object schema ac-

quisition and organization, preserving inheritance consistency (in the following

called coherence) and minimality w.r.t. inheritance. This framework serves as the

theoretical kernel of an intelligent tool for advanced database schema design. The

main extensions of this framework with respect to other complex object models

are, �rstly, the conjunction operator, which permits the expression of multiple

inheritance as part of a class-type description. This avoids the speci�cation of

explicit rede�nitions (cf. [21]) in case of multiple inheritance. Secondly, we in-

troduce a distinction between base class-types and virtual class-types. While the

set of objects that are instances of a base class has to be provided by the user,

the set of instances of a virtual class is computed by the system. Finally, we al-

low circular references in class-type descriptions and extend the semantics using

results from knowledge representation research [6, 25].

The model, which we call odl, makes it possible to perform the passive co-

herence check of a database schema including multiple inheritance taxonomies

of value-types, base classes and virtual classes. Furthermore, as a subsumption

algorithm allows computation of the minimal description of a type with respect

to the type specialization ordering, the more active role of building a minimal

type taxonomy can be played.

The outline of the paper is as follows. In the next subsection we introduce the

company domain example in order to illustrate our approach. In Section 2 we in-

troduce the odl formalism. It is a TL formalism which incorporates well-known

notions such as value types, complex values, class types and objects with identity,

in full analogy with recent complex object models proposed in the areas of deduc-

tive databases [2] and object oriented databases [21, 20]. Section 3 contains the
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algorithms to solve the subsumption

2

and incoherence problems. The approach

is to �rstly transform an odl schema into a canonical form and then to de�ne

subsumption and incoherence algorithms for canonical schemata. The approach

is demonstrated by some examples showing the e�ectiveness of the proposed al-

gorithms. Section 4 contains an analysis of the computational complexity of the

coherence and subsumption problems. In Section 5 we describe the implemented

tool for advanced database schema design. Finally, in Section 6 we discuss our

approach and relate it to other work.

1.1 The Company Domain Example

In order to illustrate our approach, let us consider the following description of part

of the organizational structure of a company. Persons have a name; employees

are exactly those persons who work in a branch earning a salary and have some

skill level (Level = 1{10). Branches are described by a name. Managers are

exactly those persons who work in and head a branch, earn a salary and have

the highest level values (AdvLevel = 8{10). Sectors have exactly a name and a

set of activities. Clerks are exactly those employees who work in a department,

having a medium level (MdmLevel= 2{7). Departments, in turn, are exactly those

branches that enroll only clerks. Secretaries are exactly those employees working

in an o�ce, having a medium level (MdmLevel = 2{7), and o�ces are exactly

those particular branches and sectors that enroll only secretaries. Intuitively,

descriptions without the keyword exactly introduce base classes, whereas those

with the keyword exactly introduce virtual classes.

Using logidata

+

[4] syntax, the company domain example can be formalized

as done in Table 1. Declarations pre�xed with the keyword type introduce

value-type declarations similar to types used in programming languages. In our

case, three integer range types and one type having sets of strings as values are

introduced. Declarations pre�xed with class introduce base classes. Declarations

pre�xed by virtual-class introduce virtual classes.

The hierarchy of classes and some relationships between classes implied by

the above descriptions are shown in Figure 1. Classes are denoted by ellipses,

(base classes are indicated by an asterisk), explicitly given specialization rela-

tionships are denoted by solid arrows, while computed ones by dashed arrows.

Furthermore, only the attributes which give rise to the cyclic virtual classes Clerk

, Department , Secretary and Office (indicated by oriented arcs) are drawn.

Note that the representation of the class hierarchy contains three new specializa-

tion relationships not mentioned in the schema. These follow from the fact that

all the elements of Manager are elements of Employee. Furthermore, notice that

Secretary is subsumed by Clerk and Office is subsumed by Department and

2

In [20] a relation called re�nement is de�ned which is identical to our subsumption relation

if we assume only virtual classes.
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type Level = 1{10

type AdvLevel = 8{10

type MdmLevel = 2{7

type Activities = fStringg

class Person =

h

name: String

i

class Branch =

h

name: [bname: String]

i

virtual-class Sector =

h

name: [sname: String]; activity: Activities

i

virtual-class Employee = isa Person

h

salary: Real; works-in: Branch

level: Level

i

virtual-class Manager = isa Person

h

salary: Real; works-in: Branch;

head: Branch; level: AdvLevel

i

virtual-class Clerk = isa Employee

h

works-in: Department;

level: MdmLevel

i

virtual-class Department = isa Branch

h

employs: fClerkg

i

virtual-class Secretary = isa Employee

h

works-in: Office;

level: MdmLevel

i

virtual-class Office = isa Branch; Sector

h

employs: fSecretaryg

i

Table 1: The company domain schema in logidata

+

syntax

Sector. This result, which is not obvious since Clerk and Department, Office

and Secretary are cyclic virtual classes with mutual references, can be obtained

by adopting a suitable �xed-point semantics (the greatest �xed-point); the di�-

culties connected with cyclic class declarations will be discussed in Section 2.4.

2 odl: A Formalism for Complex Objects

The object description language odl is a formalism similar to TL languages and

complex object data models. In its speci�cation we basically follow the speci�ca-

tion of O

2

[20]. However, we assume a richer structure for the system of atomic

types, the system of non-decomposable, basic value-types. Besides the atomic

types integer, boolean, string, real, and mono-valued types, we consider also the

possibility that subsets of these types are used, e.g., intervals of integers. The

only restriction is that the system of atomic types is closed w.r.t. intersection and

that the intersection of two atomic types can be computed in polynomial time.

Based on these atomic types, tuple, sequence, set, and class types can be

created. Class types (also brie
y called classes) denote sets of objects with an

identity and a value, while the former three types { also called value types denote

4
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Figure 1: The company domain with computed specialization relations

sets of complex, �nitely nested values without object identity. Additionally, a

conjunction operator can be used to create intersections of previously introduced

types. This operator can be used to specify multiple inheritance. For instance,

the class Office of the example of subsection 1.1 is de�ned as the conjunction

of the class Branch and Sector. Finally, types can be given names. For value

types, no circular references are permitted in order to guarantee that values are

always only �nitely nested. Class types, on the other hand, can be de�ned making

circular references. Named class types come in two 
avors. A named class type

may be base, which means that the user has to specify the membership of an

object in the interpretation of a class. Second, a named class can be a virtual

class, in which case the class interpretation is computed.

2.1 Atomic Types

Let D be the countably in�nite set of atomic values (which are denoted by

d

1

; d

2

; : : :), e.g., the union of the set of integers, the set of strings, and the boo-

leans. We do not distinguish between atomic values and their encoding.

Let B be a countable set of designators for atomic types that contains D (i.e.,

all mono-valued types), and let I

B

be the (�xed) standard interpretation function

from B to 2

D

such that for all d 2 D: I

B

[d] = fdg. Let \u" be an operation on

5



B de�ned by:

B

0

uB

00

= B i� I

B

[B

0

] \ I

B

[B

00

] = I

B

[B]:

We say that B is a system of atomic types i� B is complete with respect to

u. The special type that has an empty interpretation is called empty type and is

denoted by ?.

3

We say that B is a PTIME system i� B

0

uB

00

= B can be decided

in polynomial time. In the following we assume that the system of atomic types

has this property.

Sometimes we will also talk about systems of atomic types with a particular

simple structure, namely, systems such that for each subset X � B with uX =

B, there are two elements B

0

; B

00

2 X such that B

0

u B

00

= B. Such systems of

atomic types are called binary compact.

Consider the following set of designators for atomic types, which we use in all

examples:

B = fInt; String; Bool; Real; i

1

{j

1

; i

2

{j

2

; : : : ; d

1

; d

2

; : : :g;

where the i

k

{j

k

's denote all possible ranges of integers, and the d

k

's denote all

the elements of Int [ String [ Bool. Assuming the standard interpretation of

the type designators, B is obviously a binary compact system of atomic types.

2.2 Values and Value Types, Objects and Class Types

We suppose a countable setA of attributes (denoted by a

1

; a

2

; : : :) and a countable

set N of type names (denoted by N;N

0

) such that A, B, and N are pairwise

disjoint. N is partitioned into the sets C, D, and V, where C consists of names

for base class-types (denoted by C;C

0

: : :), D consists of names for virtual class-

types (denoted by D;D

0

: : :), and V consists of names for value-type (V; V

0

; : : :).

Furthermore, N contains the special symbol >

C

denoting the universal class.

S(A;B;N) denotes the set of all �nite type descriptions (S, S

0

, : : :), also

brie
y called types, over given A;B;N, that are built according to the following

abstract syntax rule (assuming a

i

6= a

j

for i 6= j):

S ! B jN j fSg j hSi j [a

1

:S

1

; : : : ; a

k

:S

k

] j S u S

0

j 4 S:

The following are examples of well-formed type descriptions:

Int; 5{10; Department; fSecretaryg; hClerki

[street: String; number: Int; city: String];

Secretaryu Employee; 4Address:

We assume a countable setO of object identi�ers (denoted by o; o

0

; : : :) disjoint

from D and de�ne the set V(O) of all values over O (denoted by v; v

0

) as follows

3

This type must be part of B because the conjunction of di�erent mono-valued types is

empty.
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(assuming p � 0 and a

i

6= a

j

for i 6= j):

v ! d j o j fv

1

; : : : ; v

p

g j hv

1

; : : : ; v

p

i j [a

1

: v

1

; : : : ; a

p

: v

p

];

where [a

1

: v

1

; : : : ; a

i

: v

i

; : : : ; a

p

: v

p

] denotes the set of pairs (a

i

; v

i

). Using the above

assumptions and O = fo

1

; o

2

; : : :g, the following expressions are possible values:

1 ; 2 ; true; "Bologna"; o

128

; f1 ; 2 ;"Bologna"; o

128

g; ;; htrue; falsei; hi;

[street: "Stuhlsatzenhausweg"; number: 3 ; city: "Saarbr�ucken"]:

Object identi�ers are assigned values by a total value function � from O to

V(O). For instance, we may have the following assignments of values to objects:

�:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

o

1

7! [a: "xyz"; b: 5 ]

o

2

7! htrue; falsei

.

.

.

o

128

7! fo

1

; o

2

g

.

.

.

2.3 Database Schema

Given a system of atomic types B and �nite sets of attributes A and names

N = C [ D [ V, a schema � over S(A;B;N) is a total function from N to

S(A;B;N). Intuitively, � associates value-type names and class-type names to

their descriptions. The company domain described in Section 1.1, for instance,

would lead to the schema � speci�ed in Table 2.

We require some well-formedness conditions on a schema, namely,well-formedness

of value-type de�nitions and of the inheritance relation. The former condition

guarantees that all values are only �nitely nested and the latter ensures that the

inheritance relation is cycle-free.

Let �

T

be a function from S(A;B;N) to S(A;B;N) such that

�

T

(S) = S if S 2 B [C [D or S = 4S

0

�

T

(S) = �(S) if S 2 V

�

T

(fSg) = f�

T

(S)g

�

T

(hSi) = h�

T

(S)i

�

T

([a

1

:S

1

; : : : ; a

k

:S

k

]) = [a

1

: �

T

(S

1

); : : : ; a

k

: �

T

(S

k

)]

�

T

(S u S

0

) = �

T

(S) u �

T

(S

0

):

We say that the schema � is type well-formed i� there is a natural number n

such that �

n

T

= �

n+1

T

. Note that �

T

does not expand class names and therefore

its iteration is not in
uenced by the presence of the cyclic classes: Department,

Office, Clerk, Secretary.

7



V = fActivities; Level; AdvLevel; MdmLevelg

C = fPerson; Branchg

D = fClerk; Department; Sector; Employee;

Secretary; Officeg

�(Level) = 1{10

�(AdvLevel) = 8{10

�(MdmLevel) = 2{7

�(Activities) = fStringg

�(Person) = 4[name: String]

�(Branch) = 4[name: [bname: String]]

�(Sector) = 4[name: [sname: String]; activity: Activities]

�(Employee) = Person u4[salary: Real; works-in: Branch;

level: Level]

�(Manager) = Person u4[salary: Real; works-in: Branch;

head: Branch; level: AdvLevel]

�(Clerk) = Employeeu 4

h

level: MdmLevel;

works-in: Department

i

�(Department) = Branch u4

h

employs: fClerkg

i

�(Secretary) = Employeeu 4

h

level: MdmLevel; works-in: Office

i

�(Office) = Branch u Sectoru 4

h

employs: fSecretaryg

i

Table 2: The company domain schema �

Similarly to value-type well-formedness, we require that the inheritance rela-

tion expressed by conjunctions in a value-type or class-type de�nition is cycle-free.

Let � be a function from S(A;B;N) to 2

N

de�ned as follows:

�(S) =

8

>

<

>

:

fSg if S 2 N

�(S

0

) [ �(S

00

) if S = S

0

u S

00

fg otherwise.

We say that N 2 C [D [V inherits directly from N

0

, written N�j

�

N

0

i� N

0

2

�(�(N)). A schema is inheritance well-formed i� the transitive closure of �j

�

,

which is denoted by �

�

, is a strict partial order. The re
exive and transitive

closure is denoted by �

�

. If a schema is type well-formed and inheritance well-

formed we call it well-formed. Reconsidering our company example, it can be

easily veri�ed that this schema is type and inheritance well-formed.

2.4 Interpretation of a Schema

In the following, we specify the legal database states by de�ning the notions of

possible instance and legal instance of a schema. To this purpose, let us de�ne

8



�rstly an interpretation function, which associates a set of values to every value-

type and a set of objects to every class type.

For a given set of object identi�ersO and a value function �, the interpretation

function I is a function from N to 2

V(O)

such that:

I[B] = I

B

[B]; I[C] � O; I[D] � O; I[V ] � V(O)�O:

The interpretation of type descriptions is de�ned inductively for all S; S

0

2

S(A;B;N) by:

I[fSg] =

n

fv

1

; : : : ; v

p

g

�

�

�v

i

2 I[S]; 0 � i � p

o

I[hSi] =

n

hv

1

; : : : ; v

p

i

�

�

�v

i

2 I[S]; 0 � i � p

o

I

h

[a

1

:S

1

; : : : ; a

p

:S

p

]

i

=

n

[a

1

: v

1

; : : : ; a

q

: v

q

]

�

�

� p � q; v

i

2 I[S

i

]; 0 � i � p;

v

j

2 V(O); p+ 1 � j � q

o

I[S u S

0

] = I[S] \ I[S

0

]

I[4S] =

n

o 2 O

�

�

��(o) 2 I[S]

o

I[>

C

] = O:

Note that the interpretation of tuples implies an open world semantics for

tuple types similar to the one adopted by Cardelli [14]. For the example above,

it follows that

o

1

2 I

h

4[a: String]

i

; o

1

2 I

h

4[a: String; b : Int]

i

;

o

2

2 I[4hBooli]; o

128

2 I[f4>

C

g]:

It should be noted that an interpretation does not necessarily imply that

the extension of a named type is identical to the type description associated

with the type name via the schema �. For this purpose, we have to further

constrain the interpretation. We say that an interpretation function I as de�ned

above is a possible instance of a schema � i� the set O is �nite, and for all

C 2 C;D 2 D; V 2 V:

I[V ] = I[�(V )]

I[C] � I[�(C)]

I[D] = I[�(D)]:

Possible instances are legal instances of a database, provided the schema is

cycle-free. In fact, given a schema � over S(A;B;N), a set of object identi�ers

O, a value function �, and a partial interpretation, i.e., an assignment de�ned

over C, there is at most one possible instance, provided the schema is cycle-free.

In the general case, however, there are many possible instances. In fact, let us

consider the object identi�ers and value function as speci�ed in Table 3.

9



O = fo

1

; o

2

; o

3

; o

4

; o

5

; o

6

g

�(o

1

) = [name : \ Mark"; salary : 8000; works-in : o

2

; level : 3]

�(o

2

) = [name : [bname : \Administration"]; employs : fo

1

; o

7

g]

�(o

3

) = [name : \Robert"; salary : 9000; works-in : o

4

; level : 3]

�(o

4

) = [name : [bname : \Development"]; employs : fg]

�(o

5

) = [name : \Andy"; salary : 8500; works-in : o

6

; level : 4]

�(o

6

) = [name : [bname : \Research"; sname : ``Database"];

activity : f\Databases, UserInterfaces"g; employs : fo

5

g]

�(o

7

) = [name : \ Peter"; salary : 10000; works-in : o

2

; head : o

2

; level : 8]

Table 3: A possible database state

Supposing the following partial interpretation

I[Person] = fo

1

; o

3

; o

5

; o

7

g

I[Branch] = fo

2

; o

4

; o

6

g;

we can have many possible instances for virtual classes, some of them are shown

in Table 4.

I

1

I

2

I

3

Employee fo

1

; o

3

; o

5

; o

7

g fo

1

; o

3

; o

5

; o

7

g fo

1

; o

3

; o

5

; o

7

g

Manager fo

7

g fo

7

g fo

7

g

Sector fo

6

g fo

6

g fo

6

g

Clerk fo

1

; o

3

; o

5

g fo

3

; o

5

g fo

3

g

Department fo

2

; o

4

; o

6

g fo

4

; o

6

g fo

4

g

Secretary fo

5

g fo

5

g fg

Office fo

6

g fo

6

g fg

Table 4: Examples of possible instances

Since the interpretation of virtual classes shall be uniquely computable for

a given assignment of object identi�ers to interpretations of base classes, we

have to single out one particular possible instance. The natural candidate for

such a \canonical" interpretation would be the smallest possible interpretation

(corresponding to the least �xpoint of an operator on interpretations). There are,

however, drawbacks to such an approach. The least possible instance is often \too

small", namely, empty. For instance, in our case the smallest possible instance

is I

3

in Table 4, and we have Secretary , Office empty; Department is not

empty as we have made a particular assignment (the empty set) of employees to

10



o

4

. Furthermore, virtual classes with circular references using type constructor

di�erent from sequence and set would always be empty.

4

For this reason, we

choose the largest possible instance as the \right one"(I

1

in Table 4). Let P be

the set of possible instances with identical O and � such that for all I;I

0

2 P:

I[C] = I

0

[C] for all C 2 C.

Further, let \

P

�" be a relation over P such that for all I;I

0

2 P:

I

P

� I

0

i� I[N ] � I

0

[N ] for all N 2 N:

Then (P;

P

�) forms a partial ordering. We say that I is a legal instance of a

schema � i� it is the unique greatest instance of the set P w.r.t.

P

� .

Theorem 1 If I is a possible instance, then a legal instance I

0

exists such that

I

P

� I

0

.

It should be noted that in the odl framework multiple inheritance is realized

as a semantic property via the conjunction operator. If we take, for example, the

class Office from Table 2, we note that it \inherits" from Sector and Branch

since these are conjuncts in the de�ning type description of Office, i.e., the

Office objects have values that satisfy the restrictions spelled out in Sector

and Branch. This means that for the name attribute, which is de�ned in both

Sector and Branch, the following restriction is met

name: [bname: String; sname: String];

i.e., the restrictions on the name attribute are simply conjunctively combined. In

other words, it is not necessary to \resolve inheritance con
icts" on attributes

that inherit di�erent value ranges from multiple classes as in O

2

[21], but the

value range of an attribute is simply the intersection over the value ranges of this

attribute in all parent classes.

2.5 Inheritance, Subsumption, and Coherence

Based on the de�nitions above, we now give formal de�nitions for the notions

of subsumption and incoherence. Given a schema �, there is the question for

the semantic relationship between types. For example, we would expect that a

named type N that inherits from another named type N

0

, i.e.,N �

�

N

0

, is always

interpreted as a subset of the interpretation of N

0

. The converse, however, does

not hold necessarily.

4

See [6, 25, 9] for a more detailed description of the various semantics.

11



In order to capture this formally, let us de�ne the subsumption relation, writ-

ten S v

�

S

0

for S; S

0

2 S(A;B;N) of a schema �:

S v

�

S

0

i� I[S] � I[S

0

] for all legal instances I of �:

It follows immediately that v

�

is a pre-order (i.e. transitive and re
exive)

that induces an equivalence relation

:

=

�

on types

S

:

=

�

S

0

i� S v

�

S

0

and S

0

v

�

S

Proposition 1 For a given well-formed schema � and N;N

0

2 N:

If N �

�

N

0

then N v

�

N

0

:

Reconsidering our example in Section 1.1, it is obvious that Secretary v

�

Employee and Office v

�

Branch. However, as we already pointed out, we also

have Office v

�

Department and Secretaryv

�

Clerk. Thus, the converse does

not generally hold. One reason is the presence of virtual classes. Another reason

is the fact that a type can be equivalent to ?, the empty type. Class types and

value types equivalent to ? are called incoherent. We require that all named class

types and value types in a schema are coherent (i.e. 6

:

=

�

?), in which case the

schema is called coherent. With this de�nition we can give a partial converse of

the above proposition.

Proposition 2 For a given well-formed and coherent schema �, for all base

classes C;C

0

2 C: C v

�

C

0

i� C �

�

C

0

.

3 Algorithms

It is quite easy to check whether a schema is well-formed. It amounts to checking

the graphs induced by value-type declarations and the inheritance relation for

cycle-freeness. Testing for the coherence of a schema and computing subsumption

between types is, however, more di�cult. Instead of directly specifying algorithms

for these problems, a detour will be taken, de�ning an algorithm on canonical

extensions of a given schema.

A canonical schema � over S(A;B;N), where N = C [ D [ V, has the

following form (for all C 2 C;D 2 D; V 2 V):

�(C) = C

�(D) = uC

i

u4N where C

i

2 C; 0 � i;N 2 D [V

�(V ) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

? or

B where B 2 B; or

fNg where N 2 N; or

hNi where N 2 N; or

[a

1

:N

1

; : : : ; a

p

:N

p

] where p � 0; N

i

2 N; 1 � i � p:

12



A schema � over S(A;B;N) is a conservative extension of a schema � over

S(A;B;N) i� N � N and for any legal instance I of � a legal instance I

0

of �

exists and vice versa such that

I[N ] = I

0

[N ] for all N 2 N:

Note that this implies that the subsumption relations on N are identical. A

schema � is called a canonical extension of � i� � is canonical and � is a conser-

vative extension of �.

Theorem 2 Any schema � over S(A;B;N) can be e�ectively transformed into

a schema � over S(A;B;N) that is a canonical extension of �.

The algorithm for transforming a given schema into an equivalent canonical

schema is given in [10]. The main points are: every base class C is transfor-

med into a virtual class (expressing it as the conjunction of an imaginary atomic

class C, which belongs to the set C, and its description �(C)); the description of

every class is transformed by substituting only the names of classes from which

it inherits with their descriptions, expanding the type names and applying suita-

ble conjunction rules together with the denomination of new types obtained as

conjunctions. Therefore, at �rst D = C [ D, V = V but these sets of names

grow with the transformations made. The examples provided below should give

a rough idea.

Using canonical schemata, checking coherence of a schema and computing

subsumption is easy. As a matter of fact, both problems can be solved in time

polynomial in the size of the canonical schema. For the purpose of coherence

checking, let us de�ne the notion of conditional incoherence of a type name N in

a canonical schema � based on a set of type names I � N. N is conditionally

incoherent in � based on I � N i�

5

�(N) =

8

>

<

>

:

? or

[ : : : ; a

0

:N

0

; : : :] where N

0

2 I; or

uC

i

u4N

0

where N

0

2 I:

Algorithm 1 (Incoherence) Let I

0

= ; and de�ne

I

i+1

= I

i

[ fN 2 NjN is incoherent in � based on I

i

g:

Compute I

0

; : : : ; I

i

; : : : until I

i

= I

i+1

and set

f

I

�

= I

i

.

Since I

i

grows monotonically with increasing i and N is �nite, there exists a

natural number n such that I

n

= I

n+1

, i.e, the algorithm terminates. Further

note that the maximal n is jNj, i.e., the algorithm is polynomial in �.

5

Note that f?g and h?i are coherent types denoting the empty set and the empty sequence,

respectively.
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Theorem 3 If � is a canonical schema on S(A;B;N), then �(N)

:

=

�

? i�

N 2

f

I

�

.

Corollary 1 Let � be a schema over S(A;B;N), and let � be a schema over

S(A;B;N) that is a canonical extension of �. Then � is coherent i�

f

I

�

\N = ;.

To give a simple example, let us de�ne a new class Typist, which is a spe-

cialization of Secretary, with a level attribute value equal to 1 and a new class

TypeOffice which is a branch employing only typists:

�(Typist) = Secretaryu4

h

level: 1

i

�(TypeOffice) = Branchu4

h

employs: Typist

i

Typist is immediately incoherent as from the canonical transformation its

attribute level has values in the type Level u MdmLevelu 1, which is equal to

?, i.e., we have

�(Typist) = ?:

The incoherence of TypeOffice derives from the incoherence of the generated

value-type T13 = [name: [bname: String]; employs: Typist], which is part of the

canonical description of TypeOffice. Therefore:

I

1

= fTypistg

I

2

= fTypist; T13g

I

3

= fTypist; T13; TypeOfficeg;

and thus Typist and TypeOffice are detected as incoherent.

Turning now to subsumption computation, we de�ne conditional subsumption

based on a relation �� N �N. We say that S is conditionally subsumed by S

0

based on �, written S v

�

S

0

under the following conditions:

B v

�

B

0

i� B u B

0

= B

fNg v

�

fN

0

g i� N � N

0

hNi v

�

hN

0

i i� N � N

0

[ : : : ; a

i

:N

i

; : : :] v

�

[ : : : ; a

0

j

:N

0

j

; : : :] i� 8j9i: (a

i

= a

0

j

^N

i

� N

0

j

)

u

i

C

i

u4N v

�

u

j

C

0

j

u4N

0

i� N � N

0

^ 8j9i:C

i

= C

0

j

:

We can now give the subsumption algorithm.

Algorithm 2 (Subsumption) Let �

0

= D

2

[V

2

[ f(C;C)jC 2 Cg and de�ne

�

i+1

in the following way:

�

i+1

=

n

(N;N

0

) 2 N�N

�

�

� �(N) v

�

i
�(N

0

) _N 2

f

I

�

o

:

Compute �

0

; : : : ;�

i

; : : : until �

i

=�

i+1

and set

<

�

�

=�

i

.
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As above, a natural number n always exists such that �

n

=�

n+1

. This time,

the maximal n is jNj

2

, i.e., also the subsumption algorithm is polynomial in �.

Theorem 4 Given a canonical schema � over S(A;B;N), for all N 2 N:

N v

�

N

0

i� N

<

�

�

N

0

:

Further, using the property that a canonical extension of a schema is a conser-

vative extension, it follows immediately that subsumption in an arbitrary schema

can be computed by computing

<

�

�

on its canonical extension.

Corollary 2 Let � be a schema over S(A;B;N), and let � be a schema over

S(A;B;N) that is a canonical extension of �. Then for all N;N

0

2 N:

N v

�

N

0

i� N

<

�

�

N

0

:

3.1 Subsumption for the Company Domain

Let us brie
y show subsumption computation for the company domain, emphasi-

sing the problem that arise from the cyclic virtual classes (Clerk, Department),

(Secretary, Office). Subsumption computation for a schema without cyclic

classes can be performed with exactly three iterations of the subsumption algo-

rithm, whereas cyclic references increase the number of iterations. At step �

0

,

we have that each class subsumes all the other classes and each type subsumes

all types. At step �

1

, we can drop many subsumption relationships in addition

to those between non-homogeneous types. For instance, it is detected that the

classes Person and Branch and the value type Activities are not subsumed by

any other class or value type. At step �

2

we detect that Department 6v

�

Office

supposing that the canonical extension � of � looks as follows:

�(Department) = Branchu4T9

�(T9) = [name : T2; employs : D2]

�(T2) = [bname : String]

�(D2) = fClerkg

�(Office) = Branchu4T12

�(T12) = [name : T11; activity : Activities; employs : D4]

�(T11) = [bname : String; sname : String]

�(D4) = fSecretaryg

Since T9 6�

1

T12, as the attribute name in T12 is de�ned on a strict subtype

(T11) of the corresponding attribute name of T9 and T12 has the further at-

tribute activity, it follows that Department 6�

i

Office, for all i � 2, hence

Department 6v

�

Office.
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Assuming that � contains the following additional type de�nitions

�(Secretary) = Personu 4T10

�(T10) = [name : String;

salary : Real; works-in : D3; level : MdmLevel]

�(Clerk) = Personu 4T8

�(T8) = [name : String; salary : Real;

works-in : D1; level : MdmLevel];

Clerk 6v

�

Secretary can be detected at step 4, as Department 6�

2

Office;

D1 6�

2

D3 and T8 6�

3

T10. At step 5 we obtain D2 6�

5

D4 and we can stop at

step 6 as we have the same subsumption relations as at step 5:

Secretary �

5

Clerk Secretary �

6

Clerk

Office �

5

Department Office �

6

Department

D4 �

5

D2 D4 �

6

D2

.

.

.

.

.

.

and thus

<

�

�

=�

5

.

At the end of the subsumption computation we obtain for each type name

N the set of all its subsumers (i.e., its generalizations GS(N)) and subsumees

(i.e., its specializations) with respect to the overall taxonomy. Elimination of

redundancies is very easy, as we can easily compute for each type name N its

most speci�c generalizations set MSG(N) as follows:

MSG(N) = fN

0

2 GS(N) j6 9N

00

2 GS(N):N

00

v

�

N

0

^N

0

6v

�

N

00

g

Figure 2 displays the class taxonomy induced by the company schema afterMSG

computation.

4 Computational Complexity

Although coherence checking and subsumption computation can easily be per-

formed on canonical schemata, there are probably no e�cient algorithms for the

general case. Considering coherence checking �rst, it can be shown that binary

compactness of the system of atomic types (see Section 2.1) is a crucial condition

for e�ciency.

Theorem 5 Checking coherence of a schema can be done in polynomial time

provided the system of atomic types is binary compact, and is NP-hard in the

general case.
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Figure 2: The minimal taxonomy for the company domain example

The NP-hardness result follows by a reduction from the emptiness of inter-

section problem for �nite state automata, which is NP-hard [18].

Subsumption in odl is even more di�cult, as the next theorem shows.

Theorem 6 Subsumption is PSPACE-hard.

Even a restriction to binary compact systems of atomic types does not help

in this case because the language inclusion problem for non-deterministic �nite

state automata can be reduced to subsumption [24, 6, 25].

Since the coherence problem and subsumption problem on canonical schemata

both can be decided in polynomial time, the above results imply that computing

the canonical extension of a schema is di�cult or that the canonical extension

of a schema has a worst-case size that is exponential in the size of the original

schema. As can be shown, there are indeed schemata that lead to exponentially

sized canonical extensions. A worst-case example is given in [24].

Although these results may suggest that subsumption computation may not

be feasible in our model, it turns out that the intractability of the problem does

not very often show up in practice|an observation also made in the area of know-

ledge representation [24], where we have to deal with quite similar problems. The

reason is probably that schemata are usually formulated in such a way that they

are almost canonical, and, as is obvious from the description of the algorithms,
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coherence checking and subsumption computation on such schemata can be done

e�ciently.

More evidence for the fact that subsumption computation can be done ef-

�ciently in most practical cases can be found in related data models. In the

data model O

2

[21], for instance, a relation called re�nement is computed. This

relation is identical to our subsumption relation if we assume that there are no

base classes. Multiple inheritance in O

2

always leads to a request for a \con
ict

resolution" by the user [21]. Thus, instead of automatically using conjunctions

of types|as we do|the user has to provide a type that re�nes the inherited ty-

pes. The computation of the re�nement relation is then performed on an internal

normalized description, where no further inheritance is needed [20]. It is easy

to see that this can be done in polynomial time.

6

Since the internal form can

be handled e�ciently, it must be the case that schemata exist that would lead

to exponentially many con
ict-resolution requests. However, such schemata are

not very likely to appear in practice. Hence, we conclude that transforming a

schema to its canonical extension is feasible for most cases that appear in prac-

tice. In fact, our experience with the odl-designer tool, which is described

below, supports this hypothesis.

5 The odl-designer Tool

The odl-designer prototype [7], which has been developed at CIOC-CNR, Bo-

logna, as part of the logidata

+

project [4], implements taxonomic reasoning

methods and techniques for advanced database management systems handling

complex objects data models. It is an active tool which supports automatic

building of type taxonomies for complex object database systems, preserving co-

herence and minimality with respect to inheritance. It implements the theoretical

framework of Sections 2 and 3. Due to the generality of the odl formalism, this

tool can be used as a kernel component for schema acquisition for a large range

of available research and commercial object-oriented database system.

The user interface of the current version of odl-designer is quite rudimen-

tary, supporting only keyboard interaction with the programming systemQuintus

Prolog, in which odl-designer is implemented. This lack in emphasis on the

user interface has two reasons. First of all, we needed a quick prototype imple-

mentation in order to test the practical feasibility of the theoretical framework

of Sections 2 and 3. Second, within the logidata

+

project, odl-designer is

a kernel component which will be connected in the second phase of the project

with the graphical user interface supporting class taxonomies and with the object

store system developed by other research groups [7].

6

Polynomiality is guaranteed only if the disjunction operator discussed in that paper is

omitted, a point that has been missed by Lecluse and Richard [20].
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Figure 3: odl-designer's functional architecture

Figure 3 shows the functional architecture of odl-designer. The program

is divided into two main functional modules:

F1: allows the creation of an odl schema, the addition of new classes to a pre-

existing odl schema, and the modi�cation of a pre-existing odl schema.

It performs coherence control and produces the canonical form of the odl

schema. The output of this module is the canonical form of the odl schema

and the list of incoherent classes and types (if any).
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F2: performs subsumption and MSG computations having as input the canoni-

cal form of the odl schema. The output of this module is the minimal odl

schema and the list of computed isa relations.

The tool is able to guarantee coherence for a taxonomy consisting of only

base classes by activating the F1 module. Class descriptions of a given schema

can be compared and incoherent classes are detected. Thus, the F1 module can

constitute a type-checking module for an object-oriented database management

system.

A more active role is played if the taxonomy includes also virtual classes

and value-types. In this case it is necessary to activate also the F2 module.

This module computes a minimal description (i.e., a rewritten description on the

basis of its most speci�c generalizations) for each class and value-type and puts

them into the right places in the taxonomy. Semantic equivalence of classes is

recognized and redundancies with respect to inheritance are removed.

In general, database schema design can be subdivided in two phases. The

�rst one is devoted to the application domain requirements analysis and its formal

mapping into an odl schema. This phase is supported by the CREATE/MODIFY

function of odl-designer. The second phase is devoted to top-down and bottom-

up re�nements in order to achieve the appropriate modelling of a target applica-

tion domain. This phase is supported by the ADD function of odl-designer.

The CREATE/MODIFY function is activated in the �rst phase of the schema

design. A skeleton schema is created and class and value-type descriptions

are added and modi�ed many times. Figure 4 shows the behaviour of odl-

designer when the CREATE/MODIFY function is activated. Ellipses denote

odl-designer sub-modules, thick arrows sub-module links, and dashed arrows

the data 
ow. The user interface allows schema creation by typing descriptions

at the terminal or by giving the name of a text �le containing a schema. The

input schema is then analyzed from a syntactic and semantic point of view. First,

syntactic and semantic checks are performed, implementing the well-formedness

conditions for value-types and the inheritance relation, as spelled out in Sec-

tion 2.3. If an error is detected, the systems supports the user interactively in

producing a well-formed odl schema. When the input schema is well-formed, the

canonical transformation algorithm is applied, followed by the application of the

incoherence algorithm speci�ed in Section 3. The input schema and the canonical

schema are made persistent and the list of incoherent classes and types (if any) is

displayed. At the presence of incoherent classes or value-types the designer can

modify descriptions, activating F1 again.

After a successful run of the F1module, which resulted in a canonical schema,

the module F2 is activated. This module applies the subsumption algorithm

speci�ed in Section 3 to the canonical schema in order to compute the table of

isa relations. Finally, the minimal schema is derived by computing the MSGs for

all classes and value-types. The table of computed isa relations is made persistent
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Figure 4: odl-designer: CREATE Function

and is displayed.

In the second design phase, the database schema is quite stable and schema

modi�cations have the 
avor of a little at a time re�nements. The ADD function

of Figure 5 is useful for this second phase. The main di�erence, with respect

to the CREATE/MODIFY functions, is that the ADD function exploits the re-

sults of the \compilation" of a pre-existing database schema, avoiding syntactic

and semantic analysis algorithm, since it compares new descriptions, which are

potentially incorrect, with a corpus of well-formed de�nitions. If the user tries
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Figure 5: odl-designer: ADD Function

to modify descriptions of the pre-existing schema during an ADD activation,

the system refuses the operation, pointing out that it is necessary to use the

CREATE/MODIFY functions.

Let us give an example of a sample session. When odl-designer is activated,

the options: create-db, modify-db, add-db are available. Suppose we want to create

the company domain schema. In response to the system prompt we type

create-db(company).
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and insert the schema description by Prolog assertions as follows:

s([type,Level,=,1,-,10]).

s([type,MdmLevel,=,2,-,7]).

s([type,LowLevel,=,1]).

: : :

s([class,Person,=,/,n,'[',name,:,String,']']).

: : :

s([virt-class,Clerk,=,Employee,&,

/,n,'[',works-in,:,Department,']']).

: : :

s([end]).

Typing \s([end])." triggers the execution of the module F1, which detects

no errors or incoherencies, and the company odl schema and its canonical form

are made persistent. After that the user is asked whether he wants to compute the

subsumption relation or to modify the schema. If we select the �rst alternative,

module F2 is activated, the table of isa relations depicted in Figure 1 and the

minimal odl schema depicted in Figure 2 are made persistent and displayed on

the terminal.

Suppose we select the second alternative because we forgot to insert a Typist

description. After invoking the ADD function by

add(company).

we type the following assertions:

s([virt-class,Typist,=,Secretary,&,

/,n, '[',Level,:,LowLevel,']']).

s([end]).

The odl-designer detects that the class Typist incoherent, as LowLevel

and MdmLevel are disjoint, and suggests to correct its description. Suppose we

want to modify the de�nition of Person and type the command

modify(company).

followed by

s([class,Person,=,Clerk,&,/,n,'[',name,:,String,']']).

s([end]).

In this case, odl-designer detects that there is an isa cycle (ClerkisaPerson

and Person isa Clerk) and, again, suggests to correct this de�nition.

The current version of odl-designer has been implemented in Quintus Pro-

log on a SUN SPARC station. The code amounts to 4130 code lines (158 predi-

cates) and has been tested on a number of di�erent sample database schemata.
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6 Conclusions

We speci�ed a formalism, called odl, for complex objects following recent ap-

proaches in the areas of object-oriented and complex object data models. Instead

of viewing inheritance as a syntactic transformation (as in O

2

[21]), inheritance

is expressed by conjunctions of types. Additionally, we introduce the notion of

virtual classes, which is similar to database views, and allow the de�nition of

cyclic references in class de�nitions.

We speci�ed algorithms to check schemata for well-formedness on the syntac-

tic level (value-type well-formedness and inheritance relation well-formedness)

and the semantic level (coherence of the schema), and addressed the problem of

automatically computing the taxonomy of classes and value-types by specifying

a subsumption algorithm that detects all implied specialization relationships.

Using recent results from knowledge representation research, we showed that

coherence detection and subsumption computation in odl are computationally

intractable. However, we argued that in all situations appearing in practice worst

cases are rare and that our algorithms are feasible in practice because schemata

are usually \almost canonical."

Based on these theoretical results, a schema acquisition and validation tool,

the odl-designer, has been implemented, which supports the above hypothe-

sis of practical feasibility. Furthermore, this tool demonstrates the relevance of

basing schema acquisition and validation on the odl framework.

Let us brie
y compare our work with some recent works close to our ap-

proach. The idea of introducing virtual classes and subsumption in a database

schema has been considered in a number of papers [8, 11, 12]. Our work ex-

tends the framework of all the above quoted papers since we allow cyclic virtual

classes speci�cation. In [1] virtual classes are introduced in an object-oriented

database schema, with the aim of introducing a sophisticated view mechanism.

Our formalism does not enable all the facilities proposed in this paper, but inclu-

des possibilities for populating cyclic virtual classes not considered in this paper.

Relating our work to research in knowledge representation, it turns out that odl-

designer viewed as a terminological knowledge representation system is one of

the few systems that are able to deal correctly with cyclic classes [19].
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