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Abstract
In this paper, we propose a novel SAT-based planning ap-
proach for hierarchical planning by introducing the SAT-
based planner totSAT for the class of totally-ordered HTN
planning problems. We use the same general approach as
SAT planning for classical planning does: bound the prob-
lem, translate the problem into a formula, and if the for-
mula is not satisfiable, increase the bound. In HTN planning,
a suitable bound is the maximum depth of decomposition.
We show how totally-ordered HTN planning problems can be
translated into a SAT formula, given this bound. Furthermore,
we have conducted an extensive empirical evaluation to com-
pare our new planner against state-of-the-art HTN planners.
It shows that our technique outperforms any of these systems.

Introduction
Hierarchical planning provides a natural and expressive, but
nevertheless easily usable means for planning. Its most com-
mon formalism is Hierarchical Task Network (HTN) plan-
ning (Erol, Hendler, and Nau 1996), which extends classical
STRIPS-based planning in two ways. It introduces first the
concept of abstract tasks – tasks which cannot be executed
directly, and second decomposition methods, which relate
abstract tasks to primitive STRIPS-like actions by providing
a course of (primitive and/or abstract) tasks that needs to be
performed to achieve the abstract task. The various decom-
position methods for an abstract task define the allowed port-
folio of ways to achieve that task. They can, e.g., be gained
from domain experts, whose knowledge can be encoded and
exploited this way. This makes HTN planning particularly
useful for planning in complex real-world domains. Its top-
down and decomposition-based reasoning also bears simi-
larities with human thought processes (Byrne 1977).

Although HTN planning is often used in real-world ap-
plications (Nau et al. 2005; Champandard, Verweij, and
Straatman 2009; Hartanto and Hertzberg 2008; Morisset and
Ghallab 2002; Dvorak et al. 2014; Bercher et al. 2015),
there has so far only been little research in developing
fast, domain-independent HTN planners. Systems are ei-
ther guided by instructional information, hard-coded in the
domain model, use blind search, or heuristic search in the
plan space, relying on quite simple heuristics (Bercher et al.
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2017). Recently, a new HTN planning technique based on
a bounded translation into classical planning as been pro-
posed (Alford et al. 2016a). Most search processes of HTN
planners consider both parts of the planning problem – the
hierarchy and the primitive action model – separately and
do not analyse interactions between them. This is especially
true for heuristics, which have – so far – either been based
solely on the hierarchy or solely on the primitive actions.
The work by Alford et al. (2016a) provides an integration of
both worlds. The planner FAPE (Dvorak et al. 2014) does
this too (Bit-Monnot, Smith, and Do 2016), but restricts the
decomposition hierarchy to be non-recursive, which greatly
reduces the expressiveness of HTN planning.

In this paper, we present a new technique for HTN plan-
ning based on a translation of the planning problem into a
propositional satisfiability problem. It enables a unified view
on both parts of the problem and leads to a significantly bet-
ter performance compared to previous approaches. We re-
strict ourselves to the class of totally-ordered HTN planning,
thereby easing the SAT formula’s construction. This restric-
tion is justified by various observations. First, we retain most
of the expressive power of HTN planning and are still more
expressive than STRIPS-based planning (Höller et al. 2014;
Höller et al. 2016). Second, HTN domains often have a high
degree of total order (Alford et al. 2016a), so that plan-
ners have even been specifically designed for this problem
class (Nau et al. 1999; Alford, Kuter, and Nau 2009). Third,
restricting models to be totally-ordered enables the creation
of complete planning algorithms, as partially ordered HTN
planning is undecidable (Erol, Hendler, and Nau 1996),
while totally-ordered planning is EXPTIME-complete (Al-
ford, Bercher, and Aha 2015). Finally, studying the struc-
turally simpler class of totally-ordered HTN planning prob-
lems is a suitable first step towards creating a SAT-based
planner for general HTN planning problems.

The remainder of the paper is organised as follows. Next,
we introduce the totally-ordered HTN formalism and survey
related approaches. We then describe our planning algorithm
totSAT and present its empirical evaluation.

HTN Planning
In this paper, we use an adaptation of the formulation of
HTN planning of Geier and Bercher (2011), in which we
omit everything related to partial order. Hierarchical plan-



ning distinguishes between two types of tasks: primitive and
abstract. Primitive tasks a are identical to standard STRIPS
actions: they can be executed directly and are specified by
prec, add, and del lists with the usual state transition seman-
tics. In contrast, abstract tasks must be refined through meth-
ods into primitive actions before they can be executed. To
describe the allowed refinements, HTN planning problems
use task networks, which describe a partially ordered mul-
tiset of – both primitive and abstract – tasks. In the totally-
ordered case a task network is merely a sequence of tasks.

Definition 1. Given a set of tasks T , a task network tn is
any element of T ∗. We define tn(i) to be the ith task of tn.

A totally-ordered HTN planning problem is defined as:

Definition 2. A totally-ordered HTN planning problem is a
6-tuple P = (L,C,O,M, cI , sI), s.t.

• L is a finite set of proposition symbols
• C is a finite set of abstract (or compound) tasks
• O is a finite set of primitive actions (or operators)
• M ⊆ C × (C ∪O)∗ is a set of decomposition methods
• cI ∈ C is the initial abstract task
• sI ⊆ L is the initial state.

We define M(t) = {(t, tn) | (t, tn) ∈ M} to be the set
of methods for the abstract task t and M(T ) =

⋃
t∈T M(t).

Decomposition methods are essentially rules that describe
how an abstract task can be replaced by a sequence of (prim-
itive or abstract) tasks, defined as follows.

Definition 3. Let P = (L,C,O,M, cI , sI) be a planning
problem, tn = ω1cω2 a task network where c ∈ C, and
m = (c, ϕ) ∈ M a decomposition method. Then the appli-
cation of m to tn results in the task network tn′ = ω1ϕω2,
written tn →m

D tn′. Likewise we write tn →D tn′ if any
such method exists, and tn →∗D tn′ if any sequence of de-
compositions exists, which transforms tn into tn′.

We define a solution to an HTN planning problem as:

Definition 4. Let P = (L,C,O,M, cI , sI) be a planning
problem. A task network tn ∈ O∗ is a solution to P if and
only if cI →∗D tn and tn is executable in sI . The set of all
such task networks is defined as S(P).

In this paper, we consider the problem of satisficing plan-
ning, i.e., the decision problem to decide whether a task net-
work tn ∈ S(P) exists. We want to emphasise that the
HTN part of the planning problem is much more than a mere
heuristic guide to solve some (in its core) classical planning
problem – it is a restriction on the allowed plans. This addi-
tional way to restrict the model makes HTN planning both
more expressive than classical planning and computationally
more difficult. Our formalism differs from the one used by
the HTN planning system SHOP (Nau et al. 1999) in that we
do not allow for methods to have preconditions. This is not a
restriction, as SHOP-style domains can be compiled into our
formalism by introducing tasks with each method’s precon-
dition, which are ordered before all other tasks in their re-
spective methods. Three of our evaluation domains contain
method preconditions, which are compiled by the planner.

The reduced formalism bears a striking similarity to
context-free grammars (CFGs). In fact, the set of solutions
S(P) can be described by a CFG and for all CFGs there is
a planning problem generating the same language (Höller et
al. 2014). In theory, the task of planning boils down to find-
ing a word generated by a context-free grammar, which can
be done in linear time. The planning problem is a compact
representation of the corresponding grammar, as it defines
the solutions as the intersection of two properties: being a
valid decomposition and being executable. Constructing the
grammar explicitly would lead to an exponential blow-up,
which makes any such approach to planning useless.

Related Work
The idea of translating hierarchical planning problems into
logical formulae is not entirely new. Mali and Kambham-
pati (1998) have proposed a translation of HTN planning
problems into a SAT formula. Their notion of HTN planning
significantly differs from the (by now) established HTN for-
malism, making their formula much simpler and structurally
different from ours. First, their formalism allows inserting
additional tasks and does not have an initial task, which
makes it equivalent to STRIPS planning. Second, they allow
task sharing (Alford et al. 2016b), which leads both to sig-
nificantly shorter or even new solutions. Consider a planning
problem with a single abstract task A which decomposes
into two instances of the primitive task a, which can only
be executed once. Using standard HTN semantics this prob-
lem has no solution, while with task sharing it does have one
of length one. Lastly, their technique is also far less power-
ful than ours, as it cannot handle recursive domains, which
greatly reduces the expressive power of hierarchical plan-
ning. Such domains can always be translated into an equiv-
alent STRIPS planning problem, which is not the case for
general or totally-ordered domains (Höller et al. 2014).

Dix, Kuter, and Nau (2003) have proposed an encoding of
totally-ordered HTN planning into answer set programming
(ASP), based on the mechanics of SHOP. Their empirical
evaluation shows that the translated domain performs sig-
nificantly worse than the standard SHOP algorithm (up to
a factor of 1.000). We assume that this is due to the high
expressive power needed for their models – it requires num-
bers. Also, ASP is commonly solved by a translation into
SAT, thus we deem a direct encoding to be more efficient.
We have not included their approach in our evaluation as no
code for their translation is publicly available and (as stated)
its performance is worse than SHOP, which we did include.

In recent work, we presented a SAT-based technique for
verifying HTN plans (Behnke, Höller, and Biundo 2017), a
task which was shown to be NP-complete (Behnke, Höller,
and Biundo 2015). In plan verification, the objective is,
given a sequence of actions, to determine whether this se-
quence can be obtained via decomposition from the initial
abstract task. In theory, our proposed encoding could also be
used as the basis for a planner, but its size and complexity
make it impractical for that purpose. Also, the encoding we
present here differs significantly from the verification encod-
ing in that it represents decomposition in a tree-like structure
rather than as a process iterating over sequences of actions.



As noted, the problem of finding a plan for a totally-
ordered HTN planning problem is equivalent to finding a
word of a CFL given in a highly compressed form. For this
test, it would however be necessary to construct the respec-
tive grammar G explicitly, which would require to construct
the state space explicitly – which is not feasible. Due to the
specific nature of our input, there has been no work in the
formal languages community – as far as we know. There
has been work relating to the usage of SAT techniques when
analysing properties of CFLs, like universality (Axelsson,
Heljanko, and Lange 2008), but their techniques are not ap-
plicable here, as they need the expanded CFG as their input.

Height-bounded Decomposition Trees
Our translation of HTN planning problems into SAT for-
mulae is based on the notion of decomposition trees
(DTs), which were originally introduced by Geier and
Bercher (2011). A DT is a witness that a task network is
a solution to a given planning problem. We adapt their defi-
nition and simplify it for the case of totally-ordered domains
as follows:

Definition 5. Let P = (L,C,O,M, cI , sI) be an HTN
planning problem. A valid totally-ordered decomposition
tree T is a 4-tuple T = (V,E, α, β), where

• V are the nodes of a directed tree, whose edges are given
by the function E : V → V 1, mapping each node in the
tree to a ordered list of vertices – its children. Let r be the
root-node of this tree.

• α : V → C ∪O assigns each inner node an abstract task
and each leaf a primitive task.

• β : V →M assigns each inner node a method.
• α(r) = cI

• for all inner nodes v ∈ V with β(v) = (c, tn) and chil-
dren E(v) = c1, . . . , cn, it holds that c = α(v) and
α(c1) . . . α(cn) = tn.

The function E implicitly defines an order of all nodes of
the tree. Two nodes a and b are ordered a ≺ b, if any only if
for the lowest common ancestor c of a and b in the tree, the
child a′ of c which is the ancestor of a occurs in E(c) before
the respective ancestor b′ of b.

The solution represented by a DT T are the tasks assigned
to its leafs in the order implicitly induced by the function
E. Geier and Bercher (2011) showed that for every solution
tn ∈ S(P) a DT exists, whose leafs are assigned the tasks of
tn in the correct order and vice versa. Thus, instead of gen-
erating a formula that describes all solutions, we can gen-
erate one that describes all possible DTs. This, however, is
not possible in general, since the HTN can contain recursive
methods, requiring to describe infinitely many DTs in one
formula. We take the same approach as SAT-planning does
for classical planning: Restrict the solution by some bound
and increase the bound until a solution has been found. We
propose to use the height of the DTs as this bound – in con-

1Let X be the set of all sequences over X .

trast to the plan length in classical planning2. I.e., given a
height-bound K, we generate a SAT formula that describes
all possible decomposition trees whose height is at most K.

Here the question arises, which values should be tried for
K? As the lower bound, we use the minimal height nec-
essary to derive a task network solely containing primitive
tasks from cI . Formally this height is the smallest K s.t.
there exists an DT with height K whose leafs are assigned
only primitive tasks. This bound can be computed induc-
tively: For any primitive task it is 0, for every method it is the
maximum of any contained task, and for any abstract task it
is 1 plus the minimum over its decomposition methods. For
cycles in the decomposition hierarchy, we can iterate un-
til convergence. The following theorem provides an upper
bound, showing that a planning procedure based on itera-
tively increasing the allowed height will terminate in finite
time. Similar to classical planning, where there is also such
an upper bound (2|L|), the determined bound is quite high,
but plays no practical role, as solutions are usually found
before that bound is reached.

Theorem 1. Let P = (L,C,O,M, cI , sI) be an HTN plan-
ning problem. If S(P) 6= ∅, then S(P) also contains a so-
lution whose decomposition height is at most |C| ·

(
2|L|
)2

.

Proof. Assume that S(P) is not empty, let tn be a so-
lution with the minimal decomposition height, and K >

|C|·
(
2|L|
)2

be this height. Then the decomposition tree of tn
contains a path of length K. Label every node a in the tree
with the states immediately before and after executing the
primitive tasks resulting from a (i.e. the leafs below a). Since
this path is longer than |C|·

(
2|L|
)2

, at least two nodes will be
labelled with the same abstract task and states. We can now
remove the part of the tree between these two occurrences
(including one of the two duplicated nodes). The resulting
tree still represents a task network, which is a solution to P ,
as it only contains valid decompositions and the resulting
task network will be executable. However the height of this
path in the tree has decreased. If we repeat this process for
all paths with length K, the resulting tree will represent a
solution with a decomposition height <K.

Before we start to construct the formula itself, we first
need a suitable abstraction of DTs, which can describe sets
of DTs – in our case all DTs up to a given height. We have
developed such an abstraction called Path Decomposition
Trees (PDTs). A PDT P is required to have every DT of
height ≤ K as a sub-tree. Figure 1 show an example for
a PDT and a DT as its subgraph. The nodes of the PDT
belonging to the DT are labelled with the respective task
α(v). Our formula will describe such a subgraph DT and
then checks that its leafs contain primitive tasks, which are
executable in the order induced by the DT. Conveniently,
this will be the same order as those nodes have in the PDT,
which is marked with dashed lines in Figure 1.

2Bounding the height of a DT implicitly also bounds the plan
length, but it is much simpler to construct a SAT-formula bounding
the height, e.g., due to methods with empty task networks.



We start by detailing the formal criteria we impose on a
PDT and show a theoretical property ensuring the complete-
ness of our SAT-translation. There are several possible PDTs
for every planning problem and height K that fulfil these
criteria. As such, we introduce a broader framework upon
which further research could be based. As a second step,
we describe a way to generate PDTs for a given planning
problem, leading to a single PDT for every problem/height
combination. We then construct our SAT formula based on
this single PDT.

Definition 6. Let P = (L,C,O,M, cI , sI) be a planning
problem and K a height bound. A Path Decomposition Tree
PK of height K is a triple PK = (V,E, α) where

• V are the nodes of a directed tree of height ≤ K, whose
edges are given by the function E : V → V , and which
has a single root node r.

• α : V → 2C∪O assigns each node a set of possible tasks.
• cI ∈ α(r)

• for all inner nodes v ∈ V , for each abstract task c ∈
α(v) ∩ C that can be assigned to that node, and for
each method (c, tn) ∈ M(c), there exists a sub-sequence
v1, . . . , v|tn| of the childrenE(v), such that tn(i) ∈ α(vi)
for all i ∈ {1, . . . , |tn|}

• all leaf nodes are either assigned only primitive tasks, or
are at height K

A DT T = (VT , ET , αT , βT ) is contained in PK iff there
is a sub-tree G′ = (V ′, E′) of (V,E), s.t. r ∈ V ′, which is
isomorphic to (VT , ET ) with the isomorphism ψ : V ′ → VT
s.t. ∀v′ ∈ V ′ : αT (ψ(v′)) ∈ α(v′).

Theorem 2. Let P = (L,C,O,M, cI , sI) be a planning
problem and K a height bound. Then every DT T which has
a height of at most K is contained in a PDT PK .

Proof. Let T = (VT , ET ,≺T , αT , βT ) be a DT of height at
most K and PK = (V,E,≺, α) be a PDT, then we have to
find a sub-tree G′ of PK which is isomorphic to T and satis-
fies the conditions from the definition. We can construct this
sub-tree recursively, starting with the roots of PK and T . For
the root node rT of T we select the root r of PK to be in G′
and set the isomorphism respectively. β(rT ) assigns a de-
composition method m = (αT (rT ), tn) to rT . Since PK is
a PDT and αT (rT ) is contained in α(r), i.e.,m is applicable
to a task in α(r), we know that there is a sequence of chil-
dren (v1, . . . , v|tn|) of r in PK s.t. for each vi the label set
α(vi) contains the necessary label tn(i). Let vT1 , . . . , v

T
|tn|

be that sequence of children of rT in T . As T is a DT, we
have αT (vTi ) = tn(i) and thus αT (vTi ) ∈ α(vi). Thus we
can extend G′ by the ci and the isomorphism by the pairs
(vTi , vi). Lastly, we continue constructing the sub-tree with
each (vTi , vi) pair, as if they were the roots of the trees, un-
til both are assigned a primitive task. The sub-tree G′ then
fulfils the criteria from the definition by construction.

The definition of the PDT leaves several choice-points,
e.g., how to select the sequence of children for a method or
how to select the label sets for the nodes. When constructing
our SAT formula, we are interested in a small PDT, i.e., one

t1

t2 t3 p2

p1p3 p4

Figure 1: A PDT. A subgraph-DT is marked black.

with the least amount of nodes and/or a PDT where the label
set of each node is as small as possible. Since both parame-
ters are relevant for the “size” of the PDT, defining a formal
optimisation problem is complicated. Also, performing this
optimisation might be infeasible as we can’t construct all
DTs in beforehand.

Given a planning problem P and a heigh bound K, we
can construct a PDT PK using only a single function σ. σ
essentially determines for a node v labelled with a set of
tasks T = α(v) which children it should have and how they
should be labelled in the PDT. Formally σ has the signature
2C∪O → N×(M → N), and returns for every possible label
set of a node of PK , the number of its children, and for every
applicable method the positions of its subtasks. We call such
a function a child arrangement function. The label set of the
ith child must contain a task t, if there is a method for a task
in T , whose jth task is t, s.t. σ will assign the jth task in
the method to the child i. More formally, the set of labels
induced by σ for the ith child is:

Σ(i, σ, T ) = {t | σ(T ) = (n, µ), t ∈ T ,m = (t, tn) ∈M,

µ(m) = (c1, . . . , cn),∃j ∈ {1, . . . , n} : cj = i, tn(j) = t}

Lastly, we can define the PDT induced by a child arrange-
ment σ. To ease the definition, we here assume a slightly
extended HTN formalism, in which we do not have an ini-
tial task, but a set of initial tasks T , from which any can
be chosen arbitrarily. In this construction, we use σ to con-
struct the PDT locally and then recursively expand the tree
until the height-limit K has been reached.

Definition 7. Let P = (L,C,O,M, T , sI) be a planning
problem,K be a height bound, and σ be a child arrangement
function. Then the PDT PσK of height K induced by σ is
defined as follows:

If K = 0, then PσK = (◦, ∅, {(◦, T )}). Else let c be the
number of children determined by σ(T ). Let for every child
i be P ′i = PσK−1 = (Vi, Ei, αi) the PDT of height K − 1
induced by σ, where the set of initial tasks is Σ(i, σ, T ). As-
sume that the vertex-sets of all P ′i are disjunct (else rename
them appropriately). Let ri be the root vertex of each P ′i .
Then PσK = (V,E, α) where

• V = {◦} ∪
⋃c
i=1 Vi

• E = {(◦, (r1, . . . , rc))} ∪
⋃c
i=1Ei

• α = {(◦, T )} ∪
⋃c
i=1 αi

Clearly, the constructed tree is a valid PDT.

Proposition 1. Given a planning problem P and a child
arrangement function σ, PσK is a valid PDT of height K.



The last thing that remains to define is the child arrange-
ment function σ. In our planner, we have used a simple
scheme, were we have set the number of children always to
the size of the largest applicable method. For each method
its subtasks are assigned greedily to the children. We process
the tasks in a method in the order occurring in that method
and assign each task to one of the child nodes. When pro-
cessing a task, we determine the first child node that this
task can be assigned to (the one after the node that the pre-
vious task was assigned to). If that child is already labelled
with the task, we use that child, else we try to use the next
child – if enough children are left.

Translating PDTs into SAT
Based on the PDT PσK we have described in the previous
section, we now construct a SAT formula F(P,K) that is
satisfiable if and only if there is a DT of height ≤ K whose
leafs form an executable sequence of actions. As shown in
Theorem 2, such a DT is essentially a sub-tree G′ of PσK .
In addition, its nodes must be labelled with tasks allowed
by PσK and its nodes must represent correct decompositions.
Lastly, to be a solution the primitive tasks assigned to the
leafs of G′ must form an executable action sequence. The
formula describes such a sub-tree G′ of PσK and will thus
closely resemble the structure of the PDT PσK . To ease the
construction of the clauses expressing executability, we will
enforce that the leafs of G′ are also leafs of PσK . We can
achieve this by adding (as appropriate) new nodes to the
leafs of G′, which simply repeat the primitive task of the
original leaf.

Initially, we separate the formula into two parts: one
FD(P) describing the sub-tree G′ of the PDT, and one
FE(P) describing that the resulting primitive task network
must be executable. The formula will contain subformulae
enforcing that at most one of a set of atoms can be true. As
the naive quadratic exclusion encoding produces to many
clauses, we have employed a binary encoding for all our at-
most-one constraints, which only results in n log n clauses
while introducing log n additional variables (Sinz 2005). We
will denote this construct with M(L) for a set of literals L.
Further, we will not describe the formula in disjunctive nor-
mal form due to readability3.

Every satisfying valuation ofFD(P) has to describe a sin-
gle sub-tree G′ contained in PσK that is a valid DT. We use
the structure of the PDT and define for every node v in the
PDT the formula necessary to represent a (potential) sub-
tree DT rooted at that node. Each node in PσK is uniquely
identified by the path π = (p1, p2, . . . , pi) from the root to
that node, where the path π ◦ i identifies the ith child of the
node identified by π. From here on, we use the path of a
node to denote that node, and write K(π) for the height of
π in PσK .

The function f(π) constructs said formula for each node
π of the PDT PσK . The formula contains the local conditions
necessary for the described sub-tree to be valid DT and the
formulae necessary for all its children. While constructing

3The formula can easily be transformed into DNF, which is re-
quired by most SAT solvers.

the formula, we will use two types of decision variables with
the following meaning:
• tπ – stating that in G′ the node π of PσK is labelled with

the task t, i.e., that αG′(π) = t.
• mπ – stating that inG′ the methodm is chosen to decom-

pose the task αG′(π), i.e., that βG′(π) = m

If for some node π all tπ atoms are false, it is not part of the
described DTG′. Essentially, the sub-treeG′ will be defined
by the nodes of PσK that are assigned a task.

If α(π) only contains primitive tasks or K(π) equals K,
then f(π) returns the formula M({tπ | t ∈ α(π)∩O}), i.e.,
if π is part of G′, then it must be labelled with one primitive
task in α(π). These nodes are the leafs of PσK . If the men-
tioned condition is not true, we are dealing with an actual
inner node of the PDT. If π is not part of G′, then no task
is assigned to it and thus all of its children cannot have a
task assigned to them. Else, if the assigned task is abstract,
a suitable decomposition is chosen, or if it is primitive, then
the primitive task is inherited to the first child. Here we split
f(π) into six sub-formulae as follows:

f(π) = M({tπ | t ∈ α(π)}) ∧ selectMethod(π)

∧ applyMethod(π) ∧ inheritPrimitive(π)

∧ nonePresent(π) ∧ subTree(π)

The first formula again ensures that π receives – if any – a
unique task, as required for a DT. selectMethod ensures that
a decomposition method is chosen if and only if the node
π is assigned an abstract task, and that a single applicable
method for that task is chosen. This also ensures that if a
primitive task is chosen, no method can be applied.

selectedMethod(π) = M({mπ |M(α(π) ∩ C)})∧ ∧
t∈α(π)∩C

tπ →

 ∨
m∈M(t)

mπ

 ∧
 ∧
m∈M(α(t)∩C)

mπ → tπ


The next formula applyMethod states the results of an ap-
plied method. We have to assign each task in a method’s
task network to one of π’s children π ◦ i. This assignment is
determined by the child arrangement function σ, which we
have described in the previous section. To ease notation, we
denote the two values returned by σ(α(π)) as c and µ (the
number of children to produce and the task assignment func-
tion, respectively) and use the function Σ(i, σ, T ) from the
previous chapter, which returns all tasks that can be assigned
to the ith child. The formula itself forces that if a method is
selected for a node, then the correct tasks are assigned to its
children and that all children in PσK that are not assigned a
task cannot contain a task, i.e., are not part of G′.

applyMethod(π) =
∧

m=(t,tn)∈M(α(π))

[
mπ →

|tn|∧
i=1

tn
π◦µ(m)i
i ∧

∧
i∈{1,...,c}\µ(m)

∧
k∈Σ(j,σ,α(π))

¬kπ◦j
]

The next two formulae take care of the cases where the node
π is either assigned a primitive action or none at all. In the



former case it is passed on to one of the children in the tree,
in the latter none of the children can be assigned a task.

inheritPrimitive(π) =∧
p∈α(π)∩O

[
pπ →

pπ◦1 ∧ c∧
i=2

∧
k∈Σ(j,σ,α(π))

¬kπ◦j
]

nonePresent(π) =

 ∧
t∈α(π)

¬tπ
→

 c∧
i=1

∧
t∈Σ(i,σ,α(π))

¬tπ◦i


The formula subTree(π) =
∧c
i=1 f(π ◦ i) is responsible for

the recursive construction of the tree. As the full decomposi-
tion formula FD(P), we choose f(())∧ c()I , i.e., the decom-
position formula for the root and the assertion that the initial
task is contained in G′.

The second part of FE(P ) expresses that the tasks as-
signed to the leafs of G′ form an executable sequence of
actions. We use an adaptation of the formula introduced by
Kautz and Selman (1996) for this purpose. The difference is
that we have to restrict the set of possible actions to the set
α(π) for each task, and to connect the chosen action with the
decomposition formula by using the variables tπ . Let Π =
(π1, . . . , πn) be the leafs of the PDT in their order induced
by PσK . We introduce for every proposition symbol l ∈ L the
decision variable li for 0 ≤ i ≤ n, stating that l is true after
executing the action assigned to πi. Then FE(P ) is defined
as
∧
l∈sI l

0∧
∧
l∈L\sI ¬l

0∧
∧n−1
i=0 (action(i)∧maintain(i))

where

action(i) =
∧

t∈α(πi+1)∩O

tπ →

 ∧
l∈prec(t)

li ∧
∧

l∈add(t)

li+1 ∧
∧

l∈del(t)

¬li+1


maintain(i) =

∧
l∈L

(¬li ∧ li+1)→
∨

t∈α(πi+1)∩O with l∈add(t)

tπ


As a last step in this chapter, we provide a proof sketch

ensuring that the constructed formula is satisfiable iff the
respective planning problem is solvable.

Theorem 3. Let P = (L,C,O,M, cI , sI) be a planning
problem andK a height bound. Then F(P,K) is satisfiable
if and only if P has a solution with a decomposition tree of
height ≤ K.

Proof. ⇒: Let γ be a satisfying valuation of F(P,K). We
can construct a DT G′ = (V,E, α, β) as follows:

• V = {π | ∃t ∈ O ∪ C : tπ is true and for the parent π′ of
π no oπ

′
for o ∈ O is true }

• E(π) = (π ◦ i | ∃t ∈ O ∪ C : tπ◦i is true and π ∈ V ),
sorted by i

• α(π) = t for the one atom tπ that is true – there is at most
one due to the M constraints in the formula

• β(π) = m for the one atom mπ that is true –
selectMethod requires such an atom for all inner nodes
and there is at most one due to the M constraint.

By the assertion of the atom c
()
I , we have α(r) = cI for the

root r of G′. The only thing left to show for G′ is that for
each inner node π, its children are labelled according to the
method β(π). This is ensured by the constraints of the for-
mula applyMethod . Since only the nodes contained in V are
assigned tasks, the sequence of primitive actions in FE(P)
is the same as the leafs of G′. As FE(P) is satisfied, the
sequence of primitive actions induced by G′ is executable.
⇐: Let s be a solution of P and let T be a decomposition

tree for s whose height is at most K. By Theorem 2 there
exists a sub-tree G′ of PσK that is isomorphic to T and fulfils
the criterion in Definition 6. Using G′, we can construct a
satisfying valuation of F(P,K) as follows:

• tπ is true iff π ∈ G′ and the node v of T that is isomorphic
to π is labelled with t, i.e., αT (v) = t, or if t is primitive
and a predecessor π′ of π whose isomorphic partner v in
G′ is labelled with t such that π is reachable from π only
through first children.

• mπ is true iff π ∈ G′ and the node v of T that is isomor-
phic to π is decomposed using m, i.e., βT (v) = m.

• li if l is true after executing i actions of s.

At most a single tπ and mπ is true for all nodes π. If tπ
is true for some abstract task t, then a suitable method atom
mπ is also true, as π must be an inner node ofG′ and π has a
correct β-label. Also, if t is primitive no method is selected,
as π is a leaf of G′. Since G′ is a valid DT, the constraints
in applyMethod are also satisfied (by the fourth point of a
DT’s definition). By the or-clause of the first bullet point,
we also ensure that inheritPrimitive is satisfied. As G′ is a
tree nonePresent is satisfied. Lastly, since s is a solution, it
executable and so FE(P) is satisfied.

Evaluation
To show that our HTN planner totSAT performs well in prac-
tice, we have conducted the following empirical evaluation.
Our implementation of totSAT uses the parser and prepro-
cessor of the planning system PANDA (Bercher, Keen, and
Biundo 2014). We will release the code of totSAT publicly.

Domains. We have taken four commonly used HTN
benchmark domains (UM-Translog, Woodworking, Satel-
lite, and SmartPhone) from Bercher, Keen, and Bi-
undo (2014). Since we have seen that our planner solves all
these instances rather quickly, we have also added three new
combinatorially more difficult domains.
ENTERTAINMENT is based on the non-hierarchical Assem-
bly domain (Bercher et al. 2014), which describes setting up
HiFi and video devices that can be connected with differ-
ent types of cables. The goal is to connect the devices s.t.
all available signals are transmitted to the appropriate signal
sinks (e.g. TVs). The original domain is rather restrictive,
e.g., cables can only be inserted if one of the connected de-
vices already has a signal and unplugging cables is not pos-
sible. Our domain uses the additional expressivity of HTN
planning to lift these two restrictions.
ROVER is the HTN-structure developed for SHOP together
with the problem instances of the IPC3 domain ROVER.



min max average media
Variables 61 331132 18335 1627
Literals per clause 1.993 12.82 2.5 2.2
Horn clauses 83.8% 98.7% 91.4% 91.9%
Assertional clauses 0.0005% 5.63% 0.6% 0.2%

Table 1: Statistical data on all SAT formulae gener-
ated during planning. Percentages are given as av-
erage percentages over all formulae. Horn clauses
are those containing exactly one positive literal.
Assertional clauses are those containing only one
literal.

min max avg min % max % avg %
SHOP vs optimal 0 5 +0.37 0% +41% 3.2%
HTN2STRIPS vs optimal 0 1 +0.4 0% +10% +0.3%
TDGc vs optimal 0 0 0 0% 0% 0%
TDGm vs optimal 0 3 +0.14 0% +25% 1.4%
totSAT vs optimal 0 9 0.58 0% +90% 5.4%

totSAT vs SHOP -17 20 +0.79 -53.8% +90% +0.79%
totSAT vs HTN2STRIPS -2 +58 +5.48 -9.1 % +287% +36.9%

Table 2: Relative sizes of solutions. Given are statistics for the differ-
ence in number of actions. The first part of the table shows the compar-
ison against known optimal solutions, computed using Dijkstra’s Algo-
rithm (Dijkstra 1959). The second part of the table shows the relative
comparison of planners solving instances the optimal plan is unknown.

TRANSPORT is a domain describing a standard deliver-with-
trucks scenario. There are several trucks (which do not need
fuel) to deliver packages from their start location to a desti-
nation in a road network.

For UM-TRANSLOG, WOODWORKING, SATELLITE,
and SMARTPHONE, we have added ordering constraints to
ensure that the domains are totally-ordered. For all these do-
mains solvability was retained by this change. ENTERTAIN-
MENT, ROVER and TRANSPORT were constructed s.t. the
domains are already totally-ordered. We will release these
domains publicly.

Planners. Each planner was given 10 minutes runtime
and 4 GB of RAM per instance on an Intel Xeon E5-2660.

We compare totSAT against two types of planning ap-
proaches: Those specifically designed for totally-ordered
domains and those capable of handling unrestricted
HTN planning problems. The first category consists of
the planning strategies SHOP (Nau et al. 1999) and
HTN2STRIPS (Alford et al. 2016a). We have compared
us against both the original implementation of SHOP2
and the re-implementation of SHOP recently added to
PANDA. Note that SHOP was originally developed for
totally-ordered domains and SHOP2 is its extension to par-
tial order, i.e., using SHOP2 on totally-ordered instances
will lead to the behaviour described in the original SHOP-
paper. HTN2STRIPS is based on a translation of HTN plan-
ing problems into classical planning (Alford et al. 2016a).
This planner needs – similar to totSAT – a bound K for the
translation, for which both a lower and an upper bound can
be computed (Alford et al. 2016a). Given a time-bound t,
the procedure of the planner is: run the classical planner (we
used jasper (Xie, Müller, and Holte 2014), as did the origi-
nal paper) on bound K with a timelimit of t minutes. If no
solution was found, increment K and repeat. If the planner
reached K’s upper bound, we let it run until the total time-
limit. We tried all possible values for t and found that the
coverage of the planner is highest for t = 3min.

The second group of planners consists of general HTN
planning techniques. All of them are based on plan-space
search – in contrast to SHOP (using progression) and
HTN2STRIPS. We have used the two currently best know
heuristics for plan-based search in HTN planning (TDGc
and TDGm, with and without recomputing (PR) (Bercher

et al. 2017)) implemented in PANDA using Greedy-A∗ with
a weight of 2. We also included the strategies DFS, BFS, and
Dijkstra provided by PANDA, as well as its emulation of the
UMCP planner (Erol, Hendler, and Nau 1994). Lastly, we
also included the planner FAPE (Dvorak et al. 2014). How-
ever it does not accept all instances as input, as it cannot
handle recursion in the domain. As such, we ran it only on
the domains SATELLITE, WOODWORKING, and ROVER.

We have tested four SAT solvers for totSAT. Three of
them are top performers at the SAT Competition 2016:
cryptominisat5 (Soos 2016), MapleCOMSPS (Liang et al.
2016), and Riss6 (Manthey, Stephan, and Werner 2016).
The fourth solver is standard unmodified minisat. Similar
to HTN2STRIPS, totSAT has to try several values for the
bound K in order to find a solution to the planning problem.
The first value of K used by totSAT is the lowest height
needed to reach a primitive task network. We then construct
F(P,K) and pass it to the SAT-solver. We have always set
the timeout of the solver to the remaining runtime. Learnt
clauses are not reused if the bound K is increased.

Discussion. In Table 1 we present statistical data on the
generated SAT formulae. We can see that in all instances, the
size of the formula is moderately large (never above 4 ·105).
Also, most clauses of the formulae are horn – which are al-
gorithmically easier to handle for a SAT solver. From this
data we assume that the formulae are structurally relatively
simple, which is wilful by construction. We think that our
encoding actually exposes structural information about the
domain in a way that is useful to the solvers.

Table 3 shows the overall coverage of all evaluated plan-
ners. We can see that totSAT solves – depending on the SAT
solver – 123 to 125 of the 127 benchmark instances. For all
domains except transport, totSAT solves all instances, while
only two transport instances (#29 and #30) cannot be solved
in time. Even using the simple SAT-solver minisat, only thee
instance remain unsolved. totSAT would solve both these in-
stance with 30 minute timelimit. Further we can see that the
planners which are specifically designed for totally-ordered
domains have a higher coverage than general HTN planner.
This is expected, as they can exploit this special property
during search. However, it is extremely surprising that the
SHOP-strategy – which is a blind depth-first progression-
search – outperforms the best known heuristic HTN plan-
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UM-TRANSLOG 22 22 22 22 22 22 22 18 22 22 22 22 22 0 22 22 22
SATELLITE 25 25 25 25 25 25 25 23 24 25 24 25 25 25 24 18 20
WOODWORKING 11 11 11 11 11 11 10 5 6 9 6 9 9 0 6 6 6
SMARTPHONE 7 7 7 7 7 5 4 6 4 4 4 5 6 0 4 4 4
ENTERTAINMENT 12 12 12 12 12 9 5 5 5 5 5 9 9 0 5 5 6
ROVER 20 20 20 20 20 18 16 5 0 3 0 2 2 15 0 0 0
TRANSPORT 30 28 27 26 27 2 0 20 1 0 1 2 1 0 1 0 1
total 127 125 124 123 124 92 82 82 62 68 62 74 74 40 62 55 59

Table 3: Number of solved instances per planner per domain. Maxima are indicated in bold. cms = cryptominisat5

ners significantly. UM-Translog and Satellite are solved by
practically every planner, i.e., we might suggest to remove
these two from future benchmarks.

When looking at the new domains transport and rover
we can clearly see the different advantages of SHOP and
HTN2STRIPS on these domains. While SHOP is able to ex-
ploit the structure of the HTN in the rover domain, it can-
not solve the combinatoric problem in transport. In contrast,
HTN2STRIPS can solve transport easier, but struggles to
utilise the information encoded in the rover domain. totSAT
can solve both domains, showing that it combines the abil-
ity to solve combinatorially hard problems with the ability
to exploit the HTN hierarchy. Especially the general HTN
planners perform worse on these domains, showing the need
for the development of better informed heuristics for HTN
planning. This becomes even more obvious if we compare
these heuristics with blind BFS – it outperforms them all.

Figure 2 shows the number of solved instances as a func-
tion of time. The choice of the SAT-solver seems to be unim-
portant, as all three show almost the same behaviour. We
also see that totSAT solves more instances than all other ap-
proaches starting roughly after 4 seconds of runtime. Over
all instances, totSAT calls the SAT-solver 3.71 (media 4)
times, with a maximum of 8 calls before either a solution
is found or the timeout is reached.

Lastly, although we did not aim for optimal planning, we
have also evaluated the relatives quality of solutions in terms
of their length. The results are shown in Table 2. totSAT
tends to produce longer solutions, as it is allowed by the
formula to assign tasks to all leafs. However, we think that it
would be possible to create an optimal planner based on our
encoding.

Conclusion
We have presented a new planning technique for HTN plan-
ning – SAT-based HTN planning. It is based on a transla-
tion of decomposition height bounded totally-ordered HTN
planning problems into a SAT formula. This way, a plan-
ning problem can be solved by iteratively increasing this
bound. We have evaluated it against state-of-the-art HTN
planning systems and have shown that it outperforms all of

Figure 2: Runtime vs number of solved instances per planner

them. The presented technique solves totally-ordered HTN
planning problems – which are occurring naturally in prac-
tice. In view of our results, extending totSAT to partially or-
dered domains is the natural next step to further improve the
performance of HTN planning. Furthermore, the presented
SAT-encoding seems to be well suited as the basis for al-
lowing additional constraints during planning. This occurs
often in so-called mixed-initiative planning systems where
users influence the plan generation process (Nothdurft et al.
2015). This integration can, e.g., be achieved by enabling
the planner to process certain requests to change a current
plan (Behnke et al. 2016), which could be transformed into
additional SAT formulae.
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Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An admissible HTN planning heuristic. In Proc. of IJCAI
2017.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In Proc. of
SoCS 2014.
Bit-Monnot, A.; Smith, D. E.; and Do, M. 2016. Delete-free
reachability analysis for temporal and hierarchical planning.
In Proc. of HSDIP 2016.
Byrne, R. 1977. Planning meals: Problem solving on a real
data-base. Cognition 5:287–332.
Champandard, A.; Verweij, T.; and Straatman, R. 2009. The
AI for Killzone 2’s multiplayer bots. In Proc. of Game De-
velopers Conference.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1(1):269–271.
Dix, J.; Kuter, U.; and Nau, D. 2003. Planning in answer set
programming using ordered task decomposition. In Proc. of
KI 2003.

Dvorak, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014. A flexible ANML actor and planner in robotics. In
Proc. of PlanRob 2014.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. UMCP: A
sound and complete procedure for hierarchical task-network
planning. In Proc. of AIPS 1994.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity results for HTN planning. Annals of Mathematics and
Artificial Intelligence 18(1).
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proc. of IJCAI 2011.
Hartanto, R., and Hertzberg, J. 2008. Fusing DL reasoning
with HTN planning. In Proc. of KI 2008.
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