
Automated Invariant Generation for the Verification
of Real-Time Systems

Bahareh Badban
Department of Computer and Information Science

University of Konstanz, Germany

Stefan Leue
Department of Computer and Information Science

University of Konstanz, Germany

Jan-Georg Smaus∗

Institut für Informatik
University of Freiburg, Germany

Abstract

We present an approach to automatically generating invariants for timed au-
tomata models. TheCIPM algorithm that we propose first computes new in-
variants for timed automata control locations taking theiroriginally defined in-
variants as well as the constrains on clock variables imposed by incoming state
transitions into account. In doing so theCIPM algorithm also prunes idle tran-
sitions, which are transitions that can never be taken, fromthe automaton. We
discsuss a prototype implementation of theCIPM algorithm as well as some ini-
tial experimental results.

1 Introduction

Predicate abstractionis an instance of the general theory of abstract interpretation [6].
It is a technique for generating finite abstract models of large or infinite state systems.
This technique involves abstracting a concrete transitionsystem using a set of formu-
las calledpredicates. Predicates usually denote some state properties of the concrete
system. The predicate abstraction is conservative in the sense that if a property holds
on the abstract system, there will be a concretization of theproperty that holds on the
concrete system as well. Abstraction is defined by the value (true or false) of the pred-
icates in any concrete state of the system [18]. This technique was first introduced by
Graf and Saı̈di [10] as a method for automatically determining invariant properties of
infinite-state systems. As mentioned above, the idea of predicate abstraction is to gen-
erate afinite stateabstraction of the system with respect to a finite set of predicates,
which are mostly provided by the users themselves. Such an abstraction will have
at most 2‖P‖ distinct states for a total number‖P‖ of predicates [16]. There are two
obstacles to the practical use of the predicate abstractionapproach:

1. The initial abstraction isnot fine enough, and hence it is too abstract to be able
to verify any property of the concrete model. In such a case the method relies
on counter examples or proofs in the overall verification process to refine the
abstraction [5], and as it is stated by Lahiri, et.al. in [15]:

∗The work of this author was partially funded by the German Research Council (DFG) through the
Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB TR14/AVACS).

1

”It is not clear if it is always preferable to compute the abstraction
incrementally. But, we have observed that the refinement loop can
often become the main bottleneck in these techniques (e.g. SLAM),
and limits the scalability of the overall system.”

2. The other obstacle is that the abstraction works with the predicates that arepro-
vided by the user. Hence, this method relies on the user’s understanding of the
system and on a trial-and-error process [15]. This phenomenon has been pointed
out by Das and Dill in [7]:

”Another problem is how to discover the appropriate set of predi-
cates. In much of the work on predicate abstraction, the predicates
were assumed to be given by the user, or they were extracted syntacti-
cally from the system description. It is obviously difficultfor the user
to find the right set of predicates (indeed, it is trial-and-error process
involving inspecting failed proofs), and the predicates appearing in
the system description are rarely sufficient. There has beenless work
and less progress, on solving the problem of finding the rightset of
predicates. In addition [...] there is a challenge of avoiding irrelevant
predicates [...]”

The purpose of our work is to provide support for an automatedpredicate abstrac-
tion technique for dense real-time models according to the timed automaton model
of [1] by generating a more useful set of predicates than a manual, ad-hoc process
would be able to provide. We analyze the behaviour of the system under verification
to discover its local state invariants. During this analysis we remove idle transitions
which are transitions that can never be traversed. We plan toincorporate the generated
invariants into the abstraction phase of a counterexample guided abstraction refine-
ment method for timed automata by using them as theinitial set of predicatesthat is
used to define an initial abstraction of the concrete model.

Related Work. How to discover predicates for use in the abstraction of realtime
system models has been widely discussed in the literature. Colón and Uribe [5] intro-
duce an interactive method for predicate abstraction of real-time systems where a set
of predicates calledbasisis provided by the user. As mentioned in the paper itself, this
way the choice of abstraction basis is based on the user’s understanding of the system.
Therefore, generation of a suitable abstraction basis relies on trial-and-error. Möller et.
al. in [21] introduce a method which is based on identifying aset of predicates that is
fine enough to distinguish between any two clock regions and which creates a strongly
preserving abstraction of the system. Refinement of the abstraction is accomplished
using an analysis of the spuriousness of counter examples. Also in [7] Das and Dill
use the spurious trace in discovering predicates for the predicate abstraction. Das et.
al. in [8] introduceMorφ−− which is a prototype for the verification of invariants in
predicate abstraction. McMillan et. al. in [14, 19] and Henzinger, et. al. in [11] use in-
terpolation to detect feasibility of the abstract trace andalso to extract predicates from
the proof for use in the abstraction. McMillan and Amla [20] introduce a proof-based
automatic abstraction. The slicing approach of [13, 23] is arecent method with the

2

same intention of reducing the state space of timed automatamodels. However, it is
based on static analysis and not on a semantic interpretation of the automaton structure.

Another direction of research in the field of predicate abstraction addresses sym-
bolic techniques. In this method a decision procedure takesa set of predicatesP and
symbolically executes a decision procedure on all the subsets overP. This results in
a directed graph which represents the answer to a predicate abstraction query. The
method aims at reducing the number of decision procedure calls since this number of-
ten tends to be extremely large [15]. In the first step, the first-order formula is encoded
into some equi-satisfiable Boolean formula, and in the next step it is verified using a
SAT solver. Examples of different symbolic methods are in [18, 15, 17, 16].

In [12] Hoffmann et. al. use the technique of predicate abstraction in order to obtain
search heuristics to be used in directed model checking of safety properties. In [2] Ball
et. al. introduce an abstraction method based on oracle-guided widening. In most cases
the widening is such that it simply drops a variable from the rest of the computations
of the pre-states.

Structure of the Paper. The paper is organized as follows. Section 2 provides some
preliminary definitions on real-time automata. The semantics of timed automata and
their possible transitions are discussed in section 2.1. Section 3 introduces our method
of creating new invariants. The respective algorithm, called CIPM, is explained in
Section 3.1. In Section 3.2 we illustrate the algorithm by anexample which is used by
Möller et. al. in [21]. Section 4 describes an initial implementation of our approach.
Finally, Section 5 presents concluding remarks and discusses future work.

2 Preliminary Definitions

In this section we reiterate the classical definition of timed automata according to [4,
1]. Additional concepts and notations which will be used throughout the paper are also
introduced in this section.

A timed automatonconsists of a finite state automaton together with a finite set
of clocks. Clocks are non-negative real valued variables which keep track of thetime
elapsed since the last reset operation performed on the respective clock. The finite state
automaton describes the systemcontrol states and its transitions. Initially, all clocks
are set to 0. All clocks evolve at the same speed. Aconfigurationsof the system is
given by the current control location of the automaton and the value of each clock,
denoted〈l ,u〉, wherel is the control location andu is the valuation function which
assigns to each clock its current value.u+d, for d∈R

+1, is a valuation which assigns
to each clockx the valueu(x)+d, i.e., it increases the value of all clocks byd. G(X)
denotes the set ofclock constraints gfor a setX of clock variables. Eachg is of the
form

g := x≤ t | t ≤ x | ¬g | g1∧g2

wherex∈X, andt, calledterm, is either a variable inX or a constant inR+. By var(g)
we denote the set of all clock variables appearing ing. A timed automaton is then
formally defined as follows:

1
R

+ is the set of all non-negative reals, including 0.

3

Definition 1. A timed automatonA is a tuple〈L, l0,Σ,X,I ,E〉 where

• L is a finite set of locations (or states), calledcontrol locations,

• l0 ∈ L is the initial location,

• Σ is a finite set of labels, calledevents,

• X is a finite set of clocks,

• I : L 7→ G(X) assigns to each location in L some clock constraint inG(X),

• E ⊂ L×Σ×2X ×G(X)×L representsdiscretetransitions.

The clock constraint associated with each locationl ∈ L is called itsinvariant,
denotedI (l). We later refer to these invariants as theoriginal invariants. It requires
that time can pass in a control location only as long as its corresponding invariant
remainstrue. In other words,I (l) must hold whenever the current state isl .

We call a constraintg atomicif there exist two termssandt such thatg is equivalent
to s≤ t, t ≤ sor their negation2. With each clock constraintg, we associate a set of its
atomic sub-formulas,atom(g), defined as:

• atom(g) := {g} wheng is atomic,

• atom(g1∧g2) := atom(g1)∪ atom(g2).

Reset constraintsare conjunctions of (one or more) formulas of the formx := cwherec
is a constant inR+. We similarly define the application ofatom over reset constraints,
e.g.atom(x := 3∧y := 0) ≡ {x := 3, y := 0}. An atomic constraint is calledbounded
if it is of the formx≺ c, wherec is a constant value and≺∈{=,<,≤}. g is unbounded
if it is not bounded. For example,x≤ y andx > 2 are unbounded. We define a set of
unbounded constraints in a setA of constraints as:un(A) := {a∈ A | a is unbounded}.

We say a valuationu satisfies g, denotedu |= g, if the assigned value to all variables
in g by u satisfiesg. For example ifg := x+1> y∧x< 5, andu(x) = 4.1 andu(y) = 3,
thenu |= g. We considertrue as a valid proposition which is satisfied by each valuation,
i.e. u |= true for eachu. For a setA, u |= A if u |= a for eacha ∈ A. Given two
constraintsg andg′, g entailsg′, denotedg⇒ g′, if for any valuationu, u |= g′ if u |= g.
For instance,x≥ 3⇒ x > 2. Based on this, we define a functionjoin3 as:

join(g,g′) :=























g′ if g⇒ g′

g if g′ ⇒ g

true if ¬g⇒ g′ or equivalently,¬g′ ⇒ g

g∨g′ otherwise

(1)

Intuitively, given any two constraintsg andg′, join(g,g′) is equivalent to the weaker
one. We further extended this definition over sets:

join(A,B) :=
∨

(a,b)∈A|B

join(a,b)

2The negation oft ≤ s is s< t.
3This operation is calledstrong joinin [22].

4

whereA|B := {(a,b) | a∈ A, b∈ B andvar(a) = var(b)}. For example, ifA = {x <
y,x > 2} andB = {x < 3} thenA|B = {(x > 2,x < 3)} and hence,join({x < y,x >
2},{x < 3}) = join(x > 2,x < 3) = true, sincex≥ 3⇒ x > 2.

In a timed automaton the values of all clocks evolve at the same speed. Therefore,
if at time t0, x has the value ofx0 then after∆t time units the value ofx will be x0+∆t.
This fact leads us to the next property:

Note 1. In a timed automatonA , if at some point of time (e.g.t0) a relation likex≺ y
where≺∈ {=,<,≤} holds between two clock variablesx andy then this relation will
be preserved until one of the variables is reset. This is becausex(t) = x+∆t ≺ y+∆t =
y(t), where∆t computes the time elapsed as oft0.

Lemma 1. If u |= g for a valuation u and someunboundedatomic constraint g, then
u+ d |= g for any d∈R

+. This can be extended to any set of unbounded atomic con-
straints, too.

Proof. If g is of the formx≥ c or x > c, then proof is obvious. For other constraints
g, by Note 1,u+d |= g (d is the∆t). By definition this property also extends to sets of
unbounded atomic constraints.

Lemma 2. For each two atomic constraints g and g′, and sets A and B of atomic
constraints, we have:

1. g⇒ join(g,g′) and g′ ⇒ join(g,g′).

2. if u |= g for some valuation u, then u|= join(g,g′).

3. if u |= A (or u |= B) for some valuation u, then u|= join(A,B).

Proof. The proofs of these properties can be sketched as follows:

1. This is obvious according to the definition ofjoin.

2. By the definition ofjoin the statement 2 is equivalent to statement 1.

3. u |= A, hence by definition,u |= a for all a ∈ A. Therefore, according to the
second item, for alla∈ A andb∈ B, u |= join(a,b). Hence, by definition,u |=
join(A,B). This holds, analogously, for whenu |= B.

2.1 Semantics

We associate a transition systemSA with each timed automatonA 4. States ofSA

are pairs〈l ,u〉, wherel ∈ L is a control location ofA andu is a valuation overX which
satisfiesI (l), i.e. u |= I (l). 〈l0,u〉 is aninitial state ofSA if l0 is the initial location
of A and for allx∈ X: u(x) = 0.

4We work with nondeterministic timed automata.

5

Transitions. For each transition systemSA the system configuration changes by
two kinds of transitions:

• Delay transitionsallow timed∈R
+ to elapse. The value of all clocks is increased

by d leading to the transition〈l ,u〉
d
7→ 〈l ,u+ d〉. This transition can take place

only when the invariant of locationl is satisfied along the transition.

• Discrete transitionenabling a transition (c.f. Definition 1)5. In this case all
clocks, except those which are reset, remain unchanged. This results in the
transitionτ := 〈l ,u〉

a,g,r
7→ 〈l ′,u′〉 wherea is an event,g is a clock constraint andr

is a reset constraint (c.f. Definition 1).

An executionof a system is a possibly infinite sequence of configurations〈l ,u〉
where each pair of two consecutive configurations corresponds to either a discrete or a
delay transition.

In the sequel,τ andd denote discrete and delay transitions, respectively. We may
denote a discrete transitionτ as 〈l ,u〉

τ
7→ 〈l ′,u′〉 whena,g, r do not need to be clar-

ified. For eachτ := 〈l ,u〉
a,g,r
7→ 〈l ′,u′〉, we defineGτ := atom(g) andRτ := atom(r).

For this transition,l and l ′ are called source ofτ , denotedsorc(τ), and target ofτ ,
denotedtar(τ), respectively.Gτ/Rτ (respectivelyI (sorc(τ))/Rτ) represents the set of
all atomic constraints inGτ (respectivelyI (sorc(τ))) which do not have a variable

occurring inRτ . For instance, ifτ := 〈l ,u〉
x≤y∧z<x+1, z:=0

7→ 〈l ′,u′〉, thenGτ = {x ≤
y, z< x+1}, Rτ = {z := 0} andGτ/Rτ = {x≤ y}. In this example,zoccurs inRτ . For
this transition ifI (l) = {y < 2,z> 4} thenI (sorc(τ))/Rτ = {y < 2}.

For each discrete transitionτ we define:

inv(τ) := un(Gτ/Rτ) ∪ un(I (sorc(τ))/Rτ) ∪ atom(Rτ)

whereatom(Rτ) =
⋃

r∈atom(Rτ) r , and

x := c =

{

{x≤ y | y∈ X−{x}} if c = 0

{x≥ c}∪{x≤ y+c | y∈ X−{x}} if c > 0

We will later show in Theorem 3 thatinv(τ) is a set of constraints that are preserved in
tar(τ). Below, in the next lemma, we prove this for when we have just entered a state

and before any time elapses. For the example above,τ := 〈l ,u〉
x≤y∧z<x+1, z:=0

7→ 〈l ′,u′〉,
inv(τ) = un({x≤ y}) ∪ un({y < 2}) ∪ z := 0= {x≤ y} ∪ /0 ∪ {z≤ x,z≤ y} = {x≤
y,z≤ x,z≤ y}. Here,X = {x,y,z}.

Lemma 3. For each discrete transition〈l ,u〉
τ
7→ 〈l ′,u′〉, we have u′ |= inv(τ).

Proof. Clock variables are reset iff they occur inRτ . Hence, those variables which
do not occur inRτ retain their value when the transitionτ is occurring. These are
variables which belong toGτ/Rτ . Therefore,u′ |= Gτ/Rτ , and sinceGτ/Rτ ⊆

un(Gτ/Rτ),
u′ |= un(Gτ/Rτ). The same reasoning applies toun(I (sorc(τ))/Rτ). Sinceu′ has some
new values for the reset variables inr it holds thatu′ |= r right at the time of the
occurrence of the transition (notice that no time has elapsed yet). Therefore,u′ |=
atom(Rτ). Summing these up results inu′ |= inv(τ).

5A transitions isenabledif it can be traversed from the source control location.

6

Definition 2. For each control location l, we define a set of incoming discrete transi-
tions, intrans(l ,A), and a set of outgoing discrete transitions,outtrans(l ,A) as:

intrans(l ,A) := {τ | ∃l i,ui ,u : 〈l i,ui〉
τ
7→ 〈l ,u〉}

outtrans(l ,A) := {τ | ∃l ′,u′,u : 〈l ,u〉
τ
7→ 〈l ′,u′〉}

Notice that this definition relies exclusively on discrete transitions. Since only a
finite number of such transitions exists these two sets are well-defined.

We now define areduction system. This system simplifies the (disjunction of)
clock constraints. The intuition is that any valuation function u satisfies the left hand-
side of the reduction step (denoted by−→) if and only if it also satisfies the right-hand
side.

Definition 3 (Reduction System). We apply the following reduction rules on disjunc-
tion of constraints,φ . Here, s and t are terms.

1. s< t ∨s= t −→ s≤ t

2. s< t ∨s> t −→ s 6= t

φ is calledsimplifiedif none of the rules above are applicable on it. We apply the
reduction rulesof Definition 3 onφ as long as they can be applied, which means that
the result of the application is not identical to the constraint itself. When the reduction
process terminates, we call the resultsimp(φ). Obviously,simp(φ) is simplified.

Lemma 4. If u |= φ then u|= simp(φ), for each valuation u.

Proof. If φ −→ ψ with any of the reduction rules, then obviouslyu |= ψ . Therefore,
u |= simp(φ) as well.

In the next section we introduce an automatic approach to creating new invariants
and to reducing the size of the model by pruning away those transitions which can
never be traversed and which hence have no impact on a reachability analysis of the
model.

3 Creating New Invariants

In this section we present theCIPM algorithm which strengthens the given original
invariants in each control location by analysing the incoming discrete transitions to
that specific control location.

3.1 The Algorithm

The input of Algorithm 1 is a timed automaton. Without loss ofgenerality we assume
that each location is assigned a separate index between 0 and‖A ‖−1, e.g.l1, where
‖A ‖ is the number of control locations inA .

Before explaining the algorithm we introduce the notion of idleness of a transition
which expresses that a transition will never be enabled.

7

Definition 4. A discrete transitionτ : 〈l ,u〉 7→ 〈l ′,u′〉 is called idle if it can never be
enabled.

Amongst other reasons, a transition can be idle when the constraint over the tran-
sition is never being satisfied or the valuation function obtained from the transition
does not satisfy the invariant of the target location (i.e.,u′¬ |= I (l ′)). For instance, if

τ is the discrete transition〈l ,u〉
x≤y
7→ 〈l ′,u′〉, wherex > y+ 3 is invariant in locationl ,

i.e. I (l) = {x > y+ 3}, then this transition is idle since the constraintx≤ y is never
fulfilled as long as we are inl .

The CIPM algorithm first collects the setI (l i) of all the original invariants in
each locationl i. It then selects each locationl i and collects its incoming transitions
in intrans(l i ,A). The idle transitions within that set are detected using Lemma 5 and
are deleted from the model. For each non-idleτ in intrans(l i ,A) the algorithm next
computesinv(τ). It thereby extracts all constraints that are propagated tolocation l i
when executing transitionτ . Applying join to all propagated constraints yieldsinv(l i)
which defines the full set of constraints that are imposed onl i by all of the transitions in
intrans(l i ,A). Sincel i may also have some original invariant,I (l i) is the conjunction
of the original invariant and all of the previously computedimposed constraints on
l i . This is expressed in the algorithm byIA (l i) := I (l i)∧ simp(inv(l i)). Computing
IA (l i) may render some of the outgoing transitions ofl i idle. Therefore, the algorithm
next checks all outgoing transitions ofl i for idleness again using Lemma 5 (1st item).
It then removes all transitions detected as being idle. The set seen stores the traversed
transitions. It is used to ensure that all transitions are checked for being idle only once.

In Algorithm 1, we use conjunction of sets, which is defined as: A∧B :=
∧

1≤i≤n ai∧
∧

1≤ j≤mb j for A = {a1, ...an} andB = {b1, ...bm}
6.

Lemma 5. A discrete transitionτ is idle when either of the conditions below, holds:

• I (sorc(τ))∧Gτ is a contradiction,

• inv(τ)∧I (tar(τ)) is a contradiction.

Proof. • I (sorc(τ)) holds as long as the current location issorc(τ). At this lo-
cation,τ is enabled only whenGτ holds. If this occurs thenI (sorc(τ))∧Gτ
holds. By assumption, this can never happen.

• By Lemma 3, if 〈l ,u〉
τ
7→ 〈l i ,ui〉 is enabled thenui |= inv(τ). By definition,

ui |= I (tar(τ)) too. Therefore,ui |= inv(τ)∧I (tar(τ)). This contradicts the
assumption. So,τ is never enabled.

We say two timed automataA andA1 areequivalent, denotedA =̇A1, if they
differ only on some idle transitions.

Theorem 1. TheCIPM algorithm has the following properties:

• it is terminating,

• if CIPM(A1) = (A ,IA) thenA =̇A1, and

6A∧ /0 and /0∧A are equivalent toA.

8

Algorithm 1 Creating Invariants and Pruning the Model (CIPM)
REQUIRES: a timed automatonA

n := ‖A ‖ %% the number of control locations inA
X := the set of all clock variables occurred inA
i := 0, j := 0, seen := /0
repeat

I (l j) := the given (original) invariant ofl j

j := j +1
until j < n
repeat

if i = 0 then
inv(l i) := {x = y | x,y∈ X wherex andy are not identical}

else
inv(l i) := /0

k := 0, In := intrans(l i ,A)
if In = /0∧ i > 0 then

A := A \outtrans(l i ,A)
else

while In 6= /0 ∧ (k = 0∨ inv(l i) 6= /0) do
chooseτ ∈ In

In := In\{τ}
if τ /∈ seen then

if I (sorc(τ))∧Gτ is a contradictionthen
A := A \{τ} %% the idle transition

else
seen := seen∪{τ}

inv(τ) := un(Gτ/Rτ) ∪ un(I (sorc(τ))/Rτ) ∪ atom(Rτ)
if inv(τ)∧I (l i) is a contradictionthen

A := A \{τ} %% the idle transition
else

k := k+1
if k = 1 then

inv(l i) := inv(τ)
else

inv(l i) := join(inv(l i), inv(τ))
I (l i) := I (l i)∧ simp(inv(l i))
Out := outtrans(l i)
while Out 6≡ /0 do

chooseτ ∈ Out

Out := Out\{τ}
if τ /∈ seen then

if I (l i)∧Gτ is a contradictionthen
A := A \{τ} %% the idle transition

else
seen := seen∪{τ}

i := i +1
until i < n
IA := {l i 7→ I (l i)}
return (A ,IA) 9

• for each control location l,inv(l) consists of only unbounded constraints.

Proof. • In timed automata, the number of control locations (‖A ‖) is a finite
number, sayn. Hence, the first tworepeat loops halt aftern steps. Besides,
each timed automaton consists of a finite automaton which describes the system
control states and its transitions. Hence, each control location has only a finite
number of incoming and outgoing discrete transitions. Thus, the other twowhile
loops will also stop after a finite number of steps.

• According to Lemma 5 and the algorithmA is updated only by removing some
idle transitions. Therefore, the output automaton will be either the exact same
automaton, or it will be an automaton with a smaller number ofidle transitions.

• The above argument can be easily derived from the definition of inv(τ) and the
definition of inv(l) in the algorithm.

Note 2. SinceA =̇A1 according to the previous theorem, in the sequel we may useA

andA1 interchangeably.

The new constraintIA (l) implies the original invariantI (l) and moreover it
extracts a stronger clock constraint which should hold as long as we stay inl . We
prove this in the next two theorems.

Theorem 2. If CIPM(A1) = (A ,IA), thenIA (l) ⇒ I (l) for each control location
l in A , whereI (l) is the original invariant of l inA1.

Proof. IA (l) = I (l)∧ simp(inv(l)). According to the definition of⇒, we need to
show that ifu |= I (l)∧ simp(inv(l)) then u |= I (l), for any valuation functionu.
Let I (l) = {a1, ...an} and simp(inv(l)) = {b1, ...bm}. Therefore,u |=

∧

1≤i≤nai ∧
∧

1≤ j≤mb j , and hence, for each 1≤ i ≤ n, u |= ai . By definition, this means that
u |= I (l).

The next theorem shows thatIA associates with each control locationl a set of
new invariants.

Theorem 3. If CIPM(A1) = (A ,IA), then u|= IA (l), for each reachable configu-
ration 〈l ,u〉 in SA 1. In other words,IA (l) is invariant in l.

Proof. SinceIA (l)= I (l)∧simp(inv(l)), we need to prove thatu |= I (l)∧simp(inv(l))
whereI (l) is the original given invariant of locationl (cf. Definition 1). To this end,
we show thatu |= I (l) andu |= simp(inv(l)). The first part holds by definition. For
the second part, by Lemma 4 we only need to prove thatu |= inv(l). We split the
proof into two steps according to whether〈l ,u〉 is reached by a discrete transitionτ or
whether it is reached by a delay transitiond.

• Assume that〈l ,u〉 is reached by a discrete transitionτ (i.e. ...
τ
7→ 〈l ,u〉). Then

u |= inv(τ) by Lemma 3. Hence,u |= join(inv(l), inv(τ)) by Lemma 2 (2nd
item). This, according to the algorithm, is the updated value of inv(l). Therefore,
u |= inv(l).

10

x := 0

y≤ 1

y < x
l1

l0

l2

y > xx:=0y := 0

Figure 1:A . In this timed automaton,x andy are clock variables.

• Assume that〈l ,u〉 is reached by a delay transitiond. Then, there exist a discrete

transitionτ , a valuationu1 and a delay valued1∈R
+ such that...

τ
7→ 〈l ,u1〉

d17→
〈l ,u〉, i.e. u := u1 +d1 and〈l ,u1〉 is reached by the discrete transitionτ . There-
fore, according to the previous part we getu1 |= inv(l). According to Theorem 1
(last item), all elements ofinv(l) are unbounded, hence,u1 + d1 |= inv(l) by
Lemma 1. This completes the proof.

3.2 Example

We illustrate theCIPM algorithm using an example taken from [21], cf. the timed
automaton in Figure 1. In this model,x andy are clock variables.l0, l1 and l2 are
control locations. Our intention is to prune this automatonand to find a new set of
invariants for each control location according to theCIPM algorithm.

The model starts with the initial value ofx = y = 0 in location l0. y ≤ 1 is the
original invariant inl0, i.e. I (l0) = {y ≤ 1}. In other words, we can stay inl0 only
as long as the value ofy does not exceed 1. Once this value has passed 1 then one of

the outgoing transitions must be taken out of this state (e.g. l0
x:=0
7→ l1). For the other

locations we have:I (l1) = I (l2) = /0.
Initially, n := 3, X := {x,y}, i := 0, j := 0 andseen := /0. In the firstrepeat loop,

for 0≤ j < 3 the algorithm collects the original invariants atl j . So,I (l0) = {y≤ 1}
andI (l1) = I (l2) = /0. In the secondrepeat loop, we get:inv(l0) := {x= y}, k := 0,

andIn := intrans(l0,A) = {l0
x:=0
7→ l0, l1

y:=0
7→ l0}. Since the condition of the firstif loop

does not hold, thewhile loop must be activated. Here,In 6= /0 ∧ (k = 0∨ inv(l0) 6= /0)

holds, we chooseτ := l0
x:=0
7→ l0 from In, and letIn := {l1

y:=0
7→ l0}. τ /∈ seen (which

is /0) andI (sorc(τ))∧Gτ = {y ≤ 1} ∧ /0. By definition this isy ≤ 1, which is not

a contradiction. Hence,seen := seen∪{τ} = {l0
x:=0
7→ l0}. Now, since for thisτ we

have:un(Gτ/Rτ) = /0, un(I (sorc(τ))/Rτ) = un({y≤ 1}) = /0 andatom(Rτ) = {x≤ y},
we derive:inv(τ) := un(Gτ/Rτ) ∪ un(I (sorc(τ))/Rτ) ∪ atom(Rτ) = {x≤ y}. Then,
inv(τ)∧I (l0) = {x ≤ y} ∧ {y ≤ 1} = x ≤ y∧ y ≤ 1 which is not a contradiction.
Hence,k := k+1 = 1 andinv(l0) := inv(τ) = {x≤ y}.

Once more, sinceIn = {l1
y:=0
7→ l0} 6= /0, we go through thewhile loop of In 6=

/0 ∧ (k= 0∨ inv(l0) 6= /0). Here, we bring the result of computations briefly. We choose

11

x := 0

y≤ 1

y < x
l1

l0

x≤ y l2

x:=0 y > xy := 0

Figure 2: New invariants.

τ := l1
y:=0
7→ l0, we getIn := /0, and sinceI (sorc(τ))∧Gτ = /0∧ /0= true, seen := {l0

x:=0
7→

l0, l1
y:=0
7→ l0}. inv(τ) := /0∧ /0∧{y≤ x}= {y≤ x} andk := k+1= 2, hence,inv(l0) :=

join({x≤ y},{y≤ x}) = join(x≤ y,y≤ x) = true. At this point, sinceIn := /0, we leave
thewhile loop, and putI (l0) := I (l0)∧simp(inv(l0)) = {y≤ 1}∧simp(true) = {y≤
1}∧ true, which is equivalent toy≤ 1. So, we gain no new invariant forl0.

Next,Out := outtrans(l0) = {l0
x:=0
7→ l1, l0

y>x
7→ l1}. We chooseτ := l0

x:=0
7→ l1. Out :=

Out\{τ} = {l0
y>x
7→ l1}. τ /∈ seen, andI (l0)∧Gτ = y≤ 1 which is not a contradiction.

Hence,seen := {l0
x:=0
7→ l1, l0

x:=0
7→ l0, l1

y:=0
7→ l0}. Then, we chooseτ := l0

y>x
7→ l1, and for

the same reason,seen := {l0
y>x
7→ l1, l0

x:=0
7→ l1, l0

x:=0
7→ l0, l1

y:=0
7→ l0}. Out := Out\{τ}= /0,

hence we leave thiswhile loop, and puti := i +1 = 1. 1< 3, so therepeat loop must
be gone through once more.

The same process should be repeated again. The interesting part in this second

round is that forτ := l0
y>x
7→ l1 ∈ intrans(l1,A), we getinv(τ) := {y > x} ∧ /0∧ /0 =

{y> x}. For the other transitionτ := l0
x:=0
7→ l1 ∈ intrans(l1,A), inv(τ) := {x≤ y}, and

inv(l1) := join({x≤ y},{y > x}) = {x≤ y}. In the end,I (l1) := /0∧{x≤ y} = x≤ y.
This means that for this location we actually obtain a new invariant which isx≤ y. See
Figure 2.

Then,Out := outtrans(l1) = {l1
y<x
7→ l2, l1

y:=0
7→ l0}. We chooseτ := l1

y<x
7→ l2, then

Out := {l1
y:=0
7→ l0}. τ /∈ seen, andI (l1)∧Gτ = x≤ y∧y< x, which is a contradiction!

This is shown in Figure 3(a). Therefore, the automaton is updated toA := A \{l1
y<x
7→

l2}. We continue the algorithm with this new automaton. For this, see Figure 3(b).

The other transitionl1
y:=0
7→ l0 is already inseen. So this loop terminates here.

With this new automaton, for locationl2 we obtain: In := intrans(l2,A) = /0.
Hence, thewhile loop of In 6= /0 ∧ (k = 0∨ inv(l2) 6= /0) can not be entered. There is
also no transition out of this location.

In the end we obtainA := A \{l1
y<x
7→ l2}, andIA := {l0 7→ {y≤ 1}, l1 7→ {x≤

y}, l2 7→ /0}. Figure 3(b).

4 Implementation and Experimental results

We have developed a prototypical implementation of theCIPM algorithm in C++. The
code takes a timed automaton in UPPAAL [3] syntax as input andcomputes the new

12

x := 0 x := 0

l0 y≤ 1 l0 y≤ 1

a)

x≤ y l2
y < x

NOT feasible!

b)

x≤ yl1 l2l1

x:=0 y > xy > xx:=0y := 0 y := 0

Figure 3:

invariants for each location, as well as removing the spurious transitions as shown in
the pseudo-code of Alg. 17. The actual implementation ofCIPM thus consists of code
for operating on the abovementioned datastructure, to remove transitions and modify
invariants of the automaton.

The implementation consists of about 1000 lines of code. Forchecking whether
some invariants togther constitute a contradiction (such acondition occurs in three
places in the pseudo-code of Alg. 1), we use ICS [9], which is asolver for linear
arithmetic. Likewise, we use ICS to check the implications occurring in the definition
of join (see Equation 1).

Timed automata in UPPAAL are in some respects more general than the timed au-
tomata that we have defined in this paper. In particular, UPPAAL automata may have
integer variables in addition to the real-valued clock variables. Integer variables only
change their value when there is an explicit assignment. Thepresence of integer vari-
ables has repercussions on the clocks since clock assignments, guards and invariants
may involve linear expressions of those variables. E.g., there may be a guardx≤ 2i + j
wherex is a clock variable andi and j are integer variables. In our current code, integer
variables are ignored, but we plan to extend the implementation to cater for them.

Another feature of UPPAAL is that of parallel composition ofautomata (called
processesin UPPAAL parlance) into asystem. In the current implementation, we
assume a system that is composed of just one process. Again, we plan to extend the
implementation so that it works for systems with more than one process.

There is however one aspect where the automata we consider here are more gen-
eral than UPPAAL automata: In UPPAAL, there are no disjunctive invariants. The
invariant of a location, as well as the guard of a transition,is a sequence of equations
and disequalities, interpreted as a conjunction. Therefore, we cannot directly imple-
ment the invariantg∨g′ occurring in the definition ofjoin, and we approximate it as
the trivial invarianttrue. In some cases, we might be able to do better than that. E.g.,
(x ≥ 2∧ y≥ 1)∨ (x ≥ 1∧ y≥ 2) implies x ≥ 1∧ y≥ 1, which is stronger thantrue.
However what the best approximation we can express with UPPAAL syntax is and
how we can compute it is a nonobvious question left for futurework as well. Another
idea would be to split a location requiring a disjunctive invariant into two locations.

7For parsing the UPPAAL input file into a suitable C++ datastructure, we used code that was provided
to the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB TR14/AVACS) gproject by Gerd Behrmann.

13

We have tested the implementation on the example of Fig. 1 andsome other hand-
designed examples. Our prototype tool transformed these examples in the expected
way which increases our confidence that the proposed pseudo-code forCIPM accom-
plishes what we intend it to do.

5 Conclusion

Our work proposes theCIPM algorithm which accomplishes two goals. First, it auto-
matically generates invariants for timed automata models.The algorithms computes
new invariants in each control location of a timed automatontaking logical conditions
on the original state invariants imposed by incoming transitions into account. Second,
we defined the notion of idle transitions which helps in reducing the size of a timed
automaton by eliminating transitions that can never be traversed.

We presented a preliminary implementation of theCIPM algorithms. At the cur-
rent stage it is too early to talk about the performance of theimplementation since the
runtime for the examples including the one discussed above is, of course, negligible.
However, the algorithm looks at each location and each transition at most once and
thus its complexity should be low. How this would change if weran the algorithm
repeatedly on the same automaton is a different matter.

Future work includes the definition of a counterexample guided abstraction refine-
ment technique using our proposed invariant generation approach extended by suit-
able predicate abstractions. Currently, we are incorporating the invariants computed
by CIPM into an abstraction framework for timed automata. The idea is to couple each
control location with its corresponding invariant and to use these invariants to deter-
mine a predicate abstraction for the respective pair of states. To illustrate the approach
we considered an example from [21].

References

[1] Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical Computer
Science, 126(2):183–235, 1994.

[2] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Relative Completeness of
Abstraction Refinement for Software Model Checking. InTACAS’02, 2002.

[3] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL. In Marco
Bernardo and Flavio Corradini, editors,Formal Methods for the Design of Real-Time Sys-
tems. Proceedings of the 4th International School on FormalMethods for the Design of
Computer, Communication, and Software Systems (SFM-RT’04), volume 3185 ofLNCS,
pages 200–236, Bertinoro, Italy, Sep 2004. Springer–Verlag.

[4] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit, Laure
Petrucci, and Philippe Schnoebelen.Systems and Software Verification. Model-Checking
Techniques and Tools. Springer–Verlag, 2001.

[5] Michael Colón and Tomás E. Uribe. Generating Finite-State Abstractions of Reactive
Systems Using Decision Procedures. InCAV’98, pages 293–304, 1998.

[6] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixed points.POPL’77,
pages 238–252, 1977.

14

[7] Satyaki Das and David L. Dill. Counter-example based predicate discovery in predicate
abstraction. InFormal Methods in Computer-Aided Design(FMCAD). Springer-Verlag,
November 2002.

[8] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate abstraction.
In 11th International Conference on Computer-Aided Verification (CAV’99). Springer-
Verlag, 1999.

[9] Jean-Christophe Filliâtre, Sam Owre, Harald Rueß, andNatarajan Shankar. ICS: Inte-
grated canonizer and solver. In Gérard Berry, Hubert Comon, and Alain Finkel, editors,
Proceedings of the 13th International Conference on Computer Aided Verification, vol-
ume 2102 ofLNCS, pages 246–249. Springer-Verlag, 2001.

[10] Susanne Graf and Hassen Saı̈di. Construction of abstract state graphs with PVS. InCAV,
pages 72–83, 1997.

[11] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, andKenneth L. McMillan. Ab-
stractions from proofs. InPOPL’04, pages 232–244, 2004.

[12] Jörg Hoffmann, Jan-Georg Smaus, Andrey Rybalchenko,Sebastian Kupferschmid, and
Andreas Podelski. Using predicate abstraction to generateheuristic functions in uppaal.
In Model Checking and Artificial Intelligence, MoChArt’06, pages 51–66, 2006.

[13] Agata Janowska and Pawel Janowski. Slicing of Timed Automata with Discrete Data.
Fundamenta Informaticae, 72(1-3):181–195, 2006.

[14] Ranjit Jhala and Kenneth L. McMillan. Interpolant-based transition relation approxima-
tion. In CAV’05, pages 39–51, 2005.

[15] Shuvendu K. Lahiri, Thomas Ball, and Byron Cook. Predicate Abstraction via Symbolic
Decision Procedures.Logical Methods in Computer Science, 3(2), 2007.

[16] Shuvendu K. Lahiri and Randal E. Bryant. Predicate abstraction with indexed predicates.
ACM Trans. Comput. Log., 9(1), 2007.

[17] Shuvendu K. Lahiri, Randal E. Bryant, and Byron Cook. A Symbolic Approach to Pred-
icate Abstraction. InCAV’03, pages 141–153, 2003.

[18] Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. SMT Techniques for
Fast Predicate Abstraction. InProc. of Computer Aided Verification, CAV, pages 424–
437, 2006.

[19] Kenneth L. McMillan. Lazy Abstraction with Interpolants. InProc. of Computer Aided
Verification, CAV, pages 123–136, 2006.

[20] Kenneth L. McMillan and Nina Amla. Automatic Abstraction without Counterexamples.
In TACAS, pages 2–17, 2003.

[21] M. Oliver Möller, Harald Rueß, and Maria Sorea. Predicate Abstraction for Dense Real-
Time System.Electr. Notes Theor. Comput. Sci., 65(6), 2002.

[22] Sriram Sankaranarayanan, Michael Colón, Henny B. Sipma, and Zohar Manna. Efficient
strongly relational polyhedral analysis. InVMCAI, 2006.

[23] Uffe Sørensen and Claus Thrane. Slicing for Uppaal. Master’s thesis, Aalborg university,
2008.

15

	Introduction
	Preliminary Definitions
	Semantics

	Creating New Invariants
	The Algorithm
	Example

	Implementation and Experimental results
	Conclusion

