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Abstract

We present an approach to automatically generating invarfar timed au-
tomata models. Th€IPM algorithm that we propose first computes new in-
variants for timed automata control locations taking tleeiginally defined in-
variants as well as the constrains on clock variables inghbgancoming state
transitions into account. In doing so tkéPM algorithm also prunes idle tran-
sitions, which are transitions that can never be taken, fiteerautomaton. We
discsuss a prototype implementation of @@M algorithm as well as some ini-
tial experimental results.

1 Introduction

Predicate abstractioms an instance of the general theory of abstract interpoet].

It is a technique for generating finite abstract models @fdaor infinite state systems.
This technique involves abstracting a concrete transii@iem using a set of formu-
las calledpredicates Predicates usually denote some state properties of theraten
system. The predicate abstraction is conservative in theesthat if a property holds
on the abstract system, there will be a concretization optbgerty that holds on the
concrete system as well. Abstraction is defined by the value ¢r false) of the pred-
icates in any concrete state of the systeni [18]. This tectenigas first introduced by
Graf and Saidi[10] as a method for automatically detemgjninvariant properties of
infinite-state systems. As mentioned above, the idea ofgatdabstraction is to gen-
erate dfinite stateabstraction of the system with respect to a finite set of peads,
which are mostly provided by the users themselves. Such stnagbion will have
at most 2Pl distinct states for a total numbgP|| of predicates[[16]. There are two
obstacles to the practical use of the predicate abstraafiproach:

1. The initial abstraction isot fine enoughand hence it is too abstract to be able
to verify any property of the concrete model. In such a casentbthod relies
on counter examples or proofs in the overall verificationcpss to refine the
abstraction[[b], and as it is stated by Lahiri, et.al.[inl [15]
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(SFB TR14/AVACS).



"It is not clear if it is always preferable to compute the ahstion
incrementally. But, we have observed that the refinemer t@m
often become the main bottleneck in these techniques (£4M$
and limits the scalability of the overall system.”

2. The other obstacle is that the abstraction works with thdipates that angro-
vided by the userHence, this method relies on the user’s understandingeof th
system and on a trial-and-error procéss [15]. This phenombas been pointed
out by Das and Dill in[[i7]:

"Another problem is how to discover the appropriate set @fdpr
cates. In much of the work on predicate abstraction, theigmiabs
were assumed to be given by the user, or they were extraatéatsly
cally from the system description. Itis obviously diffictdr the user
to find the right set of predicates (indeed, it is trial-amdbeprocess
involving inspecting failed proofs), and the predicatepegring in
the system description are rarely sufficient. There has lessrwork
and less progress, on solving the problem of finding the sghtof
predicates. In addition [...] there is a challenge of avaidirelevant
predicates [...]"

The purpose of our work is to provide support for an automptedicate abstrac-
tion technique for dense real-time models according to ithed automaton model
of [ by generating a more useful set of predicates than aualaad-hoc process
would be able to provide. We analyze the behaviour of theegystnder verification
to discover its local state invariants. During this anayse remove idle transitions
which are transitions that can never be traversed. We planttoporate the generated
invariants into the abstraction phase of a counterexampiged abstraction refine-
ment method for timed automata by using them asitit&l set of predicateghat is
used to define an initial abstraction of the concrete model.

Related Work. How to discover predicates for use in the abstraction of tiez
system models has been widely discussed in the literatwi@n@nd Uribel[b] intro-
duce an interactive method for predicate abstraction dfti@& systems where a set
of predicates callefasisis provided by the user. As mentioned in the paper itsel$, thi
way the choice of abstraction basis is based on the user&rstathding of the system.
Therefore, generation of a suitable abstraction basisseln trial-and-error. Moller et.
al. in [21] introduce a method which is based on identifyingetof predicates that is
fine enough to distinguish between any two clock regions amdiwcreates a strongly
preserving abstraction of the system. Refinement of theaiitn is accomplished
using an analysis of the spuriousness of counter examplss il [4] Das and Dill
use the spurious trace in discovering predicates for théiqate abstraction. Das et.
al. in [8] introduceMor¢—— which is a prototype for the verification of invariants in
predicate abstraction. McMillan et. al. in]14.119] and Heger, et. al. in[[1ll] use in-
terpolation to detect feasibility of the abstract trace also to extract predicates from
the proof for use in the abstraction. McMillan and Anilal[20foduce a proof-based
automatic abstraction. The slicing approachlaf [13, 23] is@nt method with the
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same intention of reducing the state space of timed automatiels. However, it is
based on static analysis and not on a semantic interpretaitibe automaton structure.

Another direction of research in the field of predicate ausion addresses sym-
bolic techniques. In this method a decision procedure takest of predicateB and
symbolically executes a decision procedure on all the d¢slmeerP. This results in
a directed graph which represents the answer to a predibateaetion query. The
method aims at reducing the number of decision procedule siate this number of-
ten tends to be extremely larde15]. In the first step, thedirder formula is encoded
into some equi-satisfiable Boolean formula, and in the neq & is verified using a
SAT solver. Examples of different symbolic methods aré 8 5 [17[15].

In [L2] Hoffmann et. al. use the technique of predicate alesion in order to obtain
search heuristics to be used in directed model checkingetiysaroperties. In[[2] Ball
et. al. introduce an abstraction method based on oractiedwiidening. In most cases
the widening is such that it simply drops a variable from tb&t of the computations
of the pre-states.

Structure of the Paper. The paper is organized as follows. Secfibn 2 provides some
preliminary definitions on real-time automata. The sentantif timed automata and
their possible transitions are discussed in sefioh 2.dtic®¢3 introduces our method

of creating new invariants. The respective algorithm,ethlIPM, is explained in
SectiorZ31L. In Sectidn3.2 we illustrate the algorithm byaample which is used by
Mboller et. al. in [2Z1]. Sectioll4 describes an initial implentation of our approach.
Finally, Sectiorb presents concluding remarks and digsusgure work.

2 Preliminary Definitions

In this section we reiterate the classical definition of tihaeitomata according tbl[4,
(1. Additional concepts and notations which will be useatlyhout the paper are also
introduced in this section.

A timed automatortonsists of a finite state automaton together with a finite set
of clocks Clocks are non-negative real valued variables which kesagk tof thetime
elapsed since the last reset operation performed on theatdspclock. The finite state
automaton describes the systeontrol states and its transitions. Initially, all clocks
are set to 0. All clocks evolve at the same speedcoAfigurationsof the system is
given by the current control location of the automaton arel\thlue of each clock,
denoted(l,u), wherel is the control location and is the valuation function which
assigns to each clock its current valuet- d, for deRﬂl is a valuation which assigns
to each clock the valueu(x) +d, i.e., it increases the value of all clocks 8y G(X)
denotes the set afock constraints dor a setX of clock variables. Eacl is of the
form

gi=x<t[t<x|-g|oiNQ

wherex € X, andt, calledterm is either a variable iX or a constant ilR*. By var(g)
we denote the set of all clock variables appearing.inA timed automaton is then
formally defined as follows:

IR+ is the set of all non-negative reals, including 0.
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Definition 1. A timed automatory is a tuple(L,lo,%, X, .7 E) where

L is a finite set of locations (or states), calledntrol locations

lg € L is the initial location,

2 is a finite set of labels, callegvents

X is a finite set of clocks,

e .7 :L— G(X) assigns to each location in L some clock constraing{ix),
e ECLxZx2%xG(X) x L representsliscretetransitions.

The clock constraint associated with each localianL is called itsinvariant,
denoted.# (I). We later refer to these invariants as tgr@inal invariants. It requires
that time can pass in a control location only as long as itsesponding invariant
remainstrue. In other words,# (1) must hold whenever the current staté.is

We call a constraing atomicif there exist two termsandt such thagis equivalent
tos<t, t <sortheir negaticﬂ With each clock constrairg, we associate a set of its
atomic sub-formulasstom(g), defined as:

e atom(Q) := {g} whengis atomic,
e atom(g1 A Q) := atom(g1) Uatom(dz).

Reset constraintare conjunctions of (one or more) formulas of the forra: c wherec

is a constant ifR*. We similarly define the application aftom over reset constraints,

e.g.atom(x:=3Ay:=0) = {x:= 3, y:= 0}. An atomic constraint is calleldounded

if it is of the formx < ¢, wherecis a constant value ande {=, <, <}. gis unbounded

if it is not bounded. For example, <y andx > 2 are unbounded. We define a set of

unbounded constraints in a geobf constraints as!"(A) := {a € A| ais unboundegl.
We say a valuation satisfies gdenotedl |~ g, if the assigned value to all variables

in g by u satisfieg). For example ify:=x+1>yAx< 5, andu(x) = 4.1 andu(y) =3,

thenu |= g. We considetrue as a valid proposition which is satisfied by each valuation,

i.e. U= true for eachu. For a setA, ul= Aif u = a for eacha € A. Given two

constraintgy andd’, g entailsg’, denotedy = ¢/, if for any valuationu, u = ¢’ if u=g.

For instancex > 3 = x > 2. Based on this, we define a functijmhnﬁ as:

g ifg=d

g ifg' =g

true  if ~g=-d or equivalently~g =g
gvg otherwise

join(9.9) = 1)

Intuitively, given any two constraintg andd/, join(g,d’) is equivalent to the weaker
one. We further extended this definition over sets:

join(AB):=\/ join(ab)
(ab)eAB

2The negation of < siss<t.
3This operation is calledtrong joinin [27)].



whereA|B:= {(a,b) |a€ A, b € Bandvar(a) = var(b)}. For example, ifA = {x <
y,x > 2} andB = {x < 3} thenAB= {(x > 2,x < 3)} and hencejoin({x < y,x >
2}, {x < 3}) =join(x > 2,x < 3) = true, sincex > 3= x> 2.

In a timed automaton the values of all clocks evolve at theessppeed. Therefore,
if at timetg, x has the value ofy then afterAt time units the value ot will be xg + At.
This fact leads us to the next property:

Note 1. In a timed automatory, if at some point of time (e.dp) a relation likex <y
where<e {=, <, <} holds between two clock variablgsandy then this relation will
be preserved until one of the variables is reset. This isusendt) = x+ At < y+At =

y(t), whereAt computes the time elapsed ad@®f

Lemma 1. If u |= g for a valuation u and somenboundedatomic constraint g, then
u+d = g for any ccR*. This can be extended to any set of unbounded atomic con-
straints, too.

Proof. If gis of the formx > ¢ or x > ¢, then proof is obvious. For other constraints
g, by Note[1,u+d = g (d is theAt). By definition this property also extends to sets of
unbounded atomic constraints. O

Lemma 2. For each two atomic constraints g and, @nd sets A and B of atomic
constraints, we have:

1. g=join(g,d) and d = join(g,d’).
2. if ul= g for some valuation u, thenf join(g,d').
3. iful=A (or u= B) for some valuation u, then} join(A,B).
Proof. The proofs of these properties can be sketched as follows:
1. This is obvious according to the definitionjofn.
2. By the definition ofoin the statement 2 is equivalent to statement 1.

3. U= A hence by definitiony |= a for all a € A. Therefore, according to the
second item, for alh € A andb € B, u |~ join(a,b). Hence, by definitionu =
join(A,B). This holds, analogously, for when= B.

O

2.1 Semantics

We associate a transition syste#f}, with each timed automatonfl. States ofy

are pairsl,u), wherel € L is a control location of7 andu is a valuation oveK which

satisfies7 (1), i.e.ul= 7 (l). (lo,u) is aninitial state of.”,, if | is the initial location
of o7 and for allx € X: u(x) = 0.

“We work with nondeterministic timed automata.



Transitions. For each transition systeny,, the system configuration changes by
two kinds of transitions:

¢ Delay transitionsallow timed<R™* to elapse. The value of all clocks is increased

by d leading to the transitionl, u) g, (I,u+d). This transition can take place
only when the invariant of locatiohis satisfied along the transition.

e Discrete transitionenabling a transition (c.f. Definitioﬁ]ﬁ.) In this case all
clocks, except those which are reset, remain unchangeds réhults in the
. . agr ;4 . . .
transitiont := (I,u) = (I’,u) whereais an eventg is a clock constraint and
is a reset constraint (c.f. Definitidh 1).

An executionof a system is a possibly infinite sequence of configuratidns
where each pair of two consecutive configurations corredptmeither a discrete or a
delay transition.

In the sequelr andd denote discrete and delay transitions, respectively. e ma
denote a discrete transitianas (I,u) ~ (I’,u/) whena,g,r do not need to be clar-
ified. For eachr := (I,u) ¥% (I,u), we defineG; := atom(g) andR; := atom(r).
For this transition] andl” are called source of, denotedsorc(T), and target off,
denotedar(1), respectively.G, g, (respectively.# (sorc(1)) r,) represents the set of
all atomic constraints is; (respectively.# (sorc(7))) which do not have a variable
occurring inRy. For instance, ift := (I,u) " 7= 0r 1y, thenGr = {x <
Y, Z<x+1}, Ry = {z:= 0} andG g, = {x < y}. In this examplez occurs inR;. For
this transition if.7 (1) = {y < 2,z2> 4} then.# (sorc(1)) r, = {y < 2}.

For each discrete transitianwe define:

inv(T) 1= ""(Gy/r,) U " (S (sorc(T)) jr,) U atom(Ry)

whereatom(Rr) = Urcatom(r,) T» @nd

e J XSYlyeX={x}} if c=0
T x> cluix<y+c|yeX—{x}} ifc>0

We will later show in Theorerfl 3 thatv(1) is a set of constraints that are preserved in
tar(7). Below, in the next lemma, we prove this for when we have jostred a state

and before any time elapses. For the example atove, (I, u) XN L, =0 (I"u),
inv(T)=""({x<y}) U"{y<2}) Uz:=0={x<y} UDU {z<x,z<y} ={x<
y,z< x,z<y}. Here,X = {x,y,z}.

Lemma 3. For each discrete transitiofl,u) ~ (I, u), we have U= inv(T).

Proof. Clock variables are reset iff they occur Ry. Hence, those variables which
do not occur inR; retain their value when the transitianis occurring. These are
variables which belong t6; r,. Thereforel/ = G /r,, and sinceG, g, € “"(Gy/r,),

U |=""(Gy R, ). The same reasoning applies'td.# (sorc(1)) r,). Sinceu’ has some
new values for the reset variables rirt holds thatu’ =T right at the time of the
occurrence of the transition (notice that no time has ethpst). Thereforey =
atom(R;). Summing these up resultsinf= inv(T1). O

5A transitions isenabledif it can be traversed from the source control location.



Definition 2. For each control location |, we define a set of incoming diseteansi-
tions, "trans(l,.<7), and a set of outgoing discrete transitio%trans(l,.<7) as:

Mtrans(l,.o) = {T | 3, u,u: {di,u) S (U}
Urans(l,.o) = {1 | 3, U u: (,u) S 1 u))

Notice that this definition relies exclusively on discratansitions. Since only a
finite number of such transitions exists these two sets allede®ned.

We now define aeduction system This system simplifies the (disjunction of)
clock constraints. The intuition is that any valuation ftio u satisfies the left hand-
side of the reduction step (denoted-by-) if and only if it also satisfies the right-hand
side.

Definition 3 (Reduction System)We apply the following reduction rules on disjunc-
tion of constraintsg. Here, s and t are terms.

1. s<tvs=t—s<t
2. s<tVvs>t—s#t

@ is calledsimplifiedif none of the rules above are applicable on it. We apply the
reduction rulesof Definition[3 ong as long as they can be applied, which means that
the result of the application is not identical to the coristriself. When the reduction
process terminates, we call the resittp(@). Obviously,simp(@) is simplified.

Lemma 4. If u |= ¢ then ul=simp(@), for each valuation u.

Proof. If ¢ — ¢ with any of the reduction rules, then obviously= . Therefore,
u = simp(@) as well. O

In the next section we introduce an automatic approach ttiogenew invariants
and to reducing the size of the model by pruning away thogesitians which can
never be traversed and which hence have no impact on a réigghafalysis of the
model.

3 Creating New Invariants

In this section we present tHéPM algorithm which strengthens the given original
invariants in each control location by analysing the inamgndiscrete transitions to
that specific control location.

3.1 The Algorithm

The input of AlgorithnlL is a timed automaton. Without losgeherality we assume
that each location is assigned a separate index between |Q4fe- 1, e.g.l1, where
||| is the number of control locations k.

Before explaining the algorithm we introduce the notionddéness of a transition
which expresses that a transition will never be enabled.
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Definition 4. A discrete transitiorr : (I,u) — (I’,U) is calledidle if it can never be
enabled.

Amongst other reasons, a transition can be idle when thereamsover the tran-
sition is never being satisfied or the valuation functionagi®d from the transition
does not satisfy the invariant of the target location (i, |= .#(1")). For instance, if

. . . X<y - . . .
T is the discrete transitiofl,u) = (I’ u’), wherex > y+ 3 is invariant in locatior,
i.e. Z(l) = {x>y+ 3}, then this transition is idle since the constraint y is never
fulfilled as long as we are ih

The CIPM algorithm first collects the se¥(l;) of all the original invariants in
each location;. It then selects each locatidpand collects its incoming transitions
in intrans(lj, 7). The idle transitions within that set are detected using e and
are deleted from the model. For each non-idl® "trans(lj,.<) the algorithm next
computesinv(T). It thereby extracts all constraints that are propagatdddation |;
when executing transition. Applying join to all propagated constraints yields/(1;)
which defines the full set of constraints that are imposell lopall of the transitions in
i”trans(li,sz%). Sincel; may also have some original invariaof,(l;) is the conjunction
of the original invariant and all of the previously compuietposed constraints on
li. This is expressed in the algorithm b4, (Ii) := .#(I;) Asimp(inv(l;)). Computing
4 (i) may render some of the outgoing transitiong alle. Therefore, the algorithm
next checks all outgoing transitions lpfor idleness again using Lemrh 5 (1st item).
It then removes all transitions detected as being idle. Ehsesn stores the traversed
transitions. Itis used to ensure that all transitions asxkéd for being idle only once.

In Algorithm[l, we use conjunction of sets, which is definedsB := A;jna A

Ni<j<mbj for A= {a,...an} andB = {by,...bm} .

Lemma 5. A discrete transitiort is idle when either of the conditions below, holds:
e 7 (sorc(T)) A Gy is a contradiction,
e inv(T)A.Z(tar(1)) is a contradiction.

Proof. e 7 (sorc(T)) holds as long as the current locatiorsigc(7). At this lo-
cation, 7 is enabled only wheig; holds. If this occurs then (sorc(T)) A G;
holds. By assumption, this can never happen.

e By LemmalB, if (I,u) > (Ii,u;) is enabled theny = inv(). By definition,
Ui = # (tar(T)) too. Thereforey; |= inv(T) A .#(tar(1)). This contradicts the
assumption. Sa; is never enabled.

U

We say two timed automateZ and .7, are equivalent denoteds =.¢7, if they
differ only on some idle transitions.

Theorem 1. TheCIPM algorithm has the following properties:
e itis terminating,

o if CIPM(wA) = (o,.7.7) thena/ =g, and

6AAD and 01 A are equivalent té\.



Algorithm 1 Creating Invariants and Pruning the Mod€élRM)

REQUIRES atimed automatory

n:= || %% the number of control locations i

X := the set of all clock variables occurred.i#
i:=0,j:=0,seen:=0
repeat
A (lj) := the given (original) invariant df
j=]j+1
until j <n
repeat
if i =0then
inv(lj) '={x=y| x,y € X wherex andy are not identicg|
else
inv(li) =0
k:=0,In:=""trans(lj,.«)
if In=0A1> 0then
o = o\ trans(l;, o)
else
while In 20 A (k=0Vinv(l;) # 0) do
chooser € In
In:=In\{1}
if T ¢ seen then
if .7 (sorc(1)) A Gy is a contradictiorthen

o = d\{1} %% the idle transition

else
seen :=seenU{T}
inv(T) :=""(Gg/Rr,) U ""(SF(sorc(T)) /r,) U atom(Ry)
if inv(T) A Z(l;) is a contradictiorthen

o = d\{1} %% the idle transition

else
ki=k+1
if k= 1then
inv(li) :==inv(T)
else
inv(l;) == join(inv(l;),inv(T))
F (i) == Z (i) Asimp(inv(l;))
Out :=°"trans(l;)
while Out # 0 do
chooser € Out
Out := Out\{71}
if T ¢ seen then
if .Z(li) A Gy is a contradictiorthen

o = d\{1} %% the idle transition
else
seen :=seenU{T}
i=i+1

until i <n
fQ{ = {|, — f(l,)}
return (<7, 7,) 9




e for each control location linv(l) consists of only unbounded constraints.

Proof. e In timed automata, the number of control locatiofis7(|) is a finite
number, sayn. Hence, the first twaepeat loops halt aftem steps. Besides,
each timed automaton consists of a finite automaton whictridbes the system
control states and its transitions. Hence, each contratimc has only a finite
number of incoming and outgoing discrete transitions. Tthesother twavhile
loops will also stop after a finite number of steps.

e According to Lemm&l5 and the algorithmd is updated only by removing some
idle transitions. Therefore, the output automaton will ibex the exact same
automaton, or it will be an automaton with a smaller numbedief transitions.

e The above argument can be easily derived from the definitionvor) and the
definition ofinv(l) in the algorithm.
O

Note 2. Sincef =47 according to the previous theorem, in the sequel we maysise
and.c7; interchangeably.

The new constraint?,, (1) implies the original invariant# (1) and moreover it
extracts a stronger clock constraint which should hold ag las we stay in. We
prove this in the next two theorems.

Theorem 2. If CIPM(#A) = («7,.7./), then.Z, (1) = #(l) for each control location
l'in o/, where.#(1) is the original invariant of | ing.

Proof. .7, (l) = . (1) Asimp(inv(l)). According to the definition of-, we need to
show that ifu = . (1) Asimp(inv(l)) thenu = .#(1), for any valuation functioru.
Let #(1) = {ay,...an} andsimp(inv(l)) = {bs,...bm}. Therefore,u = A1-i<pai A
Ai<j<mbj, and hence, for each4 i <n, ul=a. By definition, this means that
uE Z(). O

The next theorem shows thaf,, associates with each control locatiba set of
new invariants.

Theorem 3. If CIPM(4) = (<7, .Z.7), then u= 2, (l), for each reachable configu-
ration (I,u) in .#,/1. In other words, 7, (l) is invariant in .

Proof. Since.Z (1) = . (l) Asimp(inv(l)), we need to prove that= .7 (1) Asimp(inv(l))
where.7 (1) is the original given invariant of location(cf. Definition[d). To this end,
we show thau = .# (1) andu |= simp(inv(l)). The first part holds by definition. For
the second part, by Lemnid 4 we only need to prove thatinv(l). We split the
proof into two steps according to whethiru) is reached by a discrete transitioror
whether it is reached by a delay transitidn

e Assume thatl,u) is reached by a discrete transitior(i.e. ... = (I,u)). Then
u = inv(t) by Lemmal®B. Hencey = join(inv(l),inv(7)) by Lemmal® (2nd
item). This, according to the algorithm, is the updated @alfinv(l). Therefore,

u=inv(l).
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Figure 1:.o7. In this timed automatorns andy are clock variables.

e Assume thatl,u) is reached by a delay transitioh Then, there exist a discrete
transition, a valuationu; and a delay value,€R* such that.. ~ (I,uy) &
(I,u), i.e.u:=uy +dj and(l,u;) is reached by the discrete transitionThere-
fore, according to the previous part we get=inv(l). According to Theorerfll 1

(last item), all elements ahv(l) are unbounded, hence; + d; |~ inv(l) by

Lemmdl. This completes the proof.

O

3.2 Example

We illustrate theCIPM algorithm using an example taken froin21], cf. the timed
automaton in FigurEll. In this moded,andy are clock variablesly, 1; andl, are
control locations. Our intention is to prune this automaamal to find a new set of
invariants for each control location according to @& M algorithm.

The model starts with the initial value af=y = 0 in locationly. y <1 is the
original invariant inlg, i.e. .#(lg) = {y < 1}. In other words, we can stay Ig only
as long as the value gfdoes not exceed 1. Once this value has passed 1 then one of
the outgoing transitions must be taken out of this state QQ.’éio I1). For the other
locations we havex/ (1) = .7 (I2) = 0.

Initially, n:= 3, X :={x,y}, i:=0, j := 0 andseen := 0. In the firstrepeat loop,
for 0 < j < 3 the algorithm collects the original invariantsl atSo,.# (Ip) = {y < 1}
and.? (I1) = #(l2) = 0. In the secondepeatloop, we getinv(lg) ;== {x=y}, k:=0,
andln = "trans(lo, o) = {lo ¥="lo, 11 =" Io}. Since the condition of the firéft loop
does not hold, thevhile Ioop must be activated. Herla, # (D /\ (k=0Vinv(lg) # 0)

holds, we choose = Ig x50 lo from In, and letln := {Il =0 lo}. T ¢ seen (which
is 0) and.# (sorc(7)) A Gy = {y < 1} A 0. By definition this isy < 1, which is not

a contradiction. Henceseen := seen U {1} = {lo %" Io}. Now, since for thist we
have:""(G¢/r,) = 0,"" (S (sorc(T)) r,) = ""({y<1}) =0 andatom( ) ={x<y},
we derive:inv(1) :=""(Gy/g,) U “"(F (sorc(T)) r,) U atom(R¢) = {x <y}. Then,
inv(T) A I (lp) = {x <y} A{y <1} =x<yAy <1 which is not a contradiction.
Hencek:=k+ 1 =1 andinv(lg) :=inv(T) = {x < y}.

Once more, sincén = {11 %= 1o} # 0, we go through thevhile loop of In %
0 A (k=0Vinv(lp) # 0). Here, we bring the result of computations briefly. We choose
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Figure 2: New invariants.

T:= 11 1o, we getin := 0, and since? (sorc(T)) A Gr = OAD = true, seen := {Io =
lo, 11 5= o} inv(T) == OA DA {y < x} = {y < x} andk:= k+1 = 2, hencejnv(lo) :=
join({X <y}, {y <x}) =join(x<y,y < X) = true. At this point, sincdn := 0, we leave
thewhile loop, and put? (lp) := . (lg) Asimp(inv(lg)) = {y < 1} Asimp(true) = {y <
1} Atrue, which is equivalent ty < 1. So, we gain no new invariant fby.

Next, Out 1= “ttrans(lo) = {lo 5= 11, lo 711 }. We choose := 1o $=1;. Out :=
Out\{1} ={lo = l1}. T ¢ seen, and.# (Ip) A G; =y < 1 which is not a contradiction.
Henceseen := {lo ¥="11, 1o 1o, 11 %= 1o}. Then, we choose := lo XX 11, and for
the same reasoseen := {lo 311, 1o =° 11, 105 1o, 11 %= lo}. Out := Out\ {1} = 0,
hence we leave thighile loop, and put :=i+1=1. 1< 3, so therepeatloop must
be gone through once more.

The same process should be repeated again. The interestini phis second
round is that forr := lo = |1 € "trans(l1, <), we getinv(T) = {y > X} AOA D =
{y > x}. For the other transition := lo ¥=° |1 € trans(l1, <), inv(T) := {x <y}, and
inv(l1) :=join({X <y}, {y >x}) = {x<y}. Intheend,# (I1) :=0A {x <y} =x<y.
This means that for this location we actually obtain a newiirant which isx <y. See
Figure[2.

Then, Out := ®ttrans(l1) = {11 ©=X15, 11 5= 1o}, We chooser := 11 Y15, then
Out:={ly = lo}. T ¢ seen, and.# (I1) AGr =x < yAY < X, which is a contradiction!
This is shown in FigurEl3(a). Therefore, the automaton isatgatitoe := o7\ {l; =
I2}. We continue the algorithm with this new automaton. For,teee Figur€l3(b).

The other transitiom, =0 I is already inseen. So this loop terminates here.

With this new automaton, for locatiol we obtain: In := "trans(l»,.27) = 0.
Hence, thewhile loop ofIn #0 A (k= 0Vinv(l2) # 0) can not be entered. There is
also no transition out of this Iocation§/<x

In the end we obtain? := &7\ {l1 — I}, and7,, ;= {lo— {y < 1}, I1— {x <
y}, 12— 0}. Figure[B(b).

4 Implementation and Experimental results

We have developed a prototypical implementation of@HeM algorithm in C++. The
code takes a timed automaton in UPPAAL [3] syntax as inputamputes the new
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Figure 3:

invariants for each location, as well as removing the spgrimansitions as shown in
the pseudo-code of AlljﬂlThe actual implementation éiPM thus consists of code
for operating on the abovementioned datastructure, tovertransitions and modify
invariants of the automaton.

The implementation consists of about 1000 lines of code. cRecking whether
some invariants togther constitute a contradiction (sucloralition occurs in three
places in the pseudo-code of Ald. 1), we use ICS [9], which solaer for linear
arithmetic. Likewise, we use ICS to check the implicationswring in the definition
of join (see Equatiofll).

Timed automata in UPPAAL are in some respects more generalttie timed au-
tomata that we have defined in this paper. In particular, UMPAutomata may have
integer variables in addition to the real-valued clock alalés. Integer variables only
change their value when there is an explicit assignment.pfésence of integer vari-
ables has repercussions on the clocks since clock assigsngerards and invariants
may involve linear expressions of those variables. E.grgtimay be a guard< 2i + |
wherexis a clock variable andandj are integer variables. In our current code, integer
variables are ignored, but we plan to extend the implemient&b cater for them.

Another feature of UPPAAL is that of parallel composition aaftomata (called
processesn UPPAAL parlance) into asystem In the current implementation, we
assume a system that is composed of just one process. Agaiplaw to extend the
implementation so that it works for systems with more tha@ process.

There is however one aspect where the automata we consideatgmore gen-
eral than UPPAAL automata: In UPPAAL, there are no disjwecinvariants. The
invariant of a location, as well as the guard of a transitierg sequence of equations
and disequalities, interpreted as a conjunction. Theeefae cannot directly imple-
ment the invariang Vv ¢’ occurring in the definition ofoin, and we approximate it as
the trivial invarianttrue. In some cases, we might be able to do better than that. E.g.,
(x>2Ay>1)V(x>1Ay>2)impliesx > 1Ay > 1, which is stronger thatrue.
However what the best approximation we can express with ARPgyntax is and
how we can compute it is a nonobvious question left for futmoek as well. Another
idea would be to split a location requiring a disjunctivearignt into two locations.

"For parsing the UPPAAL input file into a suitable C++ datastie, we used code that was provided
to the Transregional Collaborative Research Center “Aattr\Verification and Analysis of Complex
Systems” (SFB TR14/AVACS) gproject by Gerd Behrmann.
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We have tested the implementation on the example ofFig. sam@ other hand-
designed examples. Our prototype tool transformed theamgbes in the expected
way which increases our confidence that the proposed pssadaoforCIPM accom-
plishes what we intend it to do.

5 Conclusion

Our work proposes th€IPM algorithm which accomplishes two goals. First, it auto-
matically generates invariants for timed automata mod€&he algorithms computes
new invariants in each control location of a timed automa#ding logical conditions
on the original state invariants imposed by incoming tr@mss$ into account. Second,
we defined the notion of idle transitions which helps in redgahe size of a timed
automaton by eliminating transitions that can never beetisd.

We presented a preliminary implementation of @i€M algorithms. At the cur-
rent stage it is too early to talk about the performance ofrtipgementation since the
runtime for the examples including the one discussed almw& icourse, negligible.
However, the algorithm looks at each location and each itransat most once and
thus its complexity should be low. How this would change if i@@ the algorithm
repeatedly on the same automaton is a different matter.

Future work includes the definition of a counterexample edidbstraction refine-
ment technique using our proposed invariant generatiomoapp extended by suit-
able predicate abstractions. Currently, we are incorpayahe invariants computed
by CIPM into an abstraction framework for timed automata. The id¢a touple each
control location with its corresponding invariant and te tisese invariants to deter-
mine a predicate abstraction for the respective pair ofstafo illustrate the approach
we considered an example from[21].
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