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Abstract. Other authors have shown that temporal

projection|the computation of the consequences for a

set of events|is intractable even for severly restricted

cases. They have also suggested that temporal pro-

jection is the basic problem underlying planning, plan

validation, and story understanding. We have earlier

shown that plan validation is actually tractable for

a broad and important class of plans, thus indicat-

ing that temporal projection and plan validation are

not as closely related as was believed. In this paper,

we show that also planning and story understanding

is sometimes tractable when temporal projection is

intractable. This means that temporal projcetion is

hardly a necessary ingredient of these tasks either.

1 Introduction

Dean and Boddy [4] have earlier analyzed the com-

putational complexity of temporal projection (i.e. the

problem of computing the consequences of a set of

events) in a propositional strips-like [5] language. They

found that even severly restricted cases are NP-hard,

which motivated them to develop an approximation

algorithm. Their main motivations for studying this

problem was that temporal projection appeared to be

the basis of plan validation, planning, and story under-

standing. Hence, the complexity results for temporal

projection were assumed to carry over to these prob-

lems.

Contrary to their assumption, we have found that

plan validation is polynomial for the broad and im-

portant class of unconditional plans [10, 9]. Further-

more, we also found that even planning is polynomial

for a severly restricted case where temporal projection
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is NP-hard. Considering these results, there are two

obvious questions.

The �rst question is to what extent the result on

polynomial planning can be extended to less restricted

problems. It follows immediately from Bylander's

result [3] that this does not extend to the class of all

unconditional plans, as was the case with plan valida-

tion. However, by re-expressing the restrictions of the

SAS-PUS planning problem [1] in the same notation

as Dean and Boddy use it is possible to show that

derivation of optimal plans is polynomial for a more

interesting problem.

The second question is whether the complexity re-

sults for temporal projection carry over to story un-

derstanding. Once again, this turns out not to be

the case. Story understanding is polynomial under

the restrictions for which we �rst found planning to

be polynomial, if we add the reasonable assumptions

that stories are coherent and non-repeating. Story un-

derstanding for the class of all unconditional plans is

NP-hard, however.

2 Temporal Projection

The formalization of the temporal projection problem

for partially ordered events given below closely follows

the presentation by Dean and Boddy [4, Sect. 2]. The

problem of temporal projection is to decide whether a

given propositional atom holds, possibly or necessar-

ily, after a given event in an event system.

De�nition 1 A causal structure is given by a tuple

� = hP; E;Ri, where

� P = fp

1

; : : : ; p

n

g is a set of propositional atoms,

the conditions,

� E = f�

1

; : : : ; �

m

g is a set of event types,
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� R = fr

1

; : : : ; r

o

g is a set of causal rules of the

form r

i

= h�

i

; '

i

; �

i

; �

i

i, where

{ �

i

2 E is the triggering event type,

{ '

i

� P is a set of preconditions,

{ �

i

� P is the add list,

{ and �

i

� P is the delete list.

In order to talk about sets of concrete events and

temporal constraints over them, the notion of a par-

tially ordered event set is introduced.

1

De�nition 2 Assuming a causal structure � =

hP; E;Ri, a partially ordered event set (POE)

over � is a pair �

�

= hA

�

;�i consisting of a set of

actual events A

�

= fe

1

; : : : ; e

p

g such that type(e

i

) 2

E, and a strict partial order

2

� over A

�

.

POEs denote sets of possible sequences of events

satisfying the partial order. A partial event se-

quence of length m over such a POE hA;�i is a se-

quence f = hf

1

; : : : ; f

m

i such that (1) ff

1

; : : : ; f

m

g �

A, (2) f

i

6= f

j

if i 6= j, and (3) for each pair f

i

; f

j

of events appearing in f , if f

i

� f

j

then i < j. If

the event sequence is of length jAj, it is called a com-

plete event sequence over the POE. The set of all

complete event sequences over a POE � is denoted

by CS(�). If f = hf

1

; : : : ; f

k

; : : : ; f

m

i is an event se-

quence, then f=f

k

denotes hf

1

; : : : ; f

k

i Further, we

write f ; g to denote hf

1

; : : : ; f

m

; gi.

Each event maps states (subsets of P) to states.

Let S � P denote a state and let e be an event. Then

we say that the causal rule r is applicable in state S

i� r = htype(e); '; �; �i and ' � S. Given e and S,

app(S; e) denotes the set of all applicable rules for

e in state S. An event e is said to be applicable in a

state S i� app(S; e) 6= ;. In order to simplify notation,

we write '(r), �(r), �(r) to denote the sets ', �, and

�, respectively, appearing in the rule r = h�; ';�; �i.

Based on this notation, we de�ne what we mean by

the result of a sequence of events relative to a state S.

De�nition 3 The result function \R" from states

and event sequences to states is de�ned recursively by:

R(S; hi) = S

R(S; (f ; g)) =

(R(S; f) � f�(r)j r 2 app(R(S; f); g)g) [

f�(r)j r 2 app(R(S; f); g)g:

1

This notion is similar to the notion of a nonlinear plan.

2

A strict partial order is a transitive and irreexive

relation.

Given a state S, we will often restrict our atten-

tion to event sequences such that all events are appli-

cable in the states in which they are applied. These

sequences are called admissible event sequences

relative to the state S. The set of all complete event

sequences over � that are admissible relative to S are

denoted by ACS(�; S). If CS(�) = ACS(�; S), we

will say that � is coherent relative to S.

In the following, we will often talk about which

consequences a POE will have on some initial state.

For this purpose, the notion of an event system is in-

troduced.

De�nition 4 An event system � is a pair h�

�

;Ii,

where �

�

is a POE over the causal structure � =

hP; E;Ri, and I � P is the initial state.

In order to simplify notation, the functions CS and

ACS are extended to event systems with the obvious

meaning, i.e., CS (h�; Si) = CS (�) and ACS(h�; Si) =

ACS(�; S). Further, if CS (�) = ACS(�), � is called

coherent.

The problem of temporal projection as formulated

by Dean and Boddy [4] is to determine whether some

condition holds, possibly or necessarily, after a partic-

ular event of an event system.

De�nition 5 Given an event system �, an event e 2

A, and a condition p 2 P:

p 2 Poss(e;�) i� 9f 2 CS(�): p 2 R(I; f=e)

p 2 Nec(e;�) i� 8f 2 CS(�): p 2 R(I; f=e):

In the general case, temporal projection is quite

di�cult. Dean and Boddy [4] show that the decision

problems p 2 Poss(e;�) and p 2 Nec(e;�) are NP-

complete and co-NP-complete, respectively, even un-

der some severe restrictions, such as restricting � or

� to be empty for all rules, or requiring that there is

only one causal rule associated with each event type.

De�nition 6 A causal structure� = hP;E;Ri is un-

conditional i� for each � 2 E, there exists only one

causal rule with the triggering event type �. An event

system h�

�

;Ii is unconditional i� �

�

is uncondi-

tional. An event system is called simple i� it is

unconditional, I is a singleton, and for each causal

rule r = h�;';�; �i, the sets ', �, and � are singletons

and ' = �.

Dean and Boddy conjectured that temporal pro-

jection is easy for simple event systems. This turns

out to be false, however.
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Theorem 1 For simple event systems�, deciding p 2

Poss(e;�) is NP-complete and deciding p 2 Nec(e;�)

is co-NP-complete.

3

This result only strengthens the claim that tempo-

ral projection is a hard problem. On the other hand,

applying the same restrictions to the planning prob-

lem turns out to give a more surprising result, as will

be shown below.

In the context of planning, events as introduced

above are usually called actions and POEs are called

nonlinear plans, or simply plans. In the following,

we use these terms interchangeably.

De�nition 7 A planning task � is given by h�;I;Gi,

where � = hP; E;Ri is a causal structure as de�ned

above, and I � P and G � P are the initial state

and goal state, respectively. A plan �

�

solves �

i� (1) G � R(I; f) for all f 2 CS (�

�

), and (2)

ACS(�

�

; I) = CS (�

�

). A plan hA

�

;�i is un-

conditional i� � is unconditional. A solution � =

hA;�i for � is minimal i� for all other solutions

�

0

= hA

0

;�

0

i, it holds that jAj � jA

0

j.

Furthermore, we say that a planning problem is

simple if it obeys the same restrictions as simple event

systems. Using Bylander's [3] Theorem 8, the tractabil-

ity of the solution existence problem for the simple

planning problem follows immediately. In this case,

also plan derivation is tractable, however.

Proposition 2 For simple planning tasks, it can be

decided in polynomial time whether there exists a so-

lution. Further, a minimal valid plan can be derived

in polynomial time.

4

This result is somewhat surprising since tempo-

ral projection, which was supposed to be the underly-

ing problem in plan validation and planning, is harder

than planning itself in this case. Starting from this ob-

servation, we have earlier found that plan validation

is, in fact, solvable in polynomial time for the broad

and important class of unconditional plans [9, 10].

The reason for this is that a planner has no reason

to construct a plan that is not coherent. That is, plan

validation is more realistically de�ned as �rst testing

whether the plan is coherent, and reject if it is not,

and then test whether it achieves its goal. In contrast

to temporal projection as de�ned by Dean and Boddy

[4], this task is tractable for unconditional plans.

3

The proof [9, pp. 7{10] uses a transformation from the

path with forbidden pairs problem [6, p. 203].

4

The proof [9, p. 11] shows that the problem can be

transformed to �nding a shortest path in a graph of size

polynomial in the size of the original problem.

3 Planning

Starting with the observation that planning is tractable

for simple problems it is interesting to ask the ques-

tion whether there are other, less restricted, planning

problems that are also tractable. The results of By-

lander [3] show that this does not hold for all uncon-

ditional plans, for example. However, he has found

three planning problems for which the plan existence

problem is tractable. On the other hand, B�ackstr�om

and Klein has reported a planning problem called the

SAS-PUS problem [1] for which optimal plans can be

derived in polynomial time. Any direct comparisons

with the simple problem or Bylanders tractable prob-

lems is, unfortunately, non-trivial since the SAS-PUS

problem is de�ned using another formalism called the

simpli�ed action structures (SAS) [1, 2].

The purpose of this section is to re-express the

restrictions of the SAS-PUS problem in the formalism

from Section 2 in order to facilitate such a comparison.

De�nition 8 A planning task � = hhP;E;Ri;I;Gi is

SAS-PUS convertible i� it satis�es the following

restrictions:

1. hP; E;Ri is unconditional;

2. P can be partitioned into m disjoint subsets

P

1

; : : : ; P

m

s.t. jP

i

j > 1 for 1 � i � m and

for all causal rules h�; ';�; �i 2 R

(a) � � ',

(b) j�j = 1;

(c) j' \ P

i

j � 1 for all i,

(d) j� \ P

i

j = j� \ P

i

j � 1 for all i,

(e) � \ � = ;, and

(f) jI \ P

i

j = jG \ P

i

j = 1 for all i.

3. for all pairs of causal rules

h�; ';�; �i; h�

0

; '

0

; �

0

; �

0

i 2 R

(a) if ' = '

0

, � = �

0

, and � = �

0

, then � = �

0

;

(b) if � 6= �

0

, then � \ �

0

= ;; and

(c) for all 1 � i � m, if (' � �) \ P

i

6= ;

and ('

0

� �

0

) \P

i

6= ; then ('� �) \ P

i

=

('

0

� �

0

) \ P

i

.

The restrictions can be understood as follows. Each

partition P

i

can be viewed as the value domain of a

state variable x

i

, an action can change the value of a

state variable only if it already has a de�ned value, an

action can only change the value of one state variable,

3



there must be no two di�erent action types chang-

ing the same state variable to the same value, and

the initial state and the goal state are fully speci�ed.

Finally, restriction (3c) captures the notion of single-

valuedness [1, 2].

Theorem 3 Minimal nonlinear plans for SAS-PUS

convertible planning tasks can be derived in polynomial

time.

Proof Sketch. De�ne a transformation between sets

of propositions and partial states in the SAS formalism

and also map action conditions in the obvious way.

Prove that a SAS-PUS convertible problem � can be

transformed into a SAS-PUS problem �

0

in this way

s.t. the solutions for �

0

are exactly the solutions for

�.

Although the SAS-PUS convertible problem does

not properly subsume the simple problem

5

it is most

likely of more practical interest. For example, the

blocks world problem which Bylander [3, Theorem 10]

proved tractable can be encoded as a SAS-PUS con-

vertible planning task, using the same encoding as

Bylander, if restricted to total goal states. Hence,

not only plan existence but also plan generation is

tractable for this problem.

4 Story Understanding

Besides plan validation, Dean and Boddy [4, p. 375]

also mention story understanding as one domain where

temporal projection is important:

\: : : an author may not provide the reader

with the exact time of all events men-

tioned in a narrative, knowing that it is

not critical that the reader have such in-

formation in order to follow the story."

Theorem 1, however, tells us that we are lost, as

authors or readers. Even in the simplest case, the

author has better to provide complete information or

there is the danger that the reader gets lost in �gur-

ing out what is the case.

6

However, if we place some

reasonable restrictions on the problem, the computa-

tional problems vanish.

First of all, it seems reasonable that we consider

only admissible event sequences. It simply makes no

5

The simple problemdoes not necessarily satisfy restric-

tion 3b.

6

Note that NP-completenessmeans that we (most prob-

ably) cannot hope to solve the problem e�ortlessly. In-

stead, \puzzle mode" reasoning is necessary to arrive at a

conclusion [7].

sense that an author tells a reader that an event takes

place that does not have any e�ect on the world. Con-

versely, one could argue that an author does not tell

the exact time of events if the reader is able to re-

cover the sequential information by other means, for

instance, by the coherence of the events. Secondly, we

will assume that a story is non-repeating, i.e., all states

are di�erent. Otherwise, the story would contain more

than once the same situation|which is rather un-

likely. In order to capture this formally, we introduce

the notion of non-repeating sequences of an event

system, written NCS(h�;Ii), with the intention that

for all events g; h, where g 6= h, appearing in an event

sequence f , we have R(I; f=g) 6= R(I; f=h). Evidently,

it is the case that NCS(�) � ACS(�) because the oc-

currence of an event e that is not applicable leads to

the same state as before the occurrence of e. Using

this formalization of story-understanding, a variant of

temporal projection is de�ned.

De�nition 9 Given an event system �, an event e 2

A, and a condition p 2 P:

p 2 Poss

+

(e;�) i� 9f 2 NCS(�): p 2 R(I; f=e)

p 2 Nec

+

(e;�) i� 8f 2 NCS(�): p 2 R(I; f=e):

Proposition 4 For simple event systems �, p 2

Nec

+

(e;I) and p 2 Poss

+

(e;�) can be decided in poly-

nomial time.

Proof Sketch. The restriction to non-repeating se-

quences over simple event systems implies that the

e�ects of all events are unique, and it follows that

jNCS(�)j � 1. Reconstructing the (only) admissable

event sequence, or �nding out that there is none, can

be done in polynomial time.

Thus story understanding (in the highly abstract

form as de�ned here) is easier than temporal projec-

tion in the case of simple event systems. The question

is, in how far this result can be generalized.

If we remove the restriction that the event se-

quence is non-repeating and require only that the course

of events is admissible, the complexity of story under-

standing for simple event systems is not obvious [9,

p. 31]. However, as we remarked above, the non-

repeating restriction seems to be quite reasonable.

Generalizing the problem to general conditional

event systems leads immediately to NP-completeness

because we can design the causal rules in a way such

that all sequences are non-repeating. A more interest-

ing question is, whether we can solve the problem for

general unconditional event systems. Because plan-

validation is easy in this case, one may suspect that

4



this also holds for temporal projection in an story un-

derstanding context. Unfortunately, this is not true,

though.

Theorem 5 For unconditional event systems �, de-

ciding p 2 Poss

+

(e;�) is NP-complete.

Proof Sketch. Membership in NP is obvious. For the

hardness part we use the problem of directed Hamilton

path, which is NP-complete [6, p. 199].

Assuming that story understanding is an easy (i.e.,

tractable) task, this result implies that the formaliza-

tion of the problem is still too general to account for

the structure of the domain. It is desirable to iden-

tify restrictions that lead to polynomial algorithms for

temporal projections in this domain, but there do not

seem to be natural and obvious such conditions.

However, it should be noted that story understand-

ing most probably involves more than can be expressed

in our formalism. It seems plausible that plan recog-

nition is one crucial part in story understanding and

that abduction in general plays a vital role in such

a task. Since we cannot express any of these phe-

nomena, it seems to make not much sense to specu-

late about the complexity of this task. What seems

to be clear, however, is that story understanding is

more than temporal projection and that most prob-

ably other mechanisms than temporal projection are

responsible for inferring the outcome of a story.

5 Conclusions

We have previously observed that plan validation is

polynomial for the class of coherent, unconditional

plans although temporal projection is NP-hard for such

plans. We have also observed that planning is also

polynomial in a severly restricted case where temporal

projection is NP-hard. Continuing from these results

we have shown that there is at least one more inter-

esting planning problem for which optimal plans can

be derived in polynomial time, namely the SAS-PUS

convertible problem. This also implies that optimal

planning is tractable for a simple setting of the blocks

world problem. We have also found that story under-

standing is polynomial in some cases where temporal

projection is NP-hard. Although this positive result

does not apply to important generalizations like un-

conditional event systems, it is most likely the case

that there is more to story understanding than just

temporal projection. Consequently, adding to our pre-

vious �ndings that temporal projection does not seem

to be the basis of plan validation this seems to be

equally true of planning and story understanding.

As a �nal remark, it should be noted that the criti-

cisms expressed in this paper are possible only because

Dean and Boddy [4] made their ideas and claims very

explicit and formal.
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