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Abstract

We consider di�erent methods of optimiz-

ing the classi�cation process of terminologi-

cal representation systems, and evaluate their

e�ect on three di�erent types of test data.

Though these techniques can probably be

found in many existing systems, until now

there has been no coherent description of

these techniques and their impact on the per-

formance of a system. One goal of this paper

is to make such a description available for fu-

ture implementors of terminological systems.

Building the optimizations that came o� best

into the kris system greatly enhanced its ef-

�ciency.

1 INTRODUCTION

Terminological representation systems can be used to

represent the taxonomic and conceptual knowledge of

a problem domain in a structured and well-formed

way. To describe this kind of knowledge, one starts

with atomic concepts (unary predicates) and roles (bi-

nary predicates), and de�nes more complex concepts

and roles using the operations provided by the con-

cept language of the particular formalism. In addition

to this concept description formalism, most termino-

logical representation systems also have an assertional

component, which can be used to express facts about

a concrete world.

Of course, it is not enough to have a system that just

stores concept de�nitions and assertional facts. The

system must also be able to reason about this knowl-

edge. An important inference capability of a termi-

nological representation system is classi�cation. The

classi�er computes all subsumption relationships be-

tween concepts, i.e., the subconcept-superconcept re-

lationships induced by the concept de�nitions. In this

paper we consider only optimizations for the classi�-

cation process. We do not take into account problems

that are speci�c to assertional reasoning. This concen-

tration on the terminological component is partially

justi�ed by the fact that this is the part that partakes

in most reasoning activities of almost all systems|

which means that the e�ciency of this reasoning com-

ponent is crucial for the overall behavior of the system.

The �rst terminological representation system, kl-

one

[

Brachman and Schmolze, 1985

]

, was an imple-

mentation of Brachman's work on structured inheri-

tance networks

[

Brachman, 1977

]

. In the last decade

many knowledge representation systems based on

these ideas have been built, for example back

[

Pelta-

son, 1991

]

, classic

[

Patel-Schneider et al., 1991

]

,

kandor

[

Patel-Schneider, 1984

]

, kl-two

[

Vilain,

1985

]

, k-rep

[

Mays et al., 1991

]

, krypton

[

Brach-

man et al., 1985

]

, kris

[

Baader and Hollunder, 1991

]

,

loom

[

MacGregor, 1991

]

, meson

[

Edelmann and Ows-

nicki, 1986

]

, nikl

[

Schmolze and Mark, 1991

]

, sb-one

[

Kobsa, 1991

]

, and yak

[

Cattoni and Franconi, 1990

]

.

Moreover, formal aspects of terminological represen-

tation languages have been thoroughly investigated,

with the highest emphasis having been placed on the

decidability and complexity of the subsumption prob-

lem (see, e.g.,

[

Levesque and Brachman, 1987; Nebel,

1988; Schmidt-Schau�, 1989; Patel-Schneider, 1989;

Nebel, 1990b; Schmidt-Schau� and Smolka, 1991;

Donini et al., 1991a; Donini et al., 1991b

]

). As a result

of these investigations, it is known that subsumption

determination is at least NP-hard or even undecidable

for reasonably expressive languages. The developers

of terminological representation systems usually have

reacted to this problem in one of the following two

ways. On the one hand, there are systems such as

classic which support only a very limited terminolog-

ical language, but employ almost complete reasoning

methods. On the other hand, systems such as loom

provide for a very powerful language, but the reason-

ing is incomplete, which means that not all existing

subsumption relationships are detected.

The only system that does not make this compromise,

i.e., that provides complete algorithms for a very ex-

pressive concept description language, is kris. Ob-

viously, this means that kris will need exponential



time for worst case examples which, on the one hand,

are not expressible in the less expressive systems, and

which are, on the other hand, treated more e�ciently,

but less completely, by systems with fast and incom-

plete algorithms. However, it is not a priori clear

whether this also implies that kris has to be less ef-

�cient for \typical" knowledge bases. In particular, it

might at least be fast in cases where its full expressive

power is not used, or where incomplete algorithms are

still complete. The empirical analysis of terminolog-

ical representation systems described in

[

Heinsohn et

al., 1992

]

seems to preclude this possibility, though.

kris turned out to be much slower than, for exam-

ple, classic, even for knowledge bases that are in the

scope of classic's concept language, and for which

classic's subsumption algorithm is complete.

One aim of the present paper is to demonstrate that

this bad performance of kris is not mainly due to the

use of complete subsumption algorithms, but instead

to the fact that the tested version was the �rst imple-

mentation of an experimental system where e�ciency

considerations only played a minor role. For this pur-

pose we shall consider possible optimizations of the

classi�cation process on three di�erent levels. The op-

timizations on the highest level are independent of the

fact that what we are comparing are concepts de�ned

by a terminological language. On this level, classi-

�cation is considered as the abstract order-theoretic

problem of computing a complete representation of a

partial ordering (in our case the subsumption hierar-

chy) by making as few as possible explicit compar-

isons (in our case calls of the subsumption algorithm)

between elements of the underlying set (in our case

the set of all concepts occurring in the terminology).

Optimizations on the next level still leave the sub-

sumption algorithm unchanged, but they do employ

the fact that we are not comparing abstract objects

but instead structured concepts. At this level sub-

sumption relationships that are obvious consequences

of this structure can be derived without invoking the

subsumption algorithm. On the third level, the ac-

tual subsumption algorithm is changed so that it can

bene�t from the information provided by subsumption

relationships which have previously been computed.

The e�ects these optimizations have on the classi�ca-

tion process are evaluated on three di�erent sets of

test data. As in

[

Heinsohn et al., 1992

]

we consider

both existing knowledge bases used in other projects

and randomly generated knowledge bases whose struc-

ture resembles those of the real knowledge bases. Since

the �rst level of optimizations can be done in an ab-

stract order-theoretic setting, these optimizations are

also evaluated on randomly generated partial orderings

(see

[

Winkler, 1985

]

for a description of the generation

process we have used).

It should be noted that we do not claim that all the

presented optimizations are novel. Most optimiza-

tions can probably be found in many of the exist-

ing systems (see e.g.

[

Lipkis, 1982; MacGregor, 1988;

Peltason et al., 1989; Woods, 1991; Ellis, 1991

]

). How-

ever, until now it was not possible to �nd a coherent

description of all of them, and there were no empirical

studies on their exact e�ects. A second motivation for

this work is to make such a description available for

future implementors of terminological representation

systems.

2 COMPUTING THE

SUBSUMPTION HIERARCHY

In the �rst level of optimizations we are concerned

with computing the concept hierarchy induced by the

subsumption relation. More abstractly, this task can

be viewed as computing the representation of a partial

ordering. For a given partial ordering

1

� on some set

P , � shall denote the precedence relation of�, i.e.,� is

the smallest relation such that its reexive, transitive

closure is identical with �. Obviously, x � y i� x � y

and there is no z di�erent from x and y such that

x � z � y. If x � y, we say that x is a successor of

y and y is a predecessor of x. Similarly, if x � y, we

say that x is an immediate successor of y and y is an

immediate predecessor of x.

Given a set X and a partial ordering � on X, comput-

ing the representation of this ordering on X amounts

to identifying � on X. (If � is a total ordering, this

task is usually called sorting.) The basic assumption

here is that the partial ordering is given via a compar-

ison procedure, and that the comparison operation is

rather expensive. For this reason, the complexity of

di�erent methods to compute the precedence relation

is measured by counting the number of comparisons.

Of course, the number of other operations should not

be too high as well.

In our case, X is the set of concepts de�ned in a ter-

minological knowledge base, and � is the subsump-

tion relation between these concepts. The assumption

that the subsumption test is the most expensive oper-

ation is justi�ed by the known complexity results for

the subsumption problem

[

Donini et al., 1991a

]

. To be

more precise, the subsumption relation is only a quasi-

ordering, i.e., it need not be antisymmetric. For the

following discussion, this is mostly irrelevant, however.

There is only one place in the algorithms where this

fact has to be taken into account.

The worst case complexity of computing the represen-

tation of a partial ordering on a set with n elements is

obviously O(n

2

) because it takes n � (n � 1) compar-

isons to verify that a set of n incomparable elements

is indeed a at partial order. Since subsumption hi-

erarchies typically do not have such a \pathological"

1

A partial ordering is a transitive, reexive, and anti-

symmetric relation.

2



structure, considerably less than n � (n � 1) compar-

isons will almost always su�ce.

Below, we describe and analyze four di�erent meth-

ods to identify the representation of a partial order-

ing, namely, the brute force method, the simple traver-

sal method, the enhanced traversal method, and the

chain insertingmethod. Average case analyses of these

methods seem to be out of reach since one does not

know enough about the structure of \typical" termi-

nological knowledge bases, and since it is not even

known how many di�erent partial orders exist for a

given number of elements

[

Aigner, 1988

]

. For this rea-

son, the di�erent methods are compared empirically.

All methods we describe are incremental, i.e., assum-

ing that we have identi�ed the precedence relation

�

i

for X

i

� X, the methods compute for some el-

ement c 2 X � X

i

the precedence relation �

i+1

on

X

i+1

= X

i

[ fcg. The two most important parts of

this task are the top search and the bottom search.

The top search identi�es the set of immediate pre-

decessors in X

i

for a given element c, i.e., the set

X

i

#c := fx 2 X

i

j c � xg. Symmetrically, the bot-

tom search identi�es the set of immediate successors

of c, denoted by X

i

"c.

To be more precise, the procedures for top search that

we will describe below compute the set fx 2 X

i

j c �

x and c 6� y for all y �

i

xg, which in most cases is the

set X

i

#c. Because the subsumption relation is only a

quasi-ordering, there is one exception. The concept c

can be equivalent to an element x of X

i

, i.e., c � x

and x � c. In this case, the top search procedures

will yield fxg instead of X

i

#c. To take care of this

case, we test x � c whenever the top search procedure

yields a singleton set fxg. If this test is positive, c is

equivalent to x, and we know that X

i

#c = X

i

#x, and

X

i

"c = X

i

"x, which means that we don't need the

bottom search phase. Otherwise, the result of the top

search procedure is in fact X

i

#c.

Given the set X

i

#c, X

i

"c, and �

i

, it is possible to

compute the precedence relation �

i+1

on X

i+1

= X

i

[

fcg in linear time. In fact, one just has to add �-links

between c and each element ofX

i

#c, and between each

element ofX

i

"c and c. In addition, all�-links between

elements of X

i

"c and X

i

#c have to be erased.

2.1 THE BRUTE FORCE METHOD

The top search part of the brute force method can be

described as follows:

1. Test c � x for all x 2 X

i

.

2. X

i

#c is the set of all x 2 X

i

such that the test

succeeded and for all y �

i

x the test failed.

The bottom search is done in the dual way.

This method obviously uses 2 � jX

i

j comparisons for

the step of inserting c in X

i

. Summing over all steps

leads to n� (n�1) comparison operations to compute

the representation of a partial ordering for n elements.

Further, this is not only the worst-case, but also the

best-case complexity of this method.

2.2 THE SIMPLE TRAVERSAL METHOD

It is obvious that many of the comparison operations

in the brute force method can be avoided. Instead of

testing the new element c blindly with all elements in

X

i

, in the top search phase the partial ordering can be

traversed top-down and in the bottom search phase

bottom-up, stopping when immediate predecessors or

successors have been found. This leads us to the spec-

i�cation of the simple traversal method.

The top search starts at the top

2

of the already com-

puted hierarchy. For each concept x 2 X

i

under con-

sideration it determines whether x has an immediate

successor y satisfying c � y. If there are such suc-

cessors, they are considered as well. Otherwise, x is

added to the result list of the top search.

In order to avoid multiple visits of elements of X

i

and

multiple comparisons of the same element with c, the

top search algorithm described in Figure 1 employs

one label to indicate whether a concept has been \vis-

ited" or not and another label to indicate whether the

subsumption test was \positive," \negative," or has

not yet been made. The procedure top-search gets

two concepts as input: the concept c, which has to be

inserted, and an element x of X

i

, which is currently

under consideration. For this concept x we already

know that c � x, and top-search looks at its direct

successors with respect to �

i

. Initially, the procedure

is called with x = >. For each direct successor y of x

we have to check whether it subsumes c. This is done

in the procedure simple-top-subs?. Since our hierarchy

need not be a tree, y may already have been checked

before, in which case we have memorized the result

of the test, and thus need not invoke the expensive

subsumption procedure subs?. The direct successors

for which the test was positive are collected in a list

Pos-Succ. If this list remains empty, x is added to the

result list; otherwise top-search is called for each pos-

itive successor, but only if this concept has not been

visited before along another path.

The bottom search can be done again in the dual way.

It is interesting to note that this top search is in prin-

ciple the same as the one described by Lipkis

[

Lipkis,

1982

]

, who implemented the �rst classi�cation algo-

rithm for kl-one. The bottom search described by

Lipkis, however, is more e�cient than the one given

here.

2

We assume that our concept hierarchies always contain

a top element > and a bottom element ?.

3



top-search(c,x) =

mark(x,\visited")

for all y with y �

i

x do

if simple-top-subs?(y,c)

then Pos-Succ Pos-Succ [ fyg

�

od

if Pos-Succ is empty

then Result fxg

else for all y 2 Pos-Succ do

if not marked?(y,\visited")

then Result Result [ top-search(c,y)

�

od

�

simple-top-subs?(y,c) =

if marked?(y,\positive")

then Result true

elsif marked?(y,\negative")

then Result false

elsif subs?(y,c)

then mark(y,\positive")

Result true

else mark(y,\negative")

Result false

�

�

�

Figure 1: Top search phase of the simple traversal method

2.3 THE ENHANCED TRAVERSAL

METHOD

Although the simple traversal method is a big advan-

tage compared with the brute force method (see Fig-

ure 5 (a)), it still does not exploit all possible informa-

tion. First, during the top search phase, we can take

advantage of tests that have already been performed.

Second, in the bottom search phase, we can use the

information gained during the top search as well.

Of course, a dual strategy is also possible, i.e., per-

forming the bottom search before the top search and

exploiting the information gathered during the bottom

search phase. Analyzing Figure 5, it becomes quickly

obvious that this strategy would be less e�cient, how-

ever. In fact, for the simple traversal method|where

the top and bottom phase are done in a symmetric

way|the top search phase turns out to be a lot faster.

Thus it is better to start with this phase because the

information gained thereby can then be used to speed

up the slower bottom search phase.

When trying to take advantage of tests that have al-

ready been performed during top search one can either

concentrate on negative information (i.e., that a sub-

sumption test did not succeed) or on positive informa-

tion (i.e., that a subsumption test was successful).

To use negative information during the top search

phase one has to check whether for some predecessor

z of y the test c � z has failed. In this case, we can

conclude that c 6� y without performing the expensive

subsumption test

[

MacGregor, 1988

]

. In order to gain

maximumadvantage, all predecessors of y should have

been tested before the test is performed on y. This can

be achieved by using a modi�ed breadth-�rst search

where the already computed hierarchy is traversed in

topological order, as described by Ellis

[

1991

]

. Alter-

natively, one can make a recursive call whenever there

is a predecessor that has not yet been tested. This

is what the procedure enhanced-top-subs? described

in Figure 2 does. If we replace the call of simple-top-

subs? in top-search by a call of enhanced-top-subs?,

we get the top search part of the enhanced traversal

method.

enhanced-top-subs?(y,c) =

if marked?(y,\positive")

then Result true

elsif marked?(y,\negative")

then Result false

elsif for all z with y �

i

z

enhanced-top-subs?(z,c)

and subs?(y,c)

then mark(y,\positive")

Result true

else mark(y,\negative")

Result false

�

�

�

Figure 2: Top search phase of the enhanced traversal

method. The procedure top-search is adopted from

the simple traversal method, but instead of simple-

top-subs? it calls enhanced-top-subs?

The enhanced top search procedure just described

makes maximumuse of failed tests. Alternatively, it is

possible to use positive information. Before checking

c � y, one can look for successors z of y that have

passed the test c � z

[

MacGregor, 1988

]

. If there ex-

ists such a successor, one can conclude that c � y

without performing an actual subsumption test. Al-

though we are only interested in minimizing the num-

ber of comparison operations, it should be noted that

4



instead of searching for a successor that has passed the

test it is more e�cient to propagate positive informa-

tion up through the subsumption hierarchy. This can

be achieved by an easy modi�cation of the procedure

simple-top-subs?. When the call \subs?(y,c)" yields

true, not only y is marked \positive," but so are all of

y's predecessors. Obviously, this technique cannot be

combined with the enhanced top search described in

Figure 2 since it reduces the number of subsumption

tests only if there are predecessors which have not yet

been tested, and enhanced top search tests all prede-

cessors before making a subsumption test.

Neither of these alternatives is uniformly better than

the other one, which can be seen by considering the

examples described in Figure 3 and 4.
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Figure 3: The new element c is a direct successor of y

In the �rst example, the top-search using negative in-

formation makes n+1 tests: it �rst tests x

1

, then goes

to y, but before testing it, it tests all its direct pre-

decessors, i.e., x

2

; : : : ; x

n

. The top search using posi-

tive information makes two tests: �rst x

1

and then y;

the positive result of this second test is propagated to

x

2

; : : : ; x

n

.
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Figure 4: The new element c is a direct successor of

y

1

, but not a successor of y

2

, x

1

; : : : ; x

n

In the second example, the top search using negative

information needs only two tests: �rst it tests y

1

, then

goes to x

1

, but before testing x

1

its direct predecessor

y

2

is tested. The negative result of this test prevents

x

1

; : : : ; x

n

from being tested. The top search using

positive information tests n + 2 nodes: �rst y

1

, then

all its successors x

1

; : : : ; x

n

, and �nally y

2

.

However, we have observed signi�cant performance

di�erences for the two di�erent top search strategies.

For the random knowledge bases, the method using

positive information was only slightly better than the

simple traversal method (less than 5%). For this rea-

son, we have also considered a \hybrid method" which

propagates positive information up, and negative in-

formation down the hierarchy (but does not test all

predecessors before testing a node). Propagating neg-

ative information down is again achieved by an easy

modi�cation of simple-top-subs?. When the call of

\subs?(y,c)" yields false, not only y is marked \neg-

ative," but all of y's successors. The hybrid method

turned out to be a lot better than just propagating pos-

itive information, but it still needed slightly more tests

(approx. 5%{10%) than the enhanced top search for

all but one of the random knowledge bases. On �ve of

the six realistic knowledge bases the \hybrid method"

was insigni�cantly faster than the enhanced top search

(less than 1%). On the remaining realistic KB, the hy-

brid method needed 10% more comparisons. Although

these results do not seem to be conclusive in favor of

the \hybrid method" or the enhanced top search, it is

obvious that the use of negative information leads to

a signi�cantly greater reduction of comparisons than

the use of positive information.

Now we turn to the bottom search phase of the en-

hanced traversal method. Of course, optimizations

dual to the ones described for the top search can be

employed here. In addition, the set X

i

#c can be used

to severely cut down the number of comparisons in the

bottom search phase. As mentioned by Lipkis

[

1982

]

,

the search for immediate successors of c can be re-

stricted to the set of successors ofX

i

#c. In fact, the set

of candidates for X

i

"c is even more constrained. Only

elements that are successors of all x 2 X

i

#c can be im-

mediate successors of c

[

Ellis, 1991

]

. This optimization

is achieved by an easy modi�cation of the procedure

enhanced-bottom-search (which is dual to enhanced-

top-search): the test \marked?(y,\negative")" is aug-

mented to \marked?(y,\negative") or y is not a succes-

sor of all x 2 X

i

#c." The remaining problem is how to

implement the second part of this test. One possibility

is to mark the successors of the elements of X

i

#c in an

appropriate way, and then test these labels. Another

possibility, which we have used in our tests, is to equip

each concept in X

i

with a list of all its predecessors in

X

i

, and test whether X

i

#c is contained in the list of

predecessors of y.

As a result of this optimization, the number of neces-

sary comparison operations can be cut down to a frac-

tion compared with the simple bottom search strat-

egy. Interestingly, we observed a further reduction of

comparison operations in case of the real knowledge

bases when searching top-down starting at X

i

#c in-

stead of searching bottom-up. For the random knowl-

edge bases, no such di�erence was observed, however.

The e�ects of the simple and enhanced traversal
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Figure 5: Number of comparison operations relative to brute force method for random knowledge bases
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method for the random knowledge bases and the real-

isitc knowledge base as test data are displayed in Fig-

ures 5 and 6. These graphs present the number of nec-

essary comparisons relative to the brute force method

for the top search and the bottom search phase, as well

as for the entire classi�cation process.

2.4 THE CHAIN INSERTING METHOD

Sorting a set of elements that is linearly ordered can

be either done by incrementally searching the already

ordered sequence linearly or by using binary search. In

the former case, we inevitably end up with quadratic

complexity, while in the latter case O(n � logn) is a

possibility. Of course, it seems attractive to transfer

the latter technique to our problem, an idea that leads

to the chain inserting method.

In order to specify the method, we �rst de�ne the no-

tion of a chain covering of a partial ordering. A chain

covering is a partition of a partial ordering into chains,

i.e., totally ordered subsets. Provided we have a chain

covering of the set X

i

, it is possible to identify the sets

X

i

#c and X

i

"c by binary search in all chains. For a

given chain C

j

of the covering X

i

= C

1

[ � � � [ C

m

,

binary search is used to �nd the least predecessor and

the greatest successor of c in C

j

. Since the underlying

ordering � is only a partial ordering on X, the new

element c to be inserted into the chain C

j

need not

be comparable with all elements of C

j

. For this rea-

son one needs two binary search phases for each chain.

The �rst one asks c � x, and treats negative answers

as if they would mean c > x. This phase yields the

least predecessor of c in C

j

. The other phase is dual,

and yields the greatest successor of c in C

j

. The set
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of these least predecessor (resp. greatest successors)

for all chains of the covering yields a superset of X

i

#c

(resp. X

i

"c). The set X

i

#c (resp. X

i

"c) is obtained by

eliminating the elements which are not minimal (resp.

maximal) with respect to �

i

. As a further optimiza-

tion, propagation of positive and negative information

of successful and of failed tests in the existing sub-

sumption hierarchy is used to make some of the explicit

subsumption tests during binary search superuous,

after one or more chains have already been searched

through.

We have also considered a \hybrid" method that em-

ploys chain inserting for long chains and enhanced

traversal afterwards. The idea here is that by binary

search in long chains one gets rather quickly into the

\center" of the partial ordering, from which propaga-

tion of positive and negative information should have

the greatest e�ect.

It is, of course, advisable to use chain coverings with

a minimal number of chains. Unfortunately, the com-

putation of minimal chain coverings is nontrivial and

takes more than quadratic time

[

Jungnickel, 1990

]

.

Nevertheless, simple heuristics permit the incremental

construction of chain coverings that are almost opti-

mal. The heuristic we have used to update the chain

covering when a new element c is inserted proceeds as

follows. After the sets X

i

#c and X

i

"c have been com-

puted, c is inserted in the longest chain satisfying one

of the following conditions:

1. Binary search has yielded both a least predecessor

and greatest successor in the chain, and they are

successive elements of the chain. In this case, c is

inserted between these two elements in the chain.

2. Binary search has yielded a least predecessor (or

greatest successor) in the chain, and it is the least

(resp. greatest) element of the chain. In this case,

c is inserted below (resp. above) this element in

the chain.

If there is no chain satisfying one of these conditions,

a new chain consisting of c is created. In our experi-

ments, the chain coverings obtained this way were less

than 10% suboptimal.

The empirical results concerning the performance of

the chain inserting method are not conclusive. To our

surprise, the chain inserting method turned out to be

less e�cient than the enhanced traversal method on

the random and real knowledge bases, even though it

is still a lot better than the simple traversal method.

The \hybrid" version using chain inserting for long

chains and enhanced traversal afterwards also turned

out to be less e�cient than the pure enhanced traver-

sal method. On the other hand, for tests on randomly

generated partial orders the chain inserting method in

some cases showed a much better performance than

the enhanced traversal method. A reason for this be-

havior could be that, compared to the realistic knowl-

edge bases we used in our tests, the randomly gener-

ated partial orders have a much higher connectivity

(which means that propagation of positive and neg-

ative information has more e�ect) and permit longer

chains (which makes binary search more important).

The chain inserting method may thus become more in-

teresting for knowledge bases de�ning a relatively deep

hierarchy. Additionally, it seems possible to exploit the

chain covering in order to implement storage compres-

sion techniques as described by Jagadish

[

1989

]

.

3 OBVIOUS SUBSUMPTION

RELATIONSHIPS

In this section we describe some further techniques

for avoiding subsumption tests by exploiting relations

which are obvious when looking at the syntactic struc-

ture of concept de�nitions.

3

These pre-tests require

only little e�ort but can speed up the classi�cation

process signi�cantly. We consider three di�erent opti-

mizations which apply to di�erent stages of the classi-

�cation process.

The �rst technique can be used prior to the top search.

It applies when the description of the concept c that

we want to insert is conjunctive (which is the case for

the majority of concepts, in particular if we consider

the existing real knowledge bases). If this description

mentions x explicitly as a conjunct, then it is obviously

the case that c � x. We call such concepts x told sub-

sumers of c. Of course, if x is also a conjunctively

de�ned concept, it may have told subsumers as well,

and these (and their told subsumers, etc.) can be in-

cluded into the list of told subsumers of c. It is rather

easy to compile this list while reading in the concept

de�nitions. The information that c is subsumed by its

told subsumers can be propagated through the exist-

ing hierarchy (X

i

;�

i

) prior to the top search, e.g., by

pre-setting the markers used in the traversal method

to \positive" for the told subsumers and all their pre-

decessors. A prerequisite for this optimization tech-

nique to be e�ective is that the told subsumers of c

are already contained in X

i

. This can be achieved by

inserting concepts following the so-called \de�nition-

order." This order can be formally de�ned as follows:

We say that a concept x directly uses a concept y i� y

occurs in the de�nition of x. Let \uses" be the tran-

sitive closure of \directly uses." Then x comes in the

de�nition-order after y if x uses y.

Assuming that concepts are inserted in the subsump-

tion hierarchy following the de�nition-order, another

optimization can be applied. The bottom search phase

can be completely avoided if a primitive concept (i.e.,

a concept that is described by giving only necessary

3

These techniques are probably used in all systems, see,

e.g.

[

Peltason et al., 1989

]

.
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conditions) has to be classi�ed. In fact, such a con-

cept c can only subsume the bottom concept and con-

cepts whose de�nitions use c. Since the second type of

possible subsumees is not yet present in the actual hi-

erarchy when inserting along the de�nition-order, the

result of the bottom search is just the bottom con-

cept ?. Considering the fact that in realistic KBs

the majority of concepts (60%-90%) are primitive, this

optimization can save most of the subsumption calls

during the bottom search phase. Combining the two

optimization techniques led to a saving of 10% to 20%

with respect to the pure enhanced traversal method

for the realistic knowledge bases. In case of the ran-

dom knowledge bases, the savings where even greater,

as can be seen from Figure 7.
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Figure 7: Number of necessary comparisons when ex-

ploiting obvious subsumption relations relative to pure

enhanced traversal method for random KBs

A �nal optimization technique can be used as a pre-

test before calling the subsumption algorithm. It

makes use of the fact that a concept c is subsumed

by a primitive concept x if, and only if, the completely

expanded form of c contains the \primitive component

of x" (see

[

Nebel, 1990a, p. 54{56

]

) as a conjunct. By

extracting and caching the \primitive components" of

all concepts, it becomes possible to check whether a

subsumption relation is possible by comparing the sets

of primitive components. If this test gives a negative

result, the subsumption algorithm need not be called.

Although such a test overlaps with computations the

subsumption algorithm does, it is much faster than the

subsumption test. For this reason, this pre-test pays

o� if most of the subsumption calls can be avoided,

which was indeed the case for our test data. Our ex-

periments indicate that the number of calls of the sub-

sumption algorithm can be again reduced by 50%-60%,

if this technique is applied.

4 THE SUBSUMPTION

ALGORITHM

In this section we consider two possible optimizations

of the subsumption algorithm, and describe the e�ects

they have on the performance of classi�cation for our

test knowledge bases. Let us �rst reconsider the two

types of subsumption algorithms usually implemented

in terminological systems.

In almost all terminological representation systems

other than kris structural subsumption algorithms are

employed (e.g. classic, loom, back). Such algo-

rithms basically proceed as follows. First, the concepts

are normalized, i.e., they are transformed into equiva-

lent normal forms. Subsumption between normalized

concepts is a kind of structural comparison where each

subexpression of the �rst concept must have a counter-

part in the other concept. This algorithmic technique

allows one to develop e�cient subsumption algorithms

which are easily shown to be sound. However, for ex-

pressive terminological languages these algorithms are

usually not complete, and it is not clear how the tech-

nique could be extended in order to build complete

structural subsumption algorithms.

Using a di�erent paradigm, in the past years sound

and complete subsumption algorithms for a large class

of terminological languages have been developed (e.g.

[

Schmidt-Schau� and Smolka, 1991; Hollunder et al.,

1990

]

). Most of these algorithms are designed as sat-

is�ability checking algorithms. These algorithms are

model generation procedures, and are similar to �rst-

order tableaux calculus, with the main di�erence that

the speci�c structure of concept descriptions allows

one to impose an appropriate control that ensures ter-

mination. Since a concept A subsumes a concept B if,

and only if, :A u B is not satis�able, i.e., there does

not exist an interpretation which interprets :AuB as

a non-empty set, a satis�ability algorithm in fact can

be used to solve the subsumption problem. In order

to check whether a given concept C is satis�able, the

tableaux-based algorithm tries to generate a �nite in-

terpretation in which C is interpreted as a non-empty

set. This generation process is complete in the sense

that if it fails, i.e., an obvious contradiction occurs, we

can conclude that C is not satis�able; otherwise C is

satis�able. An obvious contradiction in the model gen-

erating process occurs, for example, if some element is

constrained to be both instance of a \primitive com-

ponent" and its complement|which is impossible.

It is well-known that subsumption of concepts de�ned

in a cycle-free terminology can be reduced easily to

subsumption of concept terms which do not refer to

other concept de�nitions of the terminology (so-called

expanded concept terms)

[

Nebel, 1990a

]

. For concep-

tual simplicity both types of subsumption algorithms

are usually described in the literature as taking ex-

panded concept terms as arguments, which precludes
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the exploitation of previously computed subsumption

relationships.

4.1 THE OPTIMIZATIONS

However, almost all terminological representation sys-

tems take advantage of previously computed subsump-

tion relationships. To illustrate how this can be done

for a structural subsumption algorithm, suppose that

C andD are normalized concept descriptions. As men-

tioned above, structural subsumption between C and

D means to �nd for each subexpression C

0

of C a cor-

responding subexpression D

0

of D. Often, in turn,

these subexpressions have to be tested for subsump-

tion. In case C

0

and D

0

are concept names of possibly

de�ned concepts, and we already know a subsump-

tion relationship between C

0

and D

0

, it is not neces-

sary to call the subsumption algorithm recursively for

(the expanded form of) C

0

and D

0

. Thus, it is rather

natural and straightforward to incorporate the use of

already computed subsumption relations into a struc-

tural subsumption algorithm. It should be noted that

it is an essential requirement not to completely expand

the concept de�nitions before checking subsumption.

Further, it is necessary to classify the concepts accord-

ing to the \de�nition-order" mentioned in the previous

section.

In contrast to other terminological systems, kris em-

ploys a satis�ability algorithm to determine subsump-

tion relationships between concepts. Since a satis�a-

bility algorithm does not recursively call subsumption

algorithms but satis�ability algorithms, it is not obvi-

ous how to exploit previously computed subsumption

relationships. A closer look, however, reveals that a

satis�ability algorithmmay detect a contradiction ear-

lier during model generation if previously computed

subsumption relationships are taken into account. To

see this, suppose that we already know that a de�ned

concept A subsumes a de�ned concept B. If during the

model generation an element is constrained to be both

instance of :A and B, a contradiction can be detected

without expanding the de�nitions of A and B. Again,

this approach only works if the concept de�nitions are

not expanded before starting to check satis�ability.

If expansion is done \by need" during the satis�ability

test, one has to decide in which order to expand the

concept names. It is easy to see that this order may

have considerable impact on the runtime behavior. For

example, assume that we are testing AuB for satis�-

ability where in the TBox A is de�ned by a very large

concept description and B is de�ned to be :A u C.

If B is expanded �rst, the contradiction between A

and :A is detected at once. On the other hand, if A

is expanded �rst, detecting the contradiction between

the large descriptions associated with A and its nega-

tion may be rather time-consuming, depending on the

structure of the description.

One way of avoiding this problem is to expand con-

cept names according to the inverse of their de�nition-

order, which in the above example would mean that we

expand B before A, because the de�nition of B refers

to A. Of course, this means that for each expansion

operation one has to go through the list of all expand-

able names, and look for a maximal one with respect

to the de�nition-order. For our tests we have used an-

other solution, which avoids searching for a maximal

name, but may use more space. Here one expands in

arbitrary order, but when a name is expanded it is not

removed, but just marked as expanded. If, in our ex-

ample, A is expanded before B, we then still have the

name A, and as soon as B is expanded it yields the

contradiction with :A.

In order to gain experience in how to optimize the

satis�ability algorithm to be employed in kris, we im-

plemented the following three versions.

1. The �rst one takes completely expanded con-

cept descriptions as input. Since these de-

scriptions do not contain names of de�ned con-

cepts, obvious contradictions can only be de-

tected between \primitive components," i.e., con-

cept names which are not de�ned in the TBox.

2. The second one successively expands the concept

descriptions during model generation, but keeps

the names, as described above. This allows the al-

gorithm to detect obvious contradictions not only

between primitive components but also between

names of de�ned concepts.

3. The third version is a re�nement of the second

one in that already computed subsumption rela-

tionships are taken into account when looking for

obvious contradictions.

4.2 EMPIRICAL RESULTS AND

ANALYSIS

It turns out that the �rst version is signi�cantly slower

than the second one, a result we did expect. The main

reason for this behavior is that the number of recur-

sive calls of the satis�ability algorithm is reduced due

to obvious contradictions detected between names of

de�ned concepts. As a consequence, the runtime of

the second version is reduced by 40-60% relative to

the �rst version (see Figure 8, which displays the re-

sults for the random knowledge bases).

A result we did not expect is that the behavior of the

third version is no better than of the second, which

means that trying to exploit already computed sub-

sumption relationships does not pay o�. The reason

for this behavior seems to be that|at least for the test

data|only a few contradictions are detected by using

already computed subsumption relationships. This is

indicated by the fact that the number of recursive calls

of the satis�ability algorithm does not signi�cantly de-
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Figure 8: Runtime and number of recursive calls of the second and third version's satis�ability algorithm relative

to the algorithm taking completely expanded concept terms as input (�rst version)

crease when going from the second to the third version.

However, the test of whether a set of negated and un-

negated concept names is contradictory w.r.t. already

computed subsumption relationships is more complex

than just searching for complementary names, which

explains that the third version's runtime behavior is

even slightly worse than the second one's (cf. Figure 8).

This result is all the more surprising since using com-

puted subsumption relationships during classi�cation

is an optimization technique employed by most termi-

nological systems. The reason why it may pay o� for

other systems could be that these systems �rst normal-

ize, and during this normalization phase auxiliary con-

cepts may be introduced. For example, assume that

C is de�ned by the description 8R:A u 8R:B, and D

by 8R:A. The normalization procedure may introduce

a new concept name E, de�ne it as A u B, and mod-

ify the de�nition of C to 8R:E. Now the subsump-

tion relationship between A and the auxiliary concept

E|which is found �rst if the terminology is classi�ed

according to the de�nition-order|immediately entails

that D subsumes C. Thus classi�cation of the termi-

nology with the auxiliary concepts allows one to ex-

ploit previously computed subsumption relationships

more often. On the other hand, it has the disadvan-

tage that in general a lot more concepts have to be

classi�ed.

Another interesting behavior we observed is due to

the interaction between di�erent optimization tech-

niques. The optimizations described in the previous

two sections try to avoid subsumption tests, whereas

the present section is concerned with speeding up the

subsumption test. Ideally, one could expect that these

optimizations are independent. This means that the

overall speedup factor is the product of the speedup

factors of the individual optimizations. This can only

be true if the optimizations apply uniformly to all sit-

uations, however.

If the optimizations apply to special cases only, sub-

sumption avoidance optimizations and subsumption

test optimization may aim at similar special cases

and lead to the situation that subsumption tests are

avoided which have neglectable computational costs in

any case.

If we take the second or third version's satis�abil-

ity algorithm, the exploitation of obvious subsump-

tion relationships caused by conjunctive de�nitions,

i.e., the �rst optimization technique mentioned in Sec-

tion 3, does no longer speed up the classi�cation pro-

cess signi�cantly. This is due to the fact that such

subsumption relationships can now be easily detected

by the satis�ability algorithms. For example, let C

be a concept that is de�ned to be the conjunction of

C

1

; : : : ; C

m

, where the C

i

are de�ned concepts as well.

The obvious subsumption relationship between C

i

and

C is immediately detected by the second and third ver-

sion of the satis�ability algorithm, due to an obvious

contradiction between C

i

and :C

i

.

5 CONCLUSION

We have described and analyzed di�erent optimization

techniques for the classi�cation process in terminolog-

ical representation systems. Interestingly, two of the

most promising techniques, namely, the chain inserting

method for computing the representation of a partial

order and the exploitation of already computed sub-

sumption relations in the subsumption algorithm, did

not lead to the expected performance increase in case

of realistic knowledge bases.

As a result of our empirical analysis, the optimiza-

tion techniques that came o� best were incorporated

in the kris system. Whereas the unoptimized version
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was orders of magnitude slower than the fastest system

tested in

[

Heinsohn et al., 1992

]

, the new version has

now a runtime behavior similar to that of the other

systems on the test data used there.
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bases

	

BACK

3

CLASSIC

�

LOOM

2

MESON

�

KRIS (new)

400 800 1200 1600 2000

500

1000

1500

2000

No. of concepts

R

u

n

t

i

m

e

s

e

c

	

	

	

	

�
(

(

�

!

!

�

�

�

�










�

Z

Z

�

�

�

�

�

�










�

�

�

�

�

�

�

�

�

�

3

3

3

3

3

3

3

3

3

3

�

�

�

�

�

�

�

�

�

�

2

2

Figure 10: Runtime performance for large random

knowledge bases

Figure 9 displays the runtime of the new kris ver-

sion for the realistic knowledge bases and contrasts

them with the runtime �gures given in

[

Heinsohn et

al., 1992

]

. Figure 10 gives the results for large random

knowledge bases.

4

It should be noted, however, that all the knowledge

bases used in the test are formulated using quite lim-

ited terminological languages. An interesting open

problem is the development of further optimization

techniques for more powerful terminological languages

4

The description of the runtime behavior of the systems

in

[

Heinsohn et al., 1992

]

refers to system versions as of

1990 and does not necessarily reect the performance of

more recent versions.

containing also disjunction and negation and of spe-

ci�c optimization techniques for assertional reasoning.
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