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Introduction
Metis is a sequential optimal planner that implements three
components on top of the Fast Downward planning sys-
tem (Helmert 2006). The planner performs an A∗ search
using the following three major components:

• an admissible incremental LM-cut heuristic (Pommeren-
ing and Helmert 2013),

• a symmetry based pruning technique (Domshlak, Katz,
and Shleyfman 2012), and

• a partial order reduction based pruning technique based
on strong stubborn sets (Wehrle and Helmert 2012).

Each of those techniques was extended to support condi-
tional effects. In addition, Metis features a flexible invoca-
tion of partial order reduction based pruning. In what fol-
lows, we describe each of these components in detail.

Background
We consider planning tasks Π = 〈V ,O, s0, G,Cost〉 cap-
tured by the standard SAS+ formalism (Bäckström and Klein
1991; Bäckström and Nebel 1995) with operator costs, ex-
tended by conditional effects. In such a task, V is a set
of finite-domain state variables, each with domain D(v).
Each complete assignment to V is called a state, and S =∏

v∈V D(v) is the state space of Π. The state s0 is the initial
state of Π. We sometime refer to a single variable assign-
ment as to fact. Furthermore, the goal G is a partial assign-
ment to V , where a state s is a goal state, iff G ⊆ s1. The
set O is a finite set of operators. Each operator o is given by
a pair 〈pre, effs〉. The precondition pre(o) is a partial assign-
ment to V that defines when the operator is applicable. The
set effs(o) is a set of conditional effects e, each given by a
pair 〈cond, eff〉 of partial assignments to V called conditions
and effects. The condition cond(e) defines when the condi-
tional effect triggers. For a shorter presentation, we assume
that eff assigns a value to exactly one variable. An effect
that assigns a value to more variables can be split into mul-
tiple effects. Effects that do not assign a value at all can be
safely removed. Finally, Cost : O → N0 is a real-valued,

1We slightly abuse the notation here, treating (partial) assign-
ments as sets of facts.

non-negative operator cost function. Applying an applica-
ble operator o in state s results in a state denoted by s[o].
The state s[o] is obtained from s by applying all triggered
conditional effects of o, setting the value of the state vari-
able to the value in eff(e). State variables that do not appear
in triggered effects receive their values from the state s. By
the transition graph TΠ = 〈S,E〉 of Π we refer to the edge-
labeled digraph induced by Π over S: if o ∈ O is applicable
in state s, then TΠ contains an edge (s, s[o]; o) from s to s[o],
labeled with o.

Heuristic
Metis uses a variant of the admissible LM-cut heuristic
(Helmert and Domshlak 2009). In particular, we use the
local incremental LM-cut heuristic, hiLM-cut

local (Pommerening
and Helmert 2013) extended to support conditional effects.
In the following, we provide a short rehash how the compu-
tation of standard LM-cut works, and afterwards discuss the
two extensions.

The computation of standard LM-cut is done in rounds.
Each round discovers a set of operators L such that every
plan must contain at least one operator from L. Such a set
is called a disjunctive action landmark but since we do not
use any other kinds of landmarks, we will just use the term
landmark in the following.

Each round of the LM-cut algorithm does the following
steps:

1. Compute the hmax values (Bonet and Geffner 2001) of all
variables. If the goal has an infinite hmax value, the task
is unsolvable and the heuristic computation stops with a
heuristic value of ∞. If the goal has an hmax value of 0,
the algorithm stops with the current heuristic value (which
is initialized as 0).

2. Define the justification graph as the graph J = (F,E)
with the set of facts F as nodes and a directed, weighted
edge in E for every effect of every operator. The edge for
effect e of operator o starts from a precondition of o with
maximal hmax value, ends in the single fact in eff(e) and
is labeled with o and weighted withCost(o). All nodes in
the justification graph that have a path to the goal where
all edges have weight 0 belong to the goal zone Fg ⊆ F .



The cut C contains all edges that end in Fg and start in a
node that can be reached in J without traversing a node in
Fg . The set of operators that occur as labels of edges in C
is a landmark L of the task.

3. The cost of L, Cost(L), is the minimum over the cost of
all operators contained in L. This reflects that at least the
cost of one operator in Lmust be used. Reduce the cost of
each operator in L by Cost(L) and increase the heuristic
value by Cost(L). This induces a cost partitioning and
makes the final estimate admissible.

4. Discard L.

After the last round, all operator costs are reset to their
original value.

Support for Conditional Effects
The original LM-cut algorithm is only defined for tasks
without conditional effects. We extended its definition to
handle conditional effects by considering them in the def-
inition of the justification graph in step 2. and conserva-
tively reducing the operator costs in step 3. (Keyder, Hoff-
mann, and Haslum 2012). Following the naming convention
of Röger, Pommerening, and Helmert (2014), we call this
heuristic hLM-cut

basic .
Our extended definition of the justification graph handles

unconditional effects as before, and includes an edge for ev-
ery conditional effect. The edge for an effect e of an opera-
tor o ends in the single fact in eff(e) and starts in a fact from
pre(o)∪cond(e) with maximal hmax value. It is labeled with
o and weighted with Cost(o). The cut C and the landmark
L are defined as before.

We call the reduction in cost conservative because the cost
of each operator can only be counted once. Once an opera-
tor o is part of a cut, the cost of o is reduced, and all effects
of o are cheaper. In the presence of conditional effects the
optimal relaxed plan can contain operators more than once
which our heuristic would not be able to detect. For this
reason our heuristic no longer dominates the hmax heuristic
(Keyder, Hoffmann, and Haslum 2012). Röger, Pommeren-
ing, and Helmert (2014) describe a variant of LM-cut that
dominates hmax but this is not implemented in Metis.

The original LM-cut heuristic (without support for condi-
tional effects) hLM-cut

standard is the same as hLM-cut
basic on tasks without

conditional effects but can be implemented more efficiently
because the involved data structures have less memory and
time overhead. Metis thus includes both implementations
and uses hLM-cut

basic only on tasks where at least one operator
has a conditional effect.

Incremental Computation
A set of operators L is a landmark for state s if every plan
from s must use one operator from L. If we apply an opera-
tor o /∈ L to s, the resulting state s′ can only have plans that
are suffixes of plans for s. That is, if we add o in front of
any plan π for s′, we get a plan for s. Since every plan for
s must use an operator from L and o /∈ L, every plan for s′
must also use an operator from L and L is also a landmark
for s′.

In particular, this means that during the expansion of a
state all landmarks that do not mention the applied operator
are also landmarks of the successor. If we know landmarks
L of the parent state when we calculate the heuristic value
for a newly generated state, we can compute the set of land-
marks L′ = {L ∈ L | o /∈ L} of all landmarks that do not
mention the applied operator o. For each L ∈ L′ we then
reduce the operator costs and increase the heuristic value as
defined in step 3. and continue with the regular LM-cut al-
gorithm.

Storing the discovered landmarks for all generated states,
can make the heuristic computation much faster but also re-
quires a lot of memory (Pommerening and Helmert 2013).
Instead, we use the local incremental computation method
hiLM-cut

local which recomputes the landmarks of a state before it
is expanded. This is done with a regular (non-incremental)
LM-cut computation that skips step 4. The landmarks are
then stored temporarily, used for the incremental heuris-
tic computation of the generated children and are then dis-
carded. With this method the search will do one non-
incremental heuristic computation for every expanded state
and one incremental computation for every generated state.
Since there usually are a lot more generated than expanded
states and the incremental computation is faster, the time for
the additional non-incremental computation can be amor-
tized.

Symmetry Reduction
The symmetry pruning part of the Metis planner modifies the
A∗ algorithm to prune symmetrical search nodes. For that,
we needed to (a) develop a mechanism identifying symmet-
rical states, and (b) exploit the information in the search. In
what follows, we describe these two in detail.

Symmetries and Conditional Effects
In what follows, we discuss the symmetries of of the state
transition graph TΠ of a SAS+ planning task Π that are cap-
tured by automorphisms (isomorphisms to itself) of TΠ. As
the state transition graph TΠ is not (and cannot be) given ex-
plicitly, automorphisms of TΠ must be inferred from the de-
scription of Π. The specific method that Pochter, Zohar, and
Rosenschein (2011) proposed for deducing automorphisms
of TΠ exploits automorphisms of a certain graphical struc-
ture (colored graph), the problem description graph (PDG),
induced by the description of Π. Later, Domshlak, Katz, and
Shleyfman (2012) slightly modified the definition, in partic-
ular extending it with a support for non-uniform cost oper-
ators. Here we extend the definition of Domshlak et al. to
support conditional effects.

In the regular SAS+ setting, the PDG has one node for
each operator, with incoming edges from variable values in
the operator precondition, and outgoing edges to variable
values in the effect. The operator nodes are colored accord-
ing to their costs. When conditional effects come into the
picture, an additional node is introduced for each conditional
effect. The edges for such nodes are as follows. An incom-
ing edge is added from each variable value in the effect’s
condition. An outgoing edge is added to the variable value



in the effect. In addition, to preserve the connection between
the conditional effect to its operator, an incoming edge is
added from the operator node. The color of the conditional
effect nodes is the same as the color of the corresponding
operator node.

Automorphisms of the PDG define isomorphisms on the
states S of the planning task Π, such that if a state s is
mapped into s′, then s and s′ are symmetrical. Given a set
of automorphisms of the PDG, Pochter et al. define a proce-
dure, mapping each state to a canonical symmetrical state.
Obviously, there can be multiple ways to define canonical
states. Pochter et al. have chosen a local search procedure,
comparing states by their variable values. The procedure ter-
minates with a local minimum. Our implementation adopts
their approach with a minor modification to the local search
procedure.

Search Algorithm
In order to exploit the information about the problem’s sym-
metries, Domshlak, Katz, and Shleyfman (2012) propose a
sound and complete optimal search algorithm (hereafter re-
ferred to as DKS), extending A∗ as follows. First, DKS ex-
tends the duplicate elimination mechanism to consider sym-
metrical states as duplicates. To do so, DKS requires stor-
ing an additional information for each node – the canoni-
cal state. Two states are then said to be duplicates, if their
canonical state is the same. Unfortunately, using such du-
plicate elimination comes at a certain cost. When reopening
is required, the parent relation, if updated, loses the connec-
tivity property. Thus, once a goal state is reached, it is no
longer possible to retrace a path from the goal state by the
parent relation. Therefore, DKS introduced a procedure ex-
ploiting the symmetry information for reconstructing a plan
following the parent relation, without requiring its connec-
tivity.

To overcome the aforementioned requirement of storing
an additional state per node for duplicate elimination, we in-
troduce a simple modification of the DKS search algorithm.
It is called orbit search, and it differs from DKS by storing
only the canonical state per node. These canonical states de-
fine orbits, sets of (symmetrical) states that have the same
canonical state – thus the name orbit search. Informally,
orbit search searches in the space of orbits instead of the
space of states. Note that due to the plan reconstruction pro-
cedure of DKS, the implementation of orbit search is ex-
tremely simple. The syntactical difference between A∗ and
orbit search is minor, the states are replaced by their canon-
ical representatives when stored in the open and close lists.
Our preliminary experiments have shown an advantage of
orbit search over DKS, and the less complex implementa-
tion makes it especially attractive.

Partial Order Reduction
In addition to symmetry pruning, Metis features a prun-
ing technique based on strong stubborn sets for planning
(Wehrle and Helmert 2012), which is a state-based prun-
ing technique based on partial order reduction (POR). In a
nutshell, POR attempts to reduce the size of the reachable

state space by pruning redundant applications of operator se-
quences. In the following, we describe strong stubborn sets,
and their extension to support operators with conditional ef-
fects.

Strong Stubborn Sets
Let Π be a SAS+ planning task without conditional effects.
For a state s in Π, a strong stubborn set Ts in s is a set of op-
erators that satisfy the following three requirements: First,
Ts contains the operators of a disjunctive action landmark.
Second, for all operators o in Ts that are applicable in s, Ts
contains all operators that interfere with o. Informally, oper-
ators o and o′ interfere if o falsifies a precondition of o′, or
vice versa, or o and o′ write to a common variable with dif-
ferent values (see below for a definition in presence of oper-
ators with conditional effects). Third, for all non-applicable
operators o in Ts, Ts contains a necessary enabling set for o
in Ts. A necessary enabling setN for an inapplicable opera-
tor o in s is a set of operators such that every plan πs from s
to a goal state that includes o must include an operator from
N before the first occurrence of o in πs. We compute strong
stubborn sets Ts in s with a fixed-point iteration. Generat-
ing successors only based on the applicable operators in Ts
(instead of all operators applicable in s) preserves complete-
ness and optimality of A∗.

Metis features a rather straight-forward implementation
of strong stubborn sets, including some optimizations to re-
duce the induced computational overhead.

• Previous implementations of strong stubborn sets com-
pute the interference relation between operators in a pre-
processing step and cache the result (Alkhazraji et al.
2012; Wehrle et al. 2013). However, in domains with
many operators, the precomputation can run out of mem-
ory due to the quadratic number of operator pairs.
Metis computes the relation for operator interferences
(“which pairs of operators interfere?”) and achievers
(“which fact is added by which operator?”) on-the-fly and
caches the result until a limit of 100 million entries in total
is exceeded. In this case, we stop caching, and compute
the missing information on-the-fly without storing it.

• In order to avoid unnecessary computational overhead in-
duced by the fixed-point iteration for computing strong
stubborn sets, we switch off this computation if we do not
get significant pruning. In more detail, if it turns out that
the number of node generations is reduced by less than
one percent compared to not using POR after at least 1000
node expansions, then the computation of strong stubborn
sets is disabled for the rest of the search on this task.

• Necessary enabling sets for o and s are computed by se-
lecting a precondition fact f of o that is unsatisfied in
s, and including all operators that set f to true. Metis
uses a straight-forward instantiation by greedily selecting
the first unsatisfied precondition fact of o. This strategy
has been proposed by Alkhazraji et al. (2012), and corre-
sponds to the static Fast Downward ordering investigated
by Wehrle and Helmert (2014). Analogously, the disjunc-
tive action landmark used to start the fixed-point iteration



to compute strong stubborn sets is obtained by selecting
all achievers of an unsatisfied goal fact.

In the following, we describe the extension of the above
implementation to deal with conditional effects.

Support for Conditional Effects
Metis treats operators with conditional effects in a conserva-
tive (and straight-forward) way based on the following mod-
ifications.

• Definition of operator interference: Operator o =
〈pre, effs〉 disables operator o′ = 〈pre′, effs′〉 iff there is
at least one conditional effect e = 〈cond, eff〉 ∈ effs(o)
such that eff falsifies a precondition fact in pre′ or a
fact in the effect condition cond′ for a conditional effect
〈cond′, eff ′〉 ∈ effs(o′). In other words, the conditions
of the conditional effects are handled exactly as precondi-
tions. Operators o and o′ have conflicting effects iff there
is a conditional effect e = 〈cond, eff〉 ∈ effs(o) and a con-
ditional effect e′ = 〈cond′, eff ′〉 ∈ effs(o′) such that eff
and eff ′ modify the same variable with a different value.
Operators o and o′ interfere if o disables o′, or vice versa,
or o and o′ have conflicting effects.

• During the iterative computation of a strong stubborn set
Ts in state s, for all operators o = 〈pre, effs〉 applica-
ble in s, we add all operators that interfere with o as for
SAS+ planning tasks. In addition, for conditional effects
e = 〈cond, eff〉 ∈ effs(o) with unsatisfied effect condi-
tion cond in s, the set of achievers for an unsatisfied fact
of cond is added. Adding such sets is required for preserv-
ing the soundness of the algorithm. Intuitively, such sets
correspond to necessary enabling sets for non-applicable
operators as compiling away conditional effects would re-
sult in corresponding non-applicable operators.

Finally, in domains that do not feature conditional effects,
Metis additionally performs pruning based on active opera-
tors (Wehrle et al. 2013).

Interaction of Components
The partial order reduction technique is orthogonal to the
other two techniques. There are no special considerations to
consider when combining it with either one or both of them.

However, combining the symmetry based pruning tech-
nique with the incremental computation of the heuristic
function requires some extra considerations. If a node with
state s is expanded in orbit search, the state s′ of the suc-
cessor generated for operator o is not necessarily the result
of applying o to s. Orbit search instead uses the canonical
representative of s[o] as the state s′. Calculating landmarks
for s and re-using those that do not mention o as landmarks
for s′ thus is no longer valid.

We handle this issue in the following way: during the ex-
pansion of state s, we compute the landmarks for s, then
generate the actual successor s[o] and incrementally com-
pute its heuristic value. We then look up s′, the canonical
representative of s[o]. Because of the symmetry between
the two states, the heuristic value of s[o] can also be used

as an admissible estimate for s′. The search algorithm gen-
erates the successor node with the state s′ but the heuristic
value hiLM-cut

local (s[o]). The state s[o] is not stored permanently
to save memory.
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Röger, G.; Pommerening, F.; and Helmert, M. 2014. Opti-
mal planning in the presence of conditional effects: Extend-
ing LM-Cut with context splitting. In ICAPS 2014 Workshop
on Heuristics for Domain-Independent Planning.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Proceedings of the 22nd International Conference on Auto-
mated Planning and Scheduling (ICAPS), 297–305.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Pro-



ceedings of the 24th International Conference on Automated
Planning and Scheduling (ICAPS). To appear.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller,
R. 2013. The relative pruning power of strong stubborn
sets and expansion core. In Proceedings of the 23rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 251–259.


