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Abstract

We adapt the relaxation heuristics Amax, Pada and hgr to inter-
val based numeric relaxation frameworks, combining them
with two different relaxation techniques and with two differ-
ent search techniques. In contrast to previous approaches, the
heuristics presented here are not limited to a subset of nu-
meric planning and support action costs.

Numeric planning allows to model numeric quantities such
as physical properties (e.g. velocity) and resources (e.g. fuel
level) in addition to the propositional properties of classi-
cal planning. Numeric planning with instantaneous actions
is expressible with PDDL2.1, layer 2 (Fox and Long 2003).

We investigate adaptations of the delete relaxation heuris-
tics hmax, Rada and hgp to numeric planning. In contrast to
other state-of-the art approaches (Hoffmann 2003; Scala,
Haslum, and Thiébaux 2016; Scala et al. 2016) we are in-
terested in adaptations which offer heuristic guidance for all
numeric planning tasks including actions with non-linear ef-
fects and non-uniform action cost. Notably, we are also in-
terested in computing hgg, a heuristic basing its estimate on
the extraction of valid relaxed plans.

Tractable heuristics are polynomial-time in either the in-
put or, at least, in the output size. A challenge of numeric
planning are non-idempotent actions: applying the same nu-
meric effect to a state more than once can yield a new
successor every time. Therefore, interval relaxation based
heuristics are only polynomial in the length of a shortest
relaxed plan (Hoffmann 2003). Recently, Aldinger et al.
Aldinger, Mattmiiller, and Gobelbecker (2015) proposed an
interval-based relaxation framework for numeric planning
that captures arbitrary many applications of a numeric action
in one step. The plan existence problem in this repetition re-
laxation is polynomial in the input for acyclic tasks.

We compare the two relaxation methods (interval or rep-
etition relaxation) with the planning graph method and pri-
ority queues as search techniques for relaxed reachability.
Finally, we present a generalization to the marking method
of relevant operators used by hpp, which explicates target
values in the intervals to extract relaxed plans.
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Numeric Relaxation Heuristics

The relaxation heuristicS Amax, haga €Stimate the cost
~v(v) to achieve the propositions v for each achiev-
ing action a by 7(v):= min,(y(v),v(a) + y(pre(a))),
where ~(pre(a)) is a cost estimate of a set of propo-
sitions, which is the most expensive proposition cost
y(pre(a)) := max,cpre(a) 7(v) for Ama, and the sum of all
preconditions y(pre(a)) := >, ¢ pre(a) V() fOr Raga.

In numeric planning, we have to assign costs estimates to
variable-value pairs as well. These numeric facts are implicit
preconditions on variables that appear in the expressions & of
explicit preconditions £ > 0 or of numeric effects v o= &.
Numeric relaxation heuristics have to consider a bounded
number of numeric facts which ensure that values in the pre-
condition enable the required values in the effect. To restrict
this number, we discuss a planning graph based and a pri-
ority queue based approach. Both are motivated by ways of
computing the cost formulas in classical planning.

A relaxed planning graph restricts the number of consid-
ered numeric facts to one variable-value pair for each vari-
able in the state layers of the graph. For interval based plan-
ning, several parallel actions can alter the same variable, in
which case the convex union of the individual results is used.
The length of a shortest relaxed plan restricts the maximal
number of layers required until the goal formula is satisfied
for the first time, thus bounding the number of considered
facts polynomially in the output. While most state-of-the art
planners use this approach, interval relaxation based heuris-
tics can overestimate the cost of numeric facts, making /.«
inadmissible. The reason is that a fact can be achieved at a
better cost in a deeper layer in the planning graph. For nu-
meric planning, no a priori bound can be given on how deep
the better value could be found. Opposed to relaxed classical
planning, interval relaxed facts will usually not reach a fix-
point, and their cost is determined at their first occurrence.

A different approach to restrict the considered numeric
facts is to use a generalized Dijkstra algorithm for estimating
the fact or fact set costs. Facts are processed according to a
priority queue storing the cost to achieve them. As other ac-
tions can alter a variable while a new value is still in the pri-
ority queue, the considered numeric facts are convex unions
of the effects values reachable at enqueue time and the vari-
able’s value at dequeue time. The approach is incompati-
ble with interval relaxation based heuristics as unboundedly



many cheap actions could be processed before relevant ones.
Even repetition relaxed actions are not entirely idempotent.
The result of a numeric effect depends on the variables in
the assigned expression. If the induced dependency graph is
acyclic, variables reach a fix-point in order of the topology of
this graph. However, if cheap actions depend on many other
more expensive actions which reside in topologically higher
layers, the topologically lower variables could be enqueued
exponentially more often. The heuristic becomes tractable if
the actions which have an implicit precondition on a variable
are only enqueued after the changes triggered from topolog-
ically higher variables have been processed. This means that
variables in the lower layers have to wait for variables in
a higher layer even though they could be more expensive.
As the values achieved by the topologically higher variables
might not be required, the cost can be overestimated. While
this is acceptable for h,qq, hmax requires admissibility. Thus,
we compute hp,x in two phases: we determine maximally
reachable intervals with topology blocking in the first phase
and use these maximally reachable intervals in the second
phase, where blocking is not required, as now action se-
quences are idempotent. In the presence of cycles in the de-
pendency graph we introduce auxiliary variables for vari-
ables that appear in a cycle. Cycle breaker actions can then
reinsert the values in a controlled manner, ensuring that run-
ning through the cycle becomes pseudo-idempotent.

The hgg heuristic computes a relaxed plan, and uses the
cost of this plan as heuristic estimate. As in classical plan-
ning, this plan is computed regressively by marking required
facts and actions based on the h,qq estimate. Numeric plan-
ning can improve upon h,qq even more than in classical plan-
ning by not having to fully enable implicit preconditions, as
numeric facts do not necessarily have to enable the whole
reachable interval. Therefore, marking a numeric fact in-
volves explicating a farget values in these intervals.

The progression step generates a monotonically increas-
ing sequence of relaxed states that starts with point intervals
and satisfies the goal condition in the end. We want to ex-
plicate target values in these intervals so that the resulting
plan has minimal cost. The explication procedure has to re-
spect local target value constraints for each action, which
ensure that all implicit and explicit preconditions of the ac-
tion are satisfied and that the action achieves the desired val-
ues. These local target value constraints generate a set of
feasible sub-intervals, where each choice of an explicit tar-
get value can lead to some relaxed plan.

The global target value optimization problem is then an
optimization problem that selects target values in the feasi-
ble sub-intervals which minimize the cost of the resulting
relaxed plan. Each target value choice influences the local
target value constraints of all preceding states.

The local target value constraints ensure that for each nu-
meric effect of an action, all implicit and explicit precondi-
tions are satisfied in the relaxed state before the application
of the action, and that the execution of its numeric effects
enables the target values desired from the global optimiza-
tion component. Three basic target value conditions ensure
satisfaction a local target value constraint: Its explicit pre-
conditions have to be satisfied (1). This requires numeric ex-

pressions evaluate to a desired target value (2). Finally, the
numeric effects have to reach the desired target value (3).
These basic target value conditions then restrict the intervals
of the preceding state by sub-intervals containing feasible
selection choices for the global target value optimization.

The target value explication process selects locally
promising target values. The values of all variables have to
reach the point intervals at the end of the regression proce-
dure, making proximity to these starting values an indicator
for good target values. An exception to this rule occurs are
open intervals in the repetition relaxation. As open bounds
are only generated by contracting effects, values close to
open bounds can only be reached by applying the contrac-
tion repeatedly and it is advisable to keep a safety margin to
open interval bounds.

Experiments

We implemented a numeric extension (NFD) for the Fast
Downward planning system (Helmert 2006). We show ex-
periments for hgr in the two most promising combina-
tions of relaxation and “fact” selection scheme identified
in the previous section: the planning graph approach in an
interval relaxation h9' and the priority queue based ap-
proach in the repetition relaxation h?". We performed ex-
periments on various numeric domains comparing NFD with

Metric FF (MFF) (Hoffmann 2003) and two configurations

of ENHSP: subgoaling with redundant constraints ﬁzabgi

(Scala, Haslum, and Thiébaux 2016) and hagr (Scala et al.
2016). Our heuristics perform similar to Metric FF for the
planning domains that both planners can solve. Metric FF is
restricted to linear tasks and cannot find solutions for non-
linear cyclic problems such as jumpbot. ENHSP performs
often better, but it ignores action costs. There were no do-
main in the benchmarks that exploits this weakness. Table 1
shows the solved instances on selected numeric domains.

MFF ENHSP NFD
‘ ‘ hibat  hasr | hip i
counters (34) 7 2 4 7 6
jumpbot (20) 0 3 15 15 8
settlers (20) 9 0 0 0 3

Table 1: Solved instances on selected numeric domains
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