
The Jumpbot Domain for Numeric Planning

Johannes Aldinger
University of Freiburg, Germany

aldinger@informatik.uni-freiburg.de

Johannes Löhr
Airbus Defence and Space, Immenstaad, Germany

johannes.loehr@airbus.com

Abstract

The Jumpbot domain for numeric planning with in-
stantaneous actions models a walking robot that has to
reach a target region by jumping over water ditches. The
kinematic of the robot is modeled by its current position
and velocity vector. The planner has to reason about the
correct accelerations, rotations, velocities, jump posi-
tions and space for the deceleration. This domain de-
scription provides a set of benchmark instances for nu-
meric planning in an area which is underrepresented by
prevailing benchmarks: the use of numeric variables to
model physical properties as opposed to their use for
modeling resources.

Introduction
The Jumpbot domain offers a set of 20 benchmark in-
stances for numeric planning with discrete actions modeled
in PDDL2.1, layer 2 (Fox and Long 2003). The nu-
meric quantities are used to model physical quantities for a
simple walking robot scenario. The states are differentially
coupled “footprints” of the robot that follow the robot’s
kinematics. The planning problem consists of four numeric
variables: x, y, vx, vy which are used to describe position
and velocity of the robot. The task is to plan the step trace
from an initial position to a target region within a world as
shown in Figure 1: We depict the initial state by a red cross,
together with a velocity vector symbolizing the current ori-
entation and speed of the robot. Water is depicted by blue
waves and the solid ground by white surface. The robot is
only allowed to step on solid ground, but it may step or jump
over water ditches. The domain contains information about
the robot’s mass, velocity, momentum and acceleration ca-
pacities. The planner can use this information to generate
solutions to reach the goal by accelerating and jumping over
the water areas. This requires reasoning about the correct
accelerations and velocities, a correct jump position, and
enough space for the deceleration.

Numbers are mainly either used to express the available
quantity of a certain resource, or to describe physical quan-
tities such as position, speed or voltage. As the majority of
current benchmark problems focus on the use of numeric
variables to model resources, the Jumpbot domain fills
a gap by modeling a coupled system of linear differential
equations which arise in many real world problems. In the

x

y

G

initial pose

solid ground

water

goal region

Figure 1: Scenario description of Jumpbot instances

next section we cover the physical background of the mod-
eled problem. Afterwards, we illustrate the 20 benchmark
instances of the Jumpbot domain. Finally, we give advice
on how to create new Jumpbot instances.

Physical Foundation of the Jumpbot Domain
The numeric variables in the Jumpbot domain model linear
differential equations. A switched hybrid system captures
the evolution of a numeric state s(t) over time. The system,
in our scenario the robot, can switch between modes where
different physical forces take effect. In the case of planning,
applying an action implies that the system is switched to the
corresponding mode. The evolution of a numeric state under
a given mode can be expressed by

s(t+ δ) = Φm(δ)s(t) + Ψm(δ), (1)

where s(t) is the vector of numeric state variables, m is a
mode, δ the duration for which the mode is applied, Φm(δ) a
state transition matrix and Ψm a vector of state-independent
external influences. For numeric planning with instanta-
neous actions, the duration of an action is determined in ad-
vance, and we are only interested in the states in between



mode switches (in between actions). The predetermined du-
ration of the actions in the Jumpbot domain is still repre-
sented as action cost. The evolution of a state at time step k
with fixed actions is then

sk+1 = Φask + Ψa. (2)

The matrix Φa and vector Ψa are the homogeneous and
inhomogeneous solutions of the underlying continuous dy-
namics, and can be computed from time invariant dynamic
matrices Am. While the required operations are expensive
they can be precomputed once when creating the planning
domain (cf. Löhr (2014) for more details). During planning,
only matrix sum and product have to be computed.

The Jumpbot domain contains six actions: step,
jump, accelerate, decelerate, steer left and
steer right. All actions (except jump) have a duration
δ of 0.5 seconds. The jump action is modeled to get over
obstacles in the current direction and has a step length of
δ = 1 second. Logical dependencies of the action sequences
are also involved. The steer right action cannot be fol-
lowed by a steer left action and vice versa. There has
to be at least one step into the current direction before turn-
ing to the opposite direction is allowed. Moreover, the jump
action can only be executed if the velocity in x or y direction
is larger than 2. The dynamics of the robot are captured by a
switched hybrid system. For the step and the jump action
a simple double integrator model is used. The velocities are
the time derivatives of the position in x and y direction are
given by

ẋ = vx and ẏ = vy. (3)

The robot can accelerate in the current direction by activa-
tion of both state feedback controllers

v̇x = kaccvx and v̇y = kaccvy (4)

and decelerate by the converse activation of both state feed-
back controllers

v̇x = −kdecvx and v̇y = −kdecvy. (5)

The robot can change the velocity vector towards the right
hand side by the application of the steering control laws

v̇x = ksteervy and v̇y = −ksteervx (6)

and to the left hand side by the application of the steering
control laws

v̇x = −ksteervy and v̇y = ksteervx. (7)

Equation 3 to 7 yield the state space differential sys-
tem ṡ = Ams, where s = (x, y, vx, vy)ᵀ and Am ∈
{Astep, Ajump, Aacc, Adec, Aright, Aleft}. The dynamic ma-

trices are given by

Astep = Ajump =
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


Aacc = Adec =

0 0 1 0

0 0 0 1

0 0 kacc 0

0 0 0 kacc




0 0 1 0

0 0 0 1

0 0 −kdec 0

0 0 0 −kdec


Aright = Aleft =

0 0 1 0

0 0 0 1

0 0 0 −ksteer

0 0 ksteer 0




0 0 1 0

0 0 0 1

0 0 0 ksteer

0 0 −ksteer 0


We choose the acceleration parameter kacc = 0.5, the de-

celeration parameter kdec = 2 and the steering parameter
ksteer = 1. This results in the corresponding state transition
matrices:

Φstep =


1.000 0.000 0.500 0.000

0.000 1.000 0.000 0.500

0.000 0.000 1.000 0.000

0.000 0.000 0.000 1.000



Φjump =


1.000 0.000 1.000 0.000

0.000 1.000 0.000 1.000

0.000 0.000 1.000 0.000

0.000 0.000 0.000 1.000



Φacc =


1.000 0.000 0.568 0.000

0.000 1.000 0.000 0.568

0.000 0.000 1.284 0.000

0.000 0.000 0.000 1.284



Φdec =


1.000 0.000 0.316 0.000

0.000 1.000 0.000 0.316

0.000 0.000 0.368 0.000

0.000 0.000 0.000 0.368



Φright =


1.000 0.000 0.479 −0.122

0.000 1.000 0.122 0.479

0.000 0.000 0.878 −0.479

0.000 0.000 0.480 0.878



Φleft =


1.000 0.000 0.479 0.122

0.000 1.000 −0.122 0.479

0.000 0.000 0.878 0.479

0.000 0.000 −0.480 0.878


The resulting set of actions that defines the domain model

is summarized in Table 1.
The velocity is only transformed linearly (scaled up by ac-

celeration, scaled down by deceleration, rotated by steering)
by the actions of the planning domain and therefore Ψa = 0
for all actions a. Thus, the initial state has to have an ini-
tial velocity, and the velocity vector determines the robot’s
viewing direction.

Despite the fact that the underlying dynamic system is
simplified, it inherently captures issues of the real world’s
physics. For instance, the radius when steering to the right



Name Precondition P Numeric Effect En Logic Effect El

step > Φstep s + Ψstep ¬right ∧¬left
accelerate > Φacc s + Ψacc ¬right ∧¬left
decelerate > Φdec s + Ψdec ¬right ∧¬left

jump v2
x + v2

y > 4 Φjump s + Ψjump ¬right ∧¬left
steer right ¬left Φright s + Ψright right
steer left ¬right Φleft s + Ψleft left

Table 1: Action list of the Jumpbot domain.

or to the left hand side depends on the velocity of the sys-
tem. Also the step size varies with the velocity of the robot.
We only check the modeled constraints at discrete steps and
neglect the continuous evolution of the system in the mean-
time, since jumping across the restricted areas in the state
space is explicitly allowed. In fact, the domain model may
corresponds to an over-simplified representation of a real-
world walking robot, but it serves as an interesting example
for a system with switched dynamics.

Benchmark Instances
In this section we illustrate the 20 benchmark instances used
in the Jumpbot domain. We give insights to the difficulties
which arise in the instances and visualize the scenarios in
order to make it more apparent where planners might fail.

G

Figure 2: Scenario “plain” (1)

The first scenario is depicted in Figure 2. The “plain”-
instance has no obstacles, but the planner has to steer
right in order to move towards the goal. While it is in-
tended to be a straightforward instance, some planners might
find it difficult that due to the lack of obstacles, the search
space is not as constrained as in the other problems.

The instances from Figure 3 introduce narrow water ob-
stacles. The ditches are near enough to step over unless
the speed of the robot is extremely low. Instances 3 (“two
ditches”) and 4 (“bent ditches”) make it more difficult to step
over the water because there are more constraints on feasible
step positions. This encourages planners to come up with a
plan where the robot jumps over at least one of the ditches.

Figure 4 introduces a set of instances which have a
“moat”, a water obstacle which is too wide to step over so
that the planner has to execute a jump action. Scenario 5 of-
fers enough space for acceleration and deceleration so that a
greedy approach can be successful. In the sixth instance, the
robot is looking away from the goal and about to fall into
the water. Still, if it manages to do a big left turn, it will
most likely have taken enough run to jump over the moat.
A problem is then to manage the remaining deceleration
space. This problem is taken to an extreme in the seventh
scenario “moat local minimum”: here the robot has to steer
away from the goal in order to build up enough momentum
to jump over the moat. This scenario misleads relaxation
based heuristics, because the initial velocity is near 0, the
x-position is already correct, and without the moat, the po-
sition in direction y is not that far from the goal. The robot
is stuck in a local minimum for relaxation heuristics.

The instances from Figure 5 play with the modeling pos-
sibilities of the Jumpbot domain. Scenario 8 is a chess-
board, which makes the planner to rather walk along diago-
nals than to jump around. Scenario “snake” (9) is a snake
which offers either the possibility to follow the long path
without jumping or to take a shortcut by jumping over the
loop. The “smiley” scenario 10 shows that also round obsta-
cles can be modeled. The mouth is a convex obstacle where
jumping is prohibited by the lack of space for deceleration.

Figures 6 and 7 depicts the instances used as benchmarks
in the dissertation of Löhr (2014). The instances vary only
in the initial pose of the robot and the location of the goal
zone.

Two scenarios with a “broken bridge” are shown in Fig-
ure 8. The robot has to jump over a wide water obstacle,
and the feasible jump positions are very restricted. While
the initial pose in the seventeenth scenario already guides
the planner towards the goal, it is harder to find the correct
jump position in scenario 18.

The benchmark set concludes with two hard “wharf” in-
stances depicted in Figure 9.

PDDL Encoding
In this section we explain the structure of the PDDL files
of the Jumpbot domain. As we cannot provide a tool to
generate instances, this section intends to give enough un-
derstanding of the domain to come up with new instances
any the less. As a running example we use the PDDL defi-
nition of the island scenarios 11 to 16.

The modeling of water obstacles is done using a derived
predicate crashed, a logic formula over comparisons of



arbitrary numeric expressions. For a more complex exam-
ple, we advise to look at the source code of Scenario “smi-
ley” (10). Some planners flatten nested logic formulas which
can result in an exponential blowup. Therefore, we advise
domain creators to introduce auxiliary predicates to simplify
complex water obstacles. For example consider the the def-
inition of the crashed predicate in Figure 10. The island
size is restricted to 10 x 10 modeled by the first four in-
equalities in the big disjunction (Lines 48–51). The “lake”
on the lower island is modeled in Line 52 and the “corner”
is “removed” from the lake in Line 53. Finally, The robot
may also not enter the area between y-coordinate 4 and 8
(Line 54), except the two salients (Lines 55–56) and the two
islands (Lines 57–58) which are modeled by auxiliary pred-
icates.

The actions are modeled as shown by means of the step
example in Figure 11: The only precondition of the step
action is that the robot is not crashed (Line 62). The numeric
effect is written in a form which makes the originating ma-
trix

Φstep =

 1.000 0.000 0.500 0.000
0.000 1.000 0.000 0.500
0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000


(the first four factors) and vector Ψ = (0, 0, 0, 0)ᵀ (the last
row) obvious (Lines 65–68). Lines 69–70 cover the propo-
sitional effects while Line 71 increases the special fluent
total-cost.

A sample problem file is shown in Figure 12. The vari-
ables are initialized to the numeric values which are depicted
in the scenario descriptions of the previous section. The goal
region is a simple conjunction again which defines a square
with a length of 0.5 and the velocity has to be close to 0
too. By altering the initial state and the goal location, new
instances can easily be generated while fixing the obstacles
from the domain file. Attention has to be paid that the ve-
locity vector (at least one of the velocities) is different from
zero.

A zip-file containin the 20 benchmark instances
of the Jumpbot domain can be found online here:
http://gki.informatik.uni-freiburg.de/
papers/aldinger-loehr-tr279.zip

References
[2003] Fox, M., and Long, D. 2003. PDDL2.1 : An Exten-

sion to PDDL for Expressing Temporal Planning Domains.
Journal of Artificial Intelligence Research 20 (JAIR 2003)
61–124.

[2014] Löhr, J. 2014. Planning in Hybrid Domains: Do-
main Predictive Control. Ph.D. Dissertation, University of
Freiburg, Germany.

Appendix

http://gki.informatik.uni-freiburg.de/papers/aldinger-loehr-tr279.zip
http://gki.informatik.uni-freiburg.de/papers/aldinger-loehr-tr279.zip


G
G G

Figure 3: Scenario “ditch” (2), “two ditches” (3) and “bent ditches” (4)

G
G

G

Figure 4: Scenario “moat” (5), “moat wrong viewing direction” (6) and “moat local minimum” (7)

G

G

G

Figure 5: Scenario “chessboard” (8), “snake” (9) and “smiley” (10)



G
G

G

Figure 6: Scenario “islands 1” (11), “islands 2” (12) and “islands 3” (13)

G

G

G

Figure 7: Scenario “islands 4” (14), “islands 5” (15) and “islands 6” (16)

G

G

Figure 8: Scenario “broken bridge easy” (17) and “broken bridge” (18)



G

G

Figure 9: Scenario “around the wharf easy” (19) and “around the wharf” (20)

47 (:derived (crashed)
48 (or (< x 0) ;; the first four disjunct terms
49 (> x 10) ;; model the 10 x 10 island
50 (< y 0)
51 (> y 10)
52 (and (> x 2) (< x 6) (> y 1) (< y 3) ;; the "lake" at the lower island
53 (or (> x 4) (> y 2)))
54 (and (> y 4) (< y 8) ;; the water area between the islands
55 (crashed-helper1) ;; the left salient
56 (crashed-helper2) ;; the right salient
57 (crashed-helper3) ;; the upper left tiny island
58 (crashed-helper4)))) ;; the lower right tiny island

Figure 10: PDDL code for the crashed predicate

60 (:action step
61 :parameters ()
62 :precondition (not (crashed))
63 :effect
64 (and
65 (assign x (+ (* 1 x) (+ (* 0 y) (+ (* 0.5 vx) (+ (* 0 vy) 0)))))
66 (assign y (+ (* 0 x) (+ (* 1 y) (+ (* 0 vx) (+ (* 0.5 vy) 0)))))
67 (assign vx (+ (* 0 x) (+ (* 0 y) (+ (* 1 vx) (+ (* 0 vy) 0)))))
68 (assign vy (+ (* 0 x) (+ (* 0 y) (+ (* 0 vx) (+ (* 1 vy) 0)))))
69 (not (left))
70 (not (right))
71 (increase (total-cost) 0.5)))

Figure 11: PDDL code for the step action



1 (define (problem p11-islands1)
2 (:domain jump-bot)
3

4 (:init
5 (= (x) 1)
6 (= (y) 9)
7 (= (vx) -0.5)
8 (= (vy) -1)
9 (not (right))

10 (not (left)))
11

12 (:goal
13 (and
14 (>= (x) 8)
15 (<= (x) 8.5)
16 (>= (y) 1.75)
17 (<= (y) 2.25)
18 (>= (vx) -0.2)
19 (<= (vx) 0.2)
20 (>= (vy) -0.2)
21 (<= (vy) 0.2)))
22

23 (:metric minimize (total-cost)))

Figure 12: PDDL code of a problem file


	Introduction
	Physical Foundation of the Jumpbot Domain
	Benchmark Instances
	PDDL Encoding
	Appendix

