
Complexity of Planning with Partial Observability

Jussi Rintanen
Albert-Ludwigs-Universiẗat Freiburg, Institut f̈ur Informatik

Georges-K̈ohler-Allee, 79110 Freiburg im Breisgau
Germany

Abstract

We show that for conditional planning with partial observ-
ability the existence problem of plans with success proba-
bility 1 is 2-EXP-complete. This result completes the com-
plexity picture for non-probabilistic propositional planning.
We also give new more direct and informative proofs for the
EXP-hardness of conditional planning with full observability
and the EXPSPACE-hardness of conditional planning with-
out observability. The proofs demonstrate how lack of full
observability allows the encoding of exponential space Tur-
ing machines in the planning problem, and how the neces-
sity to have branching in plans corresponds to the move to a
complexity class defined in terms of alternation from the cor-
responding deterministic complexity class. Lack of full ob-
servability necessitates the use of beliefs states, the number of
which is exponential in the number of states, and alternation
corresponds to the choices a branching plan can make.

Introduction
The computational complexity of many forms of AI plan-
ning is well known. The most important problem that has
been analyzed is that of existence of plans, in some cases
existence of plans having a certain success probability or re-
source consumption. Plan existence for classical planning
(deterministic, one initial state) is PSPACE-complete (By-
lander 1994). Conditional planning with nondeterministic
operators, several initial states and full observability is EXP-
complete (Littman 1997). Conditional planning with non-
deterministic operators and without observability (confor-
mant planning) is EXPSPACE-complete (Haslum and Jon-
sson 2000).

Associating probabilities with nondeterministic choices
and imposing a lower bound on plan’s success probability
make the problem more difficult. Without observability the
problem of existence of plans with success probability≥ c
is undecidable (Madaniet al. 2003). Both full observability
and restriction to exponentially long plan executions make
the problem decidable and bring it down to EXPSPACE and
below (Littmanet al. 1998; Mundhenket al. 2000).

The complexity of one important problem has remained
unknown until now. For probabilistic planning under par-
tial observability, the special case of success probability 1
is of great importance. The problem is decidable because
for reaching the goals with probability 1 the exact proba-

beliefs

PSPACE

branching beliefs

branching

2−EXP = AEXPSPACE

EXPSPACEEXP = APSPACE

Figure 1: Effect of branching and partial observability on
complexity of planning: classical planning is PSPACE-
complete, beliefs (partial observability) add space require-
ment exponentially, and branching (nondeterminism) adds
alternation.

bilities of nondeterministic events do not matter, and a fi-
nite discrete belief space can be used. In many applica-
tions plans with success probability anywhere strictly below
1 are not interesting. This is so especially in many engineer-
ing and manufacturing applications. This is in strong con-
trast to many optimizations problems typically expressed as
MDPs/POMDPs, for which existence of solutions is obvi-
ous, and the problem is to find a solution that is optimal or
close to optimal.

In this paper we show that for non-probabilistic (success
probability 1) partially observable planning the plan exis-
tence problem is 2-EXP-complete. We outline new proofs
of the EXP-hardness of conditional planning with full ob-
servability and EXPSPACE-hardness of conditional plan-
ning without observability, and obtain the 2-EXP-hardness
proof as a generalization of both of these two new proofs.
The proofs very intuitively explain the problem complexi-
ties in terms of the types of Turing machines simulated.

This paper completes the complexity picture of non-
probabilistic propositional planning in its most general
forms, as summarized in Figure 1. Transition from the state
space to the belief space leads to exactly an exponential in-
crease in space complexity. From classical planning to con-
formant planning this is from PSPACE to EXPSPACE, and
from nondeterministic full-information planning to nonde-
terministic planning with partial observability this is from
APSPACE = EXP to AEXPSPACE = 2-EXP. Similarly, tran-
sition from the deterministic to the corresponding nondeter-

1

ministic planning problem1 means a transition from a de-
terministic complexity class to the corresponding alternat-
ing complexity class; this corresponds to the introduction of
branches into the plans. From classical planning to nonde-
terministic full information planning this is from PSPACE
to APSPACE = EXP, and from conformant planning to gen-
eral partially observable planning this is from EXPSPACE
to AEXPSPACE = 2-EXP.

The structure of the paper is as follows. First we define al-
ternating Turing machines and explain the relations between
deterministic complexity classes and their alternating coun-
terparts, followed by a definition of the planning problems
we address. In the rest of the paper we analyze the computa-
tional complexity of the fully observable, unobservable and
partially observable planning problems, in first two cases
giving a new more direct hardness proof, and in the third
case we establish the complexity for the first time. Before
concluding the paper we discuss related work.

Preliminaries: Complexity Classes
In this section we define alternating Turing machines and
several complexity classes used in this paper.

Definition 1 An alternating Turing machine(ATM) is a tu-
ple 〈Σ, Q, δ, q0, g〉 where

• Q is a finite set of states (the internal states of the ATM),

• Σ is a finite alphabet (the contents of tape cells),

• δ is a transition functionδ : Q × Σ ∪ {|,2} →
2Σ∪{|}×Q×{L,N,R},

• q0 is the initial state, and

• g : Q → {∀,∃, accept, reject} is a labeling of the states.

The symbols| and2 are the left-end-of-tape and the blank
symbol, respectively. We require thats = | andm = R
for all 〈s, q′,m〉 ∈ δ(q, |) and anyq ∈ Q, that is, at the
beginning of the tape the movement is to the right and| may
not be overwritten. For〈s′, q′,m〉 ∈ δ(q, s) such thats ∈ Σ,
we requires′ ∈ Σ.

A configuration of a TM, consisting of the internal stateq
and the tape contents, isfinal if g(q) ∈ {accept,reject}.

The acceptance of an input string by an ATM is defined
inductively starting from final configurations that are accept-
ing. A final configuration is accepting ifg(q) = accept.
Non-final configurations are accepting if the state is univer-
sal (∀) and all the successor configurations are accepting or
if the state is existential (∃) and at least one of the succes-
sor configurations is accepting. Finally, an ATM accepts a
given input string if the initial configuration with initial state
q0 and the input string on the work tape is accepting.

A nondeterministic Turing machine (NDTM) is an ATM
without universal states. A deterministic Turing machine is
an NDTM with |δ(q, s)| = 1 for all q ∈ Q ands ∈ Σ.

1We can view conformant planning as deterministic planning in
the belief space, because the successor belief state uniquely deter-
mined by the action and the preceding belief state.

PSPACE is the class of decision problems solvable by de-
terministic Turing machines that use a number of tape cells
bounded by a polynomial on the input lengthn. Formally,

PSPACE=
⋃
k≥0

DSPACE(nk).

Similarly other complexity classes are defined in terms of
the time consumption (DTIME(f(n)), or time and space
consumption on alternating Turing machines (ATIME(f(n))
and ASPACE(f(n))) (Balcázaret al. 1988; 1990).

EXP =
⋃

k≥0 DTIME(2nk

)
EXPSPACE =

⋃
k≥0 DSPACE(2nk

)

2-EXP =
⋃

k≥0 DTIME(22nk

)
APSPACE =

⋃
k≥0 ASPACE(nk)

AEXPSPACE =
⋃

k≥0 ASPACE(2nk

)

There are many useful connections between these classes
(Chandraet al. 1981), for example

EXP = APSPACE
2-EXP = AEXPSPACE.

Preliminaries: Planning
We formally define the conditional planning problem.

Definition 2 Let A be a set of state variables. Aproblem
instancein planning is〈I, O,G, V 〉 whereI andG are for-
mulae onA respectively describing the sets of initial and
goal states,O is a set of operators〈c, e〉 wherec is a for-
mula onA describing the precondition ande is an effect,
andV ⊆ A is the set ofobservable state variables. Effects
are recursively defined as follows.

1. a and¬a for a ∈ A are effects.
2. e1∧· · ·∧en is an effect ife1, . . . , en are effects (the special

case withn = 0 is the empty conjunction>.)
3. c B e is an effect ifc is a formula onA ande is an effect.
4. e1| · · · |en is an effect ife1, . . . , en for n ≥ 2 are effects.

Abovee1 ∧ · · · ∧ en means that all the effectsei simulta-
neously take place. The notationc B e is for conditionality,
that is, effecte takes place ifc is true in the current state.
Nondeterministic effectse1| · · · |en mean randomly choos-
ing one of the effectsei.

Compound observations and observations dependent on
the last applied operator can be reduced in polynomial time
to the basic model defined above in which the same setV of
state variables is observable all the time.

Definition 3 Let A be a set of state variables. A problem
instance〈I,O,G, V 〉 onA is

1. fully observableif V = A,
2. unobservableif V = ∅,
3. partially observableif no restrictions onV are imposed.

Plans are directed graphs with nodes of degree 1 labeled
with operators and edges from branch nodes labeled with
formulae.

2

Definition 4 Let 〈I, O,G, V 〉 be a problem instance in
planning. A plan is a triple〈N, b, l〉 where

• N is a finite set of nodes,
• b ∈ N is the initial node,
• l : N → (O×N)∪ 2L×N is a function that assigns each

node an operator and a successor node〈o, n〉 ∈ O × N
or a set of formulae and successor nodes〈φ, n〉.
Only the observable state variablesV may occur in the
branch labelsφ. Nodes withl(n) = ∅ are terminal.

The definition of plan execution should be intuitively
clear. When a successor node of a branch node is chosen,
the result is undefined if more than one condition is true.

In this paper we do not discuss plans with loops (cycles.)
Loops are needed for some nondeterministic problems in-
stances as a representation of plans with unbounded execu-
tion length, like obtaining 12 by throwing dice repeatedly.
The complexity of the plan existence problem with or with-
out loops is the same, but simulations of alternating Tur-
ing machines become more complicated because existence
of looping plans does not exactly correspond to the accep-
tance criterion of alternating Turing machines.

Planning under Full Observability
Littman (1997) showed that the plan existence problem
of probabilistic planning with full observability is EXP-
complete. EXP-hardness was shown by reduction from the
gameG4 (Stockmeyer and Chandra 1979). The reduction
does not rely on exact probabilities, and hence also the non-
probabilistic problem is EXP-complete.

Here we sketch a new proof based on the equality EXP
= APSPACE. In Theorem 8 we generalize this proof and
the EXPSPACE-hardness proof of Theorem 7 to a 2-EXP-
hardness proof for the general partially observable problem.

Theorem 5 Planning with full observability is EXP-hard.

Proof: Sketch: The proof is a Turing machine simulation
like the PSPACE-hardness proof of classical planning (By-
lander 1994), but for the more powerful alternating Turing
machines, yielding hardness for EXP = APSPACE. The dif-
ference is caused by∀ and∃ states of the ATM. For∀ states,
the transition is chosen nondeterministically and a branch in
the plan chooses how execution continues thereafter, and for
∃ states the plan chooses the transition. The ATM accepts if
and only if there is a plan that reaches the goal states under
all nondeterministic choices. �

Testing plan existence is easily seen to be in EXP. This test
is performed by traversing the state space backwards starting
from D0 = G by computingDi+1 =

⋃
o∈O preimgo(Di) ∪

Di until Dn = Dn+1 for somen ≥ 0. If I ⊆ Dn, then a
plan exists. The number of states is exponential, and com-
putingDn is polynomial time in the number of states. The
preimage preimgo(B) of a setB of states with respect to an
operatoro is the set of states from which a state inB is al-
ways reached byo. Viewing operatorso ∈ O as relations on
the setS of states, we define preimgo(B) as

{s ∈ S|sos′ for somes′ ∈ B, sos′ for nos′ ∈ S\B}.

Planning without Observability
The plan existence problem in probabilistic planning with-
out observability is undecidable. Madani et al. (2003)
prove this by using the close connection of the problem to
the emptiness problem of probabilistic finite automata (Paz
1971; Condon and Lipton 1989). Without observability,
plans are sequences of actions. The emptiness problem is
about the existence of a word with an acceptance probabil-
ity higher thanc. This equals the planning problem when
plans are identified with words and goal states are identified
with accepting states. The acceptance probability may be in-
creased by increasing the length of the word, and in general
from a givenc no finite upper bound can be derived and the
problem is therefore undecidable.

Whenc = 1 the situation is completely different. Prob-
abilities strictly between 0 and 1 can be identified, which
leads to a finite discrete belief space. For any problem in-
stance there is a finite upper bound on plan length, if a plan
exists, and repetitive strategies for increasing success prob-
ability to 1 do not have to be used and they do not help in
reaching 1. Notice that for every other fixedc ∈]0, 1[un-
decidability holds as the general problem can be reduced to
the fixed-c problem for anyc ∈]0, 1[by adding a first action
that scales every success probability to the fixedc.

The unobservable planning problem is easily seen to be
in EXPSPACE. Haslum and Jonsson (2000) point out this
fact and outline the proof which is virtually identical to the
PSPACE membership proof of plan existence for classical
planning (Bylander 1994) except that it works at the level of
belief states instead of states.

Theorem 6 In the unobservable case, testing the existence
of plans with success probability 1 is in EXPSPACE.

Haslum and Jonsson (2000) also show that an unobserv-
able planning problem similar to ours is EXPSPACE-hard.
Their proof is a reduction from the EXPSPACE-hard uni-
versality problem of regular expressions with exponentiation
(Hopcroft and Ullman 1979).

Our EXPSPACE-hardness proof simulates deterministic
exponential-space Turing machines by planning. The main
problem to be solved is the simulation of the exponentially
long tape. In the PSPACE-hardness proof of classical plan-
ning each tape cell can be represented by one state variable,
but with an exponentially long tape this kind of simulation
is not possible. Instead, we use a randomization technique
that forces the tape contents to be faithfully represented in
the plan which may have a doubly exponential length.

Theorem 7 Existence of plans in planning without observ-
ability is EXPSPACE-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be a deterministic Turing machine
with an exponential space bounde(x), andσ an input string
of lengthn. We denote theith symbol ofσ by σi.

For encoding numbers from0 to e(n) + 1 we needm =
dlog2(e(n) + 2)e Boolean state variables.

3

We construct a problem instance in nondeterministic plan-
ning without observability for simulating the Turing ma-
chine. The size of the instance is polynomial in the size
of the TM and the input string.

It turns out that when not everything is observable, instead
of encoding all tape cells in the planning problem, it is suf-
ficient to keep track of only one tape cell (which we call the
watched tape cell) that is randomly chosen for every plan
execution.

The setP of state variables consists of

1. q ∈ Q for the internal states of the TM,

2. wi for i ∈ {0, . . . ,m− 1} for the watched tape cell,

3. s ∈ Σ ∪ {|,2} for contents of the watched tape cell, and

4. hi, i ∈ {0, . . . ,m− 1} for the position of the R/W head.

The uncertainty in the initial state is about which tape cell
is the watched. Otherwise the formula encodes the initial
configuration of the TM, and it is the conjunction of the fol-
lowing formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}
3. Contents of the watched tape cell:

| ↔ (w = 0)
2 ↔ (w > n)
s ↔

∨
i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

4. h = 1 for the initial position of the R/W head.

So the initial state formula allows any values for state vari-
ableswi and the values of the state variabless ∈ Σ are
determined by the values ofwi. The expressionsw = i and
w > i denote the obvious formulae for integer equality and
inequality of the numbers encoded byw0, w1, We also
use effectsh := h + 1 andh := h− 1 for incrementing and
decrementing the number encoded by variableshi.

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

To define the operators, we first define effects correspond-
ing to all possible transitions.

For all 〈s, q〉 ∈ (Σ ∪ {|,2}) × Q and〈s′, q′,m〉 ∈ (Σ ∪
{|})×Q×{L,N,R} define the effectτs,q(s′, q′,m) asα∧
κ ∧ θ where the effectsα, κ andθ are defined as follows.

The effectα describes the change to the current tape sym-
bol. If s = s′ thenα = > as nothing on the tape changes.
Otherwise,α = ((h = w) B (¬s ∧ s′)) to denote that the
new symbol in the watched tape cell iss′ and nots.

The effectκ changes the internal state of the TM. Again,
either the state changes or does not, soκ = ¬q∧ q′ if q 6= q′

and> otherwise. If R/W head movement is to the right then
κ = ¬q∧((h < e(n)) B q′) if q 6= q′, and(h = e(n)) B ¬q
otherwise. This prevents reaching an accepting state if the
space bound is violated: no further operators are applicable.

The effectθ describes the movement of the R/W head.

θ =

{
h := h− 1 if m = L

> if m = N
h := h + 1 if m = R

Now, these effectsτs,q(s′, q′,m) which represent possible
transitions are used in the operators that simulate the DTM.
Let 〈s, q〉 ∈ (Σ ∪ {|,2})×Q andδ(s, q) = {〈s′, q′,m〉}.

If g(q) = ∃ then define the operator

os,q = 〈((h 6= w) ∨ s) ∧ q, τs,q(s′, q′,m)〉.

A correct simulation is clearly obtained assuming that
when operatoros,q is executed the current tape symbol is
indeeds. So assume that someos,q is the first operator that
misrepresents the tape contents. Leth = c for somec. Now
there is an execution (initial state) of the plan so thatw = c.
On this execution the precondition ofos,q is not satisfied,
and the plan is not executable. Hence a valid plan cannot
contain operators that misrepresent the tape contents.�

Planning under Partial Observability
Showing that the plan existence problem for planning with
partial observability is in 2-EXP is straightforward. The eas-
iest way to see this is to view the partially observable plan-
ning problem as a nondeterministic fully observable plan-
ning problem with belief states viewed as states. An opera-
tor maps a belief state to another belief state nondeterminis-
tically: subset of the image of a belief state with respect to an
operator is chosen by observations. Like pointed out earlier,
the algorithms for fully observable planning run in polyno-
mial time in the size of the state space. The state space with
the belief states as the states has a doubly exponential size
in the size of the problem instance, and hence the algorithm
runs in doubly exponential time in the size of the problem
instance.

The main result of the paper, the 2-EXP-hardness of par-
tially observable planning, is obtained as a generalization
of the proofs of Theorems 5 and 7. From the EXPTIME-
hardness proof we take the simulation of alternation by non-
deterministic operators, and from the EXPSPACE-hardness
proof the simulation of the exponentially long working tape.
These easily yield a simulation of alternating Turing ma-
chines with an exponential space bound, and thereby proof
of AEXPSPACE-hardness.

Theorem 8 Testing existence of plans with success proba-
bility 1 is 2-EXP-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any alternating Turing machine
with an exponential space bounde(x). Let σ be an input
string of lengthn. We denote theith symbol ofσ by σi.

We construct a problem instance in nondeterministic plan-
ning with partial observability for simulating the Turing ma-
chine. The problem instance has a size that is polynomial
in the size of the description of the Turing machine and the
input string.

Here we just list the differences to the proof of Theorem
7 needed for handling alternation.

The set of state variables is extended with

1. s∗ for s ∈ Σ ∪ {|} for the symbol last written, and

2. L, R andN for the last movement of the R/W head.

4

The observable state variables areL, N andR, q ∈ Q, and
s∗ for s ∈ Σ. These are needed by the plan to decide how to
proceed execution after a nondeterministic∀-transition.

The initial state formula is conjoined with¬s∗ for all s ∈
Σ ∪ {|}. The goal formula remains unchanged.

Next we define the operators. All the transitions may
be nondeterministic, and the important thing is whether the
transition is for a∀ state or an∃ state. For a given input
symbol and a∀ state, the transition corresponds to one non-
deterministic operator, whereas for a given input symbol and
an∃ state the transitions corresponds to a set of deterministic
operators.

Effectsτs,q(s′, q′,m) = α ∧ κ ∧ θ are like in the proof
of Theorem 7 except for the following modifications. The
effectα is modified to store the written symbols to the state
variabless∗. If s = s′ thenα = > as nothing on the tape
changes. Otherwise,α = ((h = w) B (¬s∧s′))∧s′∗∧¬s∗.
The effectθ is similarly extended to store the tape movement
to L, N andR.

θ =

{ (h := h− 1) ∧ L ∧ ¬N ∧ ¬R if m = L
N ∧ ¬L ∧ ¬R if m = N

(h := h + 1) ∧R ∧ ¬L ∧ ¬N if m = R

Now, these effectsτs,q(s′, q′,m) which represent possible
transitions are used in the operators that simulate the ATM.
Operators for existential statesq, g(q) = ∃ and for universal
statesq, g(q) = ∀ differ. Let 〈s, q〉 ∈ (Σ ∪ {|,2})×Q and
δ(s, q) = {〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉}.

If g(q) = ∃, then definek deterministic operators

os,q,1 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s1, q1,m1)〉
os,q,2 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s2, q2,m2)〉
...
os,q,k = 〈((h 6= w) ∨ s) ∧ q, τs,q(sk, qk,mk)〉

That is, the plan determines which transition is chosen. If
g(q) = ∀, then define one nondeterministic operator

os,q = 〈((h 6= w) ∨ s) ∧ q, (τs,q(s1, q1,m1)|
...
τs,q(sk, qk,mk))〉.

That is, the transition is chosen nondeterministically.
We claim that the problem instance has a plan if and only

if the Turing machine accepts without violating the space
bound. If the Turing machine violates the space bound, then
h > e(n) and an accepting state cannot be reached because
no further operator will be applicable.

From an accepting computation tree of an ATM we can
construct a plan, and vice versa. The construction of the
plan is recursive: accepting final configurations correspond
to terminal nodes of plans,∃-nodes correspond to an oper-
ator corresponding to the transition made in the node fol-
lowed by the plan recursively constructed for the successor
configuration, and∀-nodes correspond to the execution of a
nondeterministic operator followed by a branch node that se-
lects the plan recursively constructed for the corresponding
successor configuration.

Construction of computation trees from plans is similar,
but involves small technicalities. A plan with DAG form can

be turned into a tree by having several copies of the shared
subplans. Branches not directly following a nondetermin-
istic operator causing the uncertainty can be moved earlier
so that only plan nodes with a non-singleton belief state im-
mediately follow a nondeterministic operator. With these
transformations there is an exact match between plans and
computation trees of the ATM.

Because alternating Turing machines with an exponential
space bound are polynomial time reducible to the nonde-
terministic planning problem with partial observability, the
plan existence problem is AEXPSPACE=2-EXP-hard.�

Impact of Determinism on Complexity
Our proofs for the EXP-hardness and 2-EXP-hardness of
plan existence for fully and partially observable planning use
nondeterminism. Also the EXP-hardness proof of Littman
(1997) uses nondeterminism. The question arises whether
complexity is lower when all operators are deterministic.

Theorem 9 The plan existence problem with full observ-
ability and deterministic operators is in PSPACE.

Proof: This is because iteration over an exponential num-
ber of initial states needs only polynomial space, and testing
goal reachability for each initial state needs only polyno-
mial space like in the PSPACE membership proof of classi-
cal planning (Bylander 1994). �

Under unobservability determinism does not reduce com-
plexity: proof of Theorem 7 uses deterministic operators
only. But for the general partially observable problem de-
terminism does reduce complexity.

Theorem 10 The plan existence problem with partial ob-
servability and deterministic operators is in EXPSPACE.

Proof: The idea is similar to the EXPSPACE membership
proof of planning without observability: go through all pos-
sible intermediate stages of a plan by binary search. De-
terminism yields an exponential upper bound on the sum of
the cardinalities of the belief states that are possible after
branching and a given number of actions, (see Figure 2), and
determinism also makes it unnecessary to visit any belief
state more than once. Hence plan executions have doubly
exponential length and binary search needs only exponen-
tial recursion depth.

Let 〈C1, . . . , Ck〉 be the classes of observationally indis-
tinguishable states. LetS be the set of states. For belief
stateB and setL of belief states with

∑
B′∈L |B′| ≤ |S|,

test reachability with plans of depth2i by the following pro-
cedure.
procedure reach(B,L,i)
if i = 0 then

begin
for each j ∈ {1, . . . , k}

if imgo(B) ∩ Cj 6⊆ B′ for all o ∈ O andB′ ∈ L
and B ∩ Cj 6⊆ B′ for all B′ ∈ L
then return false

end

5

N1 N2 N3 Nn

N0

Figure 2: In a deterministic problem instance, the sum of
the cardinalities of the possible sets of states at plan nodes
N1, . . . , Nn cannot exceed the cardinality of the possible set
of states at the root node of the planN0. HereN1, . . . , Nn

are plan nodes that intersect the plan in the sense that none
of these nodes is an ancestor node of another.

deterministic non-deterministic
full observability PSPACE EXP
no observability EXPSPACE EXPSPACE
partial observability EXPSPACE 2-EXP

Table 1: Summary of complexities of planning with multi-
ple initial states, deterministic or non-deterministic opera-
tors, and different degrees of observability.

return true;
end

else
for eachL′ ⊆ 2S such that

∑
B′∈L′ |B′| ≤ |B| and

for everyB′ ∈ L′, B′ ⊆ Cj for somej ∈ {1, . . . , k}
if reach(B,L′,i− 1) then

begin
flag := true;
for eachB′′ ∈ L′

if reach(B′′,L,i− 1) = falsethen flag := false;
if flag = truethen return true

end
end

return false
We can now test plan existence by calling reach(B,L,|S|)

for everyB = I ∩ Ci, i ∈ {1, . . . , k} andL = {G ∩ Ci|i ∈
{1, . . . , k}}. The algorithm always terminates, and a plan
exists if and only if answertrue is obtained in all cases.

The space consumption is (only) exponential because the
recursion depth is exponential and the setsL′ ⊆ 2S with∑

B′∈L′ |B′| ≤ |B| have size≤ |S|. SetsL′ this small
suffice because all operators are deterministic, and after
any number of actions, independently of how the plan has
branched, the sum of the cardinalities of the possible belief
states is not higher than the number of initial states. �

The problem complexities are summarized in Table 1.
Restriction to only one initial state affects the determinis-
tic unobservable and partially observable planning problems

only: they both come down to PSPACE from EXPSPACE.

Related Work and Conclusions
The complexity of constructing and evaluating policies for
MDPs with the restriction to finite-horizon performance has
been thoroughly analyzed by Mundhenk et al. (2000). They
evaluate the computational complexity of policy evaluation
and policy existence under different assumptions. While in
the fully observable, unobservable and in the general case
we have problems complete for EXP, EXPSPACE and 2-
EXP, Mundhenk et al. have EXP, NEXP and EXPSPACE
for history-dependent POMDPs with problem instances rep-
resented as circuits, exponentially long horizons and same
observability restrictions. The latter complexities are this
low because of the exponential horizon length.

In this paper we have proved that the plan existence
problem of propositional non-probabilistic planning with
partial observability is 2-EXP-complete. Complexity of
classical planning and non-probabilistic propositional plan-
ning with other observability restrictions (full observabil-
ity, no observability) was already known (Bylander 1994;
Littman 1997; Haslum and Jonsson 2000), and our result
was the most important missing one.

We also gave more direct proofs of EXPSPACE-hardness
of planning without observability and EXP-hardness of
planning with full observability, shedding more light to re-
sults first proved by Haslum and Jonsson and by Littman,
and discussed the impact of determinism on complexity.

The results do not address plan optimality with respect to
a cost measure, like plan size or plan depth, but it seems that
for many cost measures there is no increase in complexity
and that this is in many cases easy to prove.

References
Jośe Luis Balćazar, Josep D́ıaz, and Joaquim Gabarró.
Structural Complexity I. Springer-Verlag, Berlin, 1988.

Jośe Luis Balćazar, Josep D́ıaz, and Joaquim Gabarró.
Structural Complexity II. Springer-Verlag, Berlin, 1990.

Tom Bylander. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence, 69(1-
2):165–204, 1994.

A. Chandra, D. Kozen, and L. Stockmeyer. Alternation.
Journal of the ACM, 28(1):114–133, 1981.

Anne Condon and Richard J. Lipton. On the complexity
of space bounded interactive proofs (extended abstract). In
Proceedings of the 30th IEEE Symposium on Foundations
of Computer Science, pages 462–467. IEEE, 1989.

Patrik Haslum and Peter Jonsson. Some results on the
complexity of planning with incomplete information. In
Susanne Biundo and Maria Fox, editors,Recent Advances
in AI Planning. Fifth European Conference on Planning
(ECP’99), number 1809 in Lecture Notes in Artificial In-
telligence, pages 308–318. Springer-Verlag, 2000.

John E. Hopcroft and Jeffrey D. Ullman.Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley Publishing Company, 1979.

6

M. L. Littman, J. Goldsmith, and M. Mundhenk. The com-
putational complexity of probabilistic planning.Journal of
Artificial Intelligence Research, 9:1–36, 1998.
Michael L. Littman. Probabilistic propositional planning:
Representations and complexity. InProceedings of the 14th
National Conference on Artificial Intelligence (AAAI-97)
and 9th Innovative Applications of Artificial Intelligence
Conference (IAAI-97), pages 748–754, Menlo Park, July
1997. AAAI Press.
Omid Madani, Steve Hanks, and Anne Condon. On the un-
decidability of probabilistic planning and related stochastic
optimization problems.Artificial Intelligence, 147(1–2):5–
34, 2003.
Martin Mundhenk, Judy Goldsmith, Christopher Lusena,
and Eric Allender. Complexity of finite-horizon Markov
decision process problems. Journal of the ACM,
47(4):681–720, 2000.
Azaria Paz.Introduction to Probabilistic Automata. Aca-
demic Press, 1971.
Larry J. Stockmeyer and Ashok K. Chandra. Provably dif-
ficult combinatorial games.SIAM Journal on Computing,
8(2):151–174, 1979.

7

