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Abstract

We show that for conditional planning with partial observ-
ability the existence problem of plans with success proba-
bility 1 is 2-EXP-complete. This result completes the com-
plexity picture for non-probabilistic propositional planning.
We also give new more direct and informative proofs for the
EXP-hardness of conditional planning with full observability
and the EXPSPACE-hardness of conditional planning with-
out observability. The proofs demonstrate how lack of full
observability allows the encoding of exponential space Tur-
ing machines in the planning problem, and how the neces-
sity to have branching in plans corresponds to the move to a
complexity class defined in terms of alternation from the cor-
responding deterministic complexity class. Lack of full ob-
servability necessitates the use of beliefs states, the number of
which is exponential in the number of states, and alternation
corresponds to the choices a branching plan can make.

Introduction

The computational complexity of many forms of Al plan-
ning is well known. The most important problem that has
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Figure 1: Effect of branching and partial observability on
complexity of planning: classical planning is PSPACE-
complete, beliefs (partial observability) add space require-
ment exponentially, and branching (nondeterminism) adds
alternation.

bilities of nondeterministic events do not matter, and a fi-
nite discrete belief space can be used. In many applica-
tions plans with success probability anywhere strictly below
1 are not interesting. This is so especially in many engineer-
ing and manufacturing applications. This is in strong con-

been analyzed is that of existence of plans, in some caseslrast to many optimizations problems typically expressed as

existence of plans having a certain success probability or re-

MDPs/POMDPs, for which existence of solutions is obvi-

source consumption. Plan existence for classical planning OUS, and the problem is to find a solution that is optimal or

(deterministic, one initial state) is PSPACE-complete (By-
lander 1994). Conditional planning with nondeterministic

operators, several initial states and full observability is EXP-
complete (Littman 1997). Conditional planning with non-

deterministic operators and without observability (confor-
mant planning) is EXPSPACE-complete (Haslum and Jon-
sson 2000).

Associating probabilities with nondeterministic choices
and imposing a lower bound on plan’s success probability
make the problem more difficult. Without observability the
problem of existence of plans with success probabitity
is undecidable (Madart al. 2003). Both full observability
and restriction to exponentially long plan executions make
the problem decidable and bring it down to EXPSPACE and
below (Littmanet al. 1998; Mundhenlet al. 2000).

The complexity of one important problem has remained
unknown until now. For probabilistic planning under par-
tial observability, the special case of success probability 1

close to optimal.

In this paper we show that for non-probabilistic (success
probability 1) partially observable planning the plan exis-
tence problem is 2-EXP-complete. We outline new proofs
of the EXP-hardness of conditional planning with full ob-
servability and EXPSPACE-hardness of conditional plan-
ning without observability, and obtain the 2-EXP-hardness
proof as a generalization of both of these two new proofs.
The proofs very intuitively explain the problem complexi-
ties in terms of the types of Turing machines simulated.

This paper completes the complexity picture of non-
probabilistic propositional planning in its most general
forms, as summarized in Figure 1. Transition from the state
space to the belief space leads to exactly an exponential in-
crease in space complexity. From classical planning to con-
formant planning this is from PSPACE to EXPSPACE, and
from nondeterministic full-information planning to nonde-
terministic planning with partial observability this is from

is of great importance. The problem is decidable because APSPACE = EXP to AEXPSPACE = 2-EXP. Similarly, tran-

for reaching the goals with probability 1 the exact proba-

sition from the deterministic to the corresponding nondeter-



ministic planning problemmeans a transition from a de- PSPACE is the class of decision problems solvable by de-
terministic complexity class to the corresponding alternat- terministic Turing machines that use a number of tape cells
ing complexity class; this corresponds to the introduction of bounded by a polynomial on the input lengthFormally,
branches into the plans. From classical planning to nonde-

terministic full information planning this is from PSPACE PSPACE= |_J DSPACE"").

to APSPACE = EXP, and from conformant planning to gen- k>0

eral partially observable planning this is from EXPSPACE  Similarly other complexity classes are defined in terms of
to AEXPSPACE = 2-EXP. the time consumption (DTIMB{(n)), or time and space

The structure of the paper is as follows. First we define al- consumption on alternating Turing machines (ATIME())
ternating Turing machines and explain the relations between and ASPACEf(n))) (Balcazaret al. 1988; 1990).
deterministic complexity classes and their alternating coun-

terparts, followed by a definition of the planning problems EXP = Uy DTIME(2™)
we address. In the rest of the paper we analyze the computa- EXPSPACE = |J,.,DSPACH2"")
tional complexity of the fully observable, unobservable and - gnk
partially observable planning problems, in first two cases 2-EXP = Ukzo DTIME(2* )
giving a new more direct hardness proof, and in the third APSPACE = >, ASPACEn")
case we establish the complexity for the first time. Before AEXPSPACE = |J;>¢ ASPACE(2”k)

concluding the paper we discuss related work. )
There are many useful connections between these classes

Preliminaries: Complexity Classes (Chandreet al. 1981), for example
In this section we define alternating Turing machines and 2?;'; z QE)S(EQ%ECE
several complexity classes used in this paper.

Preliminaries: Planning
Definition 1 An alternating Turing machingATM) is a tu- We formally define the conditional planning problem.
ple <Ev Q7 57 q0, g> Where
Definition 2 Let A be a set of state variables. groblem

e () is afinite set of states (the internal states of the ATM), instancein planning is(I, 0, G, V) wherel and G are for-

* Yis afinite alphabet (the contents of tape cells), mulae onA respectively describing the sets of initial and
e § is a transition functiond : Q x ¥ U {|,0} — goal statesQ is a set of operatorgc, e) wherec is a for-
2XU{[}xQx{L,N,R} mula on A describing the precondition and is an effect,

andV C A is the set obbservable state variableEffects
are recursively defined as follows.

1. a and—a for a € A are effects.

The symbolg andO are the left-end-of-tape and the blank 2+ €1\ - -/Aep, IS an effectity, . .., e, are effects (the special
symbol, respectively. We require that= | andm = R case withn = 0 is the empty conjunctiof.)
for all (s,q’,m) € 6(q,|) and anyq € @, that is, at the . ¢ > eis an effect ifc is a formula on4 ande is an effect.
beginning of the tape the movement is to the right pmdy . e1]---|e, is an effectifey, ..., e, forn > 2 are effects.

not be overwritten. Fofs’, ¢’, m) € §(q, s) suchthat € X, ]
we requires’ € 3. Abovee; A --- A e, means that all the effects simulta-

A configuration of a TM, consisting of the internal state ~ N€OUSly take place. The notation> ¢ is for conditionality,
and the tape contents,fisal if ¢(¢) € {accept,rejedt that is, effecte takes place it is true in the current state.
The acceptance of an input string by an ATM is defined Nondeterministic effects, |- -- e, mean randomly choos-

inductively starting from final configurations that are accept- ing one of the effects;. . .
ing. A final configuration is accepting i(q) — accept. Compound observations and observations dependent on

: - : o : : the last applied operator can be reduced in polynomial time
Non-final configurations are accepting if the state is univer- X . . -
sal () and all the successor configurations are accepting or t? Te ba§l(t:)|m0qe| gef'ne%f‘boﬁh’n ;’.Vh'Ch the samé’seit
if the state is existentiab) and at least one of the succes- state variables IS observable all the time.

sor configurations is accepting. Finally, an ATM accepts a I .
given input string if the initial configuration with initial state Definition 3 Let A be a set of state variables. A problem

qo and the input string on the work tape is accepting. instance(/, 0, G, V) on Ais
A nondeterministic Turing machine (NDTM) is an ATM 1. fully observablef V' = A4,
without universal states. A deterministic Turing machine is 2. unobservablé V = (),
an NDTM with [6(g, s)| = 1 forallg € Q ands € . 3. partially observablé no restrictions ol are imposed.

qo is the initial state, and
g : Q — {V, 3, acceptreject} is a labeling of the states.

N

AW

We can view conformant planning as deterministic planning in Plans are directed graphs with nodes of degree 1 labeled

the belief space, because the successor belief state uniquely deterWwith operators and edges from branch nodes labeled with
mined by the action and the preceding belief state. formulae.



Definition 4 Let (I,0,G,V) be a problem instance in Planning without Observability

planning. A planis a triplg N, b, 1) where The plan existence problem in probabilistic planning with-

* Nis afinite set of nodes, out observability is undecidable. Madani et al. (2003)

e b € N isthe initial node, prove this by using the close connection of the problem to

e [: N — (O x N)U2c*N js a function that assigns each  the emptiness problem of probabilistic finite automata (Paz
node an operator and a successor ndden) € O x N 1971; Condon and Lipton 1989). Without observability,
or a set of formulae and successor nodg@sn). plans are sequences of actions. The emptiness problem is
Only the observable state variabl& may occur in the about the existence of a word with an acceptance probabil-
branch labelsp. Nodes witH(n) = () are terminal. ity higher thanc. This equals the planning problem when

_r ) o plans are identified with words and goal states are identified
The definition of plan execution should be intuitively yith accepting states. The acceptance probability may be in-
clear. When a successor node of a branch node is chosen.creased by increasing the length of the word, and in general
the result is undefined if more than one condition is true. from a givenc no finite upper bound can be derived and the
In this paper we do not discuss plans with loops (cycles.) problem is therefore undecidable.

Loops are needed for some nondeterministic problems in- * \yhene — 1 the situation is completely different. Prob-
stances as a representation of plans with unbounded execu-

X . - X . abilities strictly between 0 and 1 can be identified, which
tion length, like obtaining 12 by throwing dice repeatedly. |54 10 a finite discrete belief space. For any problem in-

The complexity of the plan existence problem with or with-  gianc6 there is a finite upper bound on plan length, if a plan

out loops is the same, but simulations of alternating Tur- gists and repetitive strategies for increasing success prob-

ing machines become more complicated because existenceabi”ty to 1 do not have to be used and they do not help in

of looping plans does not exactly correspond to the accep- rgaching 1. Notice that for every other fixede]0, 1] un-
tance criterion of alternating Turing machines. decidability holds as the general problem can be reduced to
. . the fixede problem for any €]0, 1] by adding a first action
Planning under Full Observability that scales every success pr(])bal:[)ility to the fixed
Littman (1997) showed that the plan existence problem  The unobservable planning problem is easily seen to be
of probabilistic planning with full observability is EXP-  in EXPSPACE. Haslum and Jonsson (2000) point out this
complete. EXP-hardness was shown by reduction from the fact and outline the proof which is virtually identical to the
gameG, (Stockmeyer and Chandra 1979). The reduction PSPACE membership proof of plan existence for classical
does not rely on exact probabilities, and hence also the non- planning (Bylander 1994) except that it works at the level of

probabilistic problem is EXP-complete. belief states instead of states.
Here we sketch a new proof based on the equality EXP

= APSPACE. In Theorem 8 we generalize this proof and _ _
the EXPSPACE-hardness proof of Theorem 7 to a 2-EXP- Theorem 6 In the unobservable case, testing the existence
hardness proof for the general partially observable problem. Of plans with success probability 1 is in EXPSPACE.

Theorem 5 Planning with full observability is EXP-hard. Haslum and Jonsson (2000) also show that an unobserv-
] ) ) ] ) able planning problem similar to ours is EXPSPACE-hard.
Proof: Sketch: The proof is a Turing machine simulation  Theijr proof is a reduction from the EXPSPACE-hard uni-
like the PSPACE-hardness proof of classical planning (By- versality problem of regular expressions with exponentiation
lander 1994), but for the more powerful alternating Turing (Hopcroft and Ullman 1979).
machines, yielding hardness for EXP = APSPACE. The dif- ~ oyr EXPSPACE-hardness proof simulates deterministic
ference is caused byandd states of the ATM. Fov states, ~ gynonential-space Turing machines by planning. The main
the transition is chosen nondeterministically and a branch in problem to be solved is the simulation of the exponentially
the plan chooses how execution continues thereafter, and for long tape. In the PSPACE-hardness proof of classical plan-
J states the plan .chooses the transition. The ATM accepts if ning each tape cell can be represented by one state variable
and only if there is a plan that reaches the goal states underp,+ \vith an exponentially long tape this kind of simulation
all nondeterministic choices. is not possible. Instead, we use a randomization technique
Testing plan existence is easily seen to be in EXP. This test that forces the tape contents to be faithfully represented in
is performed by traversing the state space backwards startingthe plan which may have a doubly exponential length.
from Dy = G by computingD; 11 = J,o Preimg,(D;) U
D; untll_ Dy = Dy, for somen > 0. 1 c Dy, then a Theorem 7 Existence of plans in planning without observ-
plan exists. The number of states is exponential, and com- ability is EXPSPACE-hard
puting D,, is polynomial time in the number of states. The y '
preimage preimg B) of a setB of states with respect to an
operatoro is the set of states from which a statefnis al-

ways reached by. Viewing operators € O as relations on of lengthn. We denote theth symbol ofo by ;.

the setS of states, we define prei as ;
, , P rg;:gB) , For encoding numbers fromto e(n) + 1 we needn =
{s € S|sos’ for somes’ € B, sos’ fornos’ € S\B}. [log,(e(n) + 2)] Boolean state variables.

Proof: Let (X, Q, 6, g0, g) be a deterministic Turing machine
with an exponential space boun(r), ando an input string



We construct a problem instance in nondeterministic plan-
ning without observability for simulating the Turing ma-
chine. The size of the instance is polynomial in the size
of the TM and the input string.

It turns out that when not everything is observable, instead
of encoding all tape cells in the planning problem, it is suf-
ficient to keep track of only one tape cell (which we call the
watched tape céllthat is randomly chosen for every plan
execution.

The setP of state variables consists of

. q € Q for the internal states of the TM,

. w; fori € {0,...,m — 1} for the watched tape cell,

. s € ¥ U {|, 0} for contents of the watched tape cell, and
. hi i €40,...,m — 1} for the position of the R/W head.

The uncertainty in the initial state is about which tape cell
is the watched. Otherwise the formula encodes the initial
configuration of the TM, and it is the conjunction of the fol-
lowing formulae.

1. qo

2. «gforallg € Q\{qo}
3. Contents of the watched tape cell:

| < (w=0)
O < (w>n)
5 \/ie{1 11111 n}’gizs(w =i)forallse X

A WODN P

4. h = 1 for the initial position of the R/W head.

So the initial state formula allows any values for state vari-
ablesw; and the values of the state variabless X are
determined by the values af;. The expressions = ¢ and
w > 1 denote the obvious formulae for integer equality and
inequality of the numbers encoded by, wy, . ... We also
use effects := h + 1 andh := h — 1 for incrementing and
decrementing the number encoded by variahles

The goal is the following formula.

G = \/{q € Qlg(q) = accep}

To define the operators, we first define effects correspond-
ing to all possible transitions.

Forall(s,q) € (XU{|,0}) x Q and{s’,¢',m) € (XU
{I}) x Q@ x {L, N, R} define the effect; ,(s’, ¢’,m) asa A
k A 0 where the effects, x andd are defined as follows.

The effecto describes the change to the current tape sym-
bol. If s = s’ thena = T as nothing on the tape changes.
Otherwise,c = ((h = w) > (—s A ') to denote that the
new symbol in the watched tape cellsisand nots.

The effectx changes the internal state of the TM. Again,
either the state changes or does notsse ~q A ¢’ if g # ¢
andT otherwise. If R/W head movement is to the right then
k= —qA((h < e(n)) > ¢')if g # ¢’ and(h = e(n)) > ¢
otherwise. This prevents reaching an accepting state if the
space bound is violated: no further operators are applicable.

The effectd describes the movement of the R/W head.

hi=h—-1 ifm=L
0 = { T fm=N
hi=h+1 ifm=R

Now, these effects; ,(s’, ¢, m) which represent possible
transitions are used in the operators that simulate the DTM.
Let (s,q) € (SU{],0}) x Q andd(s, q) = {(s',q',m)}.

If g(¢) = 3 then define the operator

05,0 = ((h# w) V $) N g, 7 q(s,¢',m)).

A correct simulation is clearly obtained assuming that
when operatop; , is executed the current tape symbol is
indeeds. So assume that sorag , is the first operator that
misrepresents the tape contents. ket ¢ for somec. Now
there is an execution (initial state) of the plan so that c.

On this execution the precondition of , is not satisfied,
and the plan is not executable. Hence a valid plan cannot
contain operators that misrepresent the tape contents.

Planning under Partial Observability

Showing that the plan existence problem for planning with
partial observability is in 2-EXP is straightforward. The eas-
iest way to see this is to view the partially observable plan-
ning problem as a nondeterministic fully observable plan-
ning problem with belief states viewed as states. An opera-
tor maps a belief state to another belief state nondeterminis-
tically: subset of the image of a belief state with respect to an
operator is chosen by observations. Like pointed out earlier,
the algorithms for fully observable planning run in polyno-
mial time in the size of the state space. The state space with
the belief states as the states has a doubly exponential size
in the size of the problem instance, and hence the algorithm
runs in doubly exponential time in the size of the problem
instance.

The main result of the paper, the 2-EXP-hardness of par-
tially observable planning, is obtained as a generalization
of the proofs of Theorems 5 and 7. From the EXPTIME-
hardness proof we take the simulation of alternation by non-
deterministic operators, and from the EXPSPACE-hardness
proof the simulation of the exponentially long working tape.
These easily yield a simulation of alternating Turing ma-
chines with an exponential space bound, and thereby proof
of AEXPSPACE-hardness.

Theorem 8 Testing existence of plans with success proba-
bility 1 is 2-EXP-hard.

Proof: Let (X, @, ¢, qo, g) be any alternating Turing machine
with an exponential space bour(r). Let o be an input
string of lengthn. We denote théth symbol ofs by ;.

We construct a problem instance in nondeterministic plan-
ning with partial observability for simulating the Turing ma-
chine. The problem instance has a size that is polynomial
in the size of the description of the Turing machine and the
input string.

Here we just list the differences to the proof of Theorem
7 needed for handling alternation.

The set of state variables is extended with

1. s* for s € ¥ U {|} for the symbol last written, and
2. L, RandN for the last movement of the R/W head.



The observable state variables d@reN andR, ¢ € @, and
s* for s € 3. These are needed by the plan to decide how to
proceed execution after a nondeterministitansition.

The initial state formula is conjoined withs* for all s €
Y U{|}. The goal formula remains unchanged.

Next we define the operators. All the transitions may
be nondeterministic, and the important thing is whether the
transition is for av state or ard state. For a given input
symbol and & state, the transition corresponds to one non-
deterministic operator, whereas for a given input symbol and
and state the transitions corresponds to a set of deterministic
operators.

Effects, 4(s',¢',m) = a A k A 6 are like in the proof
of Theorem 7 except for the following modifications. The
effecta is modified to store the written symbols to the state
variabless*. If s = s’ thena = T as nothing on the tape
changes. Otherwise, = ((h = w) > (—sAs'))As™* A—s*.

The effect is similarly extended to store the tape movement
to L, N andR.

(h:=h—1)ANLA-NA-R ifm=1L
0 = { NA-LAN-R ifm=N
(h:=h+1)ARA-LA-N ifm=R

Now, these effects; ,(s’, ¢, m) which represent possible
transitions are used in the operators that simulate the ATM.
Operators for existential statesg(q) = 3 and for universal
statesy, g(q) = V differ. Let(s,q) € (XU {|,0}) x Q and
5(37 q) = {<817 q17m1>1 ] <Sk7qk’vmk>}'

If g(q) = 3, then defing: deterministic operators

0s,q,1 = (((h # w) V 8) A, 75 4(81,91,m1))
05,02 = (((h # w) V 8) A q,Ts 4(52, g2, m2))

5s,q,k = (((h # w) V 8) A q,Ts q(5k; qr, mi))

That is, the plan determines which transition is chosen. If
9(q) =V, then define one nondeterministic operator

Os,q = <((h # w) 4 S) A g, (Ts7q(817Q1am1)‘

Ts,q(ska 4k, mk))>

That is, the transition is chosen nondeterministically.

We claim that the problem instance has a plan if and only
if the Turing machine accepts without violating the space
bound. If the Turing machine violates the space bound, then

be turned into a tree by having several copies of the shared
subplans. Branches not directly following a nondetermin-
istic operator causing the uncertainty can be moved earlier
so that only plan nodes with a non-singleton belief state im-
mediately follow a nondeterministic operator. With these
transformations there is an exact match between plans and
computation trees of the ATM.

Because alternating Turing machines with an exponential
space bound are polynomial time reducible to the nonde-
terministic planning problem with partial observability, the
plan existence problem is AEXPSPACE=2-EXP-hard]

Impact of Determinism on Complexity

Our proofs for the EXP-hardness and 2-EXP-hardness of
plan existence for fully and partially observable planning use
nondeterminism. Also the EXP-hardness proof of Littman
(1997) uses nondeterminism. The question arises whether
complexity is lower when all operators are deterministic.

Theorem 9 The plan existence problem with full observ-
ability and deterministic operators is in PSPACE.

Proof: This is because iteration over an exponential num-
ber of initial states needs only polynomial space, and testing
goal reachability for each initial state needs only polyno-

mial space like in the PSPACE membership proof of classi-
cal planning (Bylander 1994). O

Under unobservability determinism does not reduce com-
plexity: proof of Theorem 7 uses deterministic operators
only. But for the general partially observable problem de-
terminism does reduce complexity.

Theorem 10 The plan existence problem with partial ob-
servability and deterministic operators is in EXPSPACE.

Proof: The idea is similar to the EXPSPACE membership

proof of planning without observability: go through all pos-

sible intermediate stages of a plan by binary search. De-
terminism yields an exponential upper bound on the sum of
the cardinalities of the belief states that are possible after
branching and a given number of actions, (see Figure 2), and
determinism also makes it unnecessary to visit any belief
state more than once. Hence plan executions have doubly
exponential length and binary search needs only exponen-

h > e(n) and an accepting state cannot be reached becausetial recursion depth.

no further operator will be applicable.

From an accepting computation tree of an ATM we can
construct a plan, and vice versa. The construction of the
plan is recursive: accepting final configurations correspond
to terminal nodes of plansi-nodes correspond to an oper-
ator corresponding to the transition made in the node fol-
lowed by the plan recursively constructed for the successor
configuration, and/-nodes correspond to the execution of a
nondeterministic operator followed by a branch node that se-
lects the plan recursively constructed for the corresponding
successor configuration.

Construction of computation trees from plans is similar,
but involves small technicalities. A plan with DAG form can

Let (C1,...,C)) be the classes of observationally indis-
tinguishable states. Lef be the set of states. For belief
state B and setL of belief states withy ., [B'| < |9,

test reachability with plans of dep#h by the following pro-
cedure.
procedurereach(,L,:)
if « = 0 then
begin
foreachj € {1,...,k}
if img,(B)NC; ¢ B'forallo e OandB’ € L
andBNC; ¢ B'forall B € L
then return false
end



Figure 2: In a deterministic problem instance, the sum of

only: they both come down to PSPACE from EXPSPACE.

Related Work and Conclusions

The complexity of constructing and evaluating policies for
MDPs with the restriction to finite-horizon performance has
been thoroughly analyzed by Mundhenk et al. (2000). They
evaluate the computational complexity of policy evaluation
and policy existence under different assumptions. While in
the fully observable, unobservable and in the general case
we have problems complete for EXP, EXPSPACE and 2-
EXP, Mundhenk et al. have EXP, NEXP and EXPSPACE
for history-dependent POMDPs with problem instances rep-
resented as circuits, exponentially long horizons and same
observability restrictions. The latter complexities are this

the cardinalities of the possible sets of states at plan nodes low because of the exponential horizon length.

Ny,..
of states at the root node of the plafy. Here Ny, ...

., N,, cannot exceed the cardinality of the possible set
s Ny,

are plan nodes that intersect the plan in the sense that nonepartial observability is 2-EXP-complete.

of these nodes is an ancestor node of another.

| deterministic non-deterministic

full observability PSPACE EXP
no observability EXPSPACE EXPSPACE
partial observabilityy EXPSPACE  2-EXP

Table 1: Summary of complexities of planning with multi-
ple initial states, deterministic or non-deterministic opera-
tors, and different degrees of observability.

return true;

end
else

foreach L’ C 2% such thal" ., |B’| < |B| and

foreveryB’' € L', B’ C C; for somej € {1,...,k}
if reach@,L’,i — 1) then

begin
flag := true;
foreachB” € L’

if reachB”,L,i — 1) = falsethen flag := false;

if flag = truethen return true

end

end
return false

We can now test plan existence by calling redgty|S|)
foreveryB=1INC;,i€{l,...,k}andL = {GNC;|i €
{1,...,k}}. The algorithm always terminates, and a plan
exists if and only if answetrue is obtained in all cases.

The space consumption is (only) exponential because the
recursion depth is exponential and the sktsC 2° with
Yoper |B'| < |B| have size< |S|. SetsL’ this small
suffice because all operators are deterministic, and after
any number of actions, independently of how the plan has
branched, the sum of the cardinalities of the possible belief
states is not higher than the number of initial states. [

The problem complexities are summarized in Table 1.
Restriction to only one initial state affects the determinis-
tic unobservable and partially observable planning problems

In this paper we have proved that the plan existence
problem of propositional non-probabilistic planning with
Complexity of
classical planning and non-probabilistic propositional plan-
ning with other observability restrictions (full observabil-
ity, no observability) was already known (Bylander 1994;
Littman 1997; Haslum and Jonsson 2000), and our result
was the most important missing one.

We also gave more direct proofs of EXPSPACE-hardness
of planning without observability and EXP-hardness of
planning with full observability, shedding more light to re-
sults first proved by Haslum and Jonsson and by Littman,
and discussed the impact of determinism on complexity.

The results do not address plan optimality with respect to
a cost measure, like plan size or plan depth, but it seems that
for many cost measures there is no increase in complexity
and that this is in many cases easy to prove.
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