
International Workshop on Description Logics

Rome, June 2-3, 1995

Alex Borgida

Department of Computer Science

Rutgers University, New Brunswick, NJ, U.S.A.

borgida@cs.rutgers.edu

Maurizio Lenzerini

Dipartimento di Informatica e Sistermistica

Universit�a di Roma, \La Sapienza", Italy

lenzerini@dis.uniroma1.it

Daniele Nardi

Dipartimento di Informatica e Sistermistica

Universit�a di Roma, \La Sapienza", Italy

nardi@dis.uniroma1.it

Bernhard Nebel

University of Ulm

and DFKI, Saarbr�ucken

nebel@informatik.uni-ulm.de

Preface

This volume contains the collection of papers that were presented at the 1995 International

Workshop on Description Logics, that was held on June 2 and 3, 1995, at the Centro

Congressi of Universit�a di Roma \La Sapienza", Italy.

The Workshop was organized in 8 sessions, with 3 sessions including contributions on

theoretical issues about Description Logics:

� Extensions to Description Logics,

� Integration with other formalisms,

� Foundations,

and 3 sessions on the development of knowledge representation systems based on Description

Logics:

� Connections to Databases,

� Applications,

� Systems.

The remaining two sessions were devoted to the demonstrations of applications and

prototypes, and to a �nal summary of the Workshop and perspectives on the �eld.

The Workshop was organized with the contribution of Dipartimento di Informatica e

Sistemistica, Universit�a di Roma \La Sapienza", and partially supported by a grant from

the Consiglio Nazionale delle Ricerche. Special thanks go to Franz Baader for the �nan-

cial contribution to the student support, and to Teresa Cremona, Giuseppe De Giacomo,

Francesco M. Donini, Riccardo Rosati, and Andrea Schaerf for their contribution to the

organization.

Contents

Extensions to Description Logics

Hierarchical Plans in a Description Logic of

Time and Action

Alessandro Artale, Ladseb-CNR; Enrico Fran-

coni, IRST 1

Terminological Logics with Modal Operators

Franz Baader, RWTH Aachen; Armin Laux,

DFKI 6

Epistemic ALC-knowledge bases

Francesco M. Donini, Daniele Nardi, Riccardo

Rosati, Universit�a di Roma 13

Hierarchical Correspondance between Physical

Situations and Action Models

V�eronique Royer, ONERA DES/SIA 19

Closing the Terminology

Robert Weida, IBM T. J. Watson Research Cen-

ter 25

Integration with other formalisms

Towards a uni�ed architecture for knowledge

representation and reasoning based on

terminological logics

Liviu Badea, Research Institute for Informatics 32

A Hybrid Integration of Rules and Descriptions,

with F(rames)-Logic as an Underlying

Formalism

Mira Balaban, Ben-Gurion University 38

carin: A Representation Language Combining

Horn rules and Description Logics

Alon Y. Levy, AT&T Bell Laboratories; Marie-

Christine Rousset, University of Paris-Sud 44

Objects, Classes, Specialization and

Subsumption

Amedeo Napoli, CRIN CNRS{INRIA 52

Combining Description Logic Systems with

Information Management Systems

Lin Padgham, RoyalMelbourne Institute of Tech-

nology 56

Connections to Databases

A Semantics-Driven Query Optimizer for

OODBs

Jean Paul Ballerini, Universit�a di Bologna;

Domenico Beneventano, Universit�a di Modena;

Sonia Bergamaschi, Universit�a di Modena; Clau-

dio Sartori, Universit�a di Bologna; Maurizio

Vincini, Universit�a di Modena 59

Metalevel for an e�cient query answering

Berm�udez J., Illarramendi A., Blanco J.M.,

Go~ni A, Universidad del Pa��s Vasco 63

Caching in Multidatabase Systems based on DL

Alfredo Go~ni, Arantza Illarramendi, Jos�e Miguel

Blanco, Universidad del Pa��s Vasco 67

Cooperative Recognition of Interdatabase

Dependencies

M. Klusch, Universit�at Kiel 72

Foundations

Logical and Computational Properties of the

Description Logic

P. Buongarzoni, C. Meghini, R. Salis, F. Sebas-

tiani, U. Straccia , IEI CNR 80

Making CAT S out of kittens: description logics

with aggregates

Giuseppe De Giacomo, Maurizio Lenzerini, Uni-

versit�a di Roma 85

Symbolic Arithmetical Reasoning with Quali�ed

Number Restrictions

Hans J�urgen Ohlbach, Renate A. Schmidt, Ullrich

Hustadt, Max-Planck-Institut f�ur Informatik 89

Research and Applications in

Description-Logic-Based Knowledge

Representation

Peter F. Patel-Schneider, Deborah L. McGuin-

ness, Merryll Kim Herman, Lori Alperin Resnick,

Elia S. Weixelbaum, AT&T Bell Laboratories 96

i

Applications

Task Acquisition with a Description Logic

Reasoner

Martin Buchheit, Hans-J�urgen B�urckert, Bern-

hard Hollunder, Armin Laux, Werner Nutt,

Marek W�ojcik, DFKI 99

Part-of Reasoning in Description Logics: A

Document Management Application

Patrick Lambrix, Link�oping University; Lin

Padgham Royal Melbourne Institute of Technol-

ogy 106

Description Logic-based Con�guration for

Consumers

Deborah L. McGuinness, Lori Alperin Resnick,

AT&T Bell Laboratories 109

FLEX-Based Disambiguation in VERBMOBIL

J. Joachim Quantz, Guido Dunker, TU Berlin;

Manfred Gehrke, Siemens AG; Uwe K�ussner,

Birte Schmitz, TU Berlin 112

A Concept Language for an engineering

application with part{whole relations

Ulrike Sattler, RWTH { Aachen 119

Systems

Parallelizing Description Logics

Frank W. Bergmann, J. Joachim Quantz, Tech-

nische Universit�at Berlin 124

Implementing and Testing Expressive

Description Logics: a Preliminary Report

Paolo Bresciani, Enrico Franconi, Sergio Tes-

saris, IRST 131

From Frames to Concepts: Building a Concept

Language within a Frame-based System

T. Kessel, O. Stern, F. Rousselot, ERIC, EN-

SAIS 140

Selecting description logics for real applications

Piet-Hein Speel, Unilever Research Laboratory 143

ii

Hierarchical Plans in a

Description Logic of Time and Action

�

Alessandro Artale

Ladseb-CNR

I-35020 Padova PD, Italy

artale@ladseb.pd.cnr.it

Enrico Franconi

IRST

I-38050 Povo TN, Italy

franconi@irst.itc.it

Abstract

A formal language for representing and reason-

ing about time, actions and plans in a uniform

way is presented. We employ an action repre-

sentation in the style of Allen, where an action

is represented by describing what is true while

the action is occurring. In this sense, an action

is de�ned by means of temporal constraints on

the world states, which pertain to the action

itself, and on other possible quali�cations for

the action occurring over time, while a plan is

seen just as a complex action. Therefore, there

is no di�erence between actions and plans in

this framework. A distinction between action

types and individual actions is supported by

the formalism. In this paper, we show how to

extend the language with a decomposition op-

erator in a way of distinguishing the di�erent

actions composing a plan and not just the dif-

ferent temporal quali�cations for the plan itself.

Thus, a plan is a hierarchical structure made of

its distinct component subparts.

The formal representation language used in this

paper is a member of the family of description

logics, and it is provided with a well founded

syntax, semantics and calculus. The classi�ca-

tion and recognition tasks, together with the

basic subsumption procedure, form the basis

for action management. An action description

can be automatically classi�ed into a taxon-

omy; an action instance can be recognized to

take place at a certain moment from the obser-

vation of what is happening in the world during

a time interval.

1 Introduction

The structured logic of time and action considered

in this paper

[

Artale and Franconi,1993; Artale and

�

This work has been partially supported by the Italian Na-

tional Research Council (CNR), projects \Sistemi Informatici

e Calcolo Parallelo", \Piani�cazione Automatica", \Robot-

ica" and \Ontologic and Linguistic Tools for Conceptual

Modeling".

Franconi,1994a; Artale et al.,1994; Artale and Fran-

coni,1994b; Artale and Franconi,1995

]

permits dealing

with time, actions and plans in a uniform way. As op-

posed to the most common approaches to modeling ac-

tions as state change { e.g., the formal models based

on situation calculus

[

McCarthy and Hayes,1969

]

, the

Strips planning system

[

Lifschitz,1987

]

{ where actions

are instantaneous and de�ned as functions fromone state

to another, we prefer to explicitly introduce the no-

tion of time by admitting that actions take time, like

in

[

Allen,1991

]

. We argue that this view of an action

is closer to naturally occurring processes. Di�erent ac-

tions can be concurrent or may overlap in time; e�ects

of overlapping actions can be di�erent from the sum of

their individual e�ects; e�ects may not follow the action

but more complex temporal relations may hold.

Starting from a formal language able to express

temporally related objects { inspired by the work of

[

Schmiedel,1990

]

{ actions are represented through tem-

poral constraints on the world states, which pertain to

the action itself, like in

[

Allen,1991

]

. With respect to

[

Allen,1991

]

, our formalism has a clear distinction be-

tween the language for expressing action types (the con-

ceptual level) and the language for expressing individ-

ual actions (the assertional level). Informally, plans are

built by temporally relating action types in a compo-

sitional way using the temporal constructors available

in the language; similar ideas were pursued by

[

Weida

and Litman,1992

]

. In this way, since the temporal rela-

tionships are proper operators of the basic language, the

distinction between actions and plans disappears. As a

matter of fact, we do not need distinct languages for ob-

jects and states representation, for time representation,

for actions representation, and for plans representation.

While actions describe how the world is a�ected by

their occurrence, plans are described as a collection of

action types constrained by temporal relations. In this

way, a plan can be graphically represented as a tempo-

ral constraint network, where nodes denote action types.

At this level of representation, plans can be seen as com-

plex actions: since actions composing a plan can be ex-

panded, plans and actions are not structurally di�er-

ent. This distinction is further elaborated in this paper,

where each action composing a plan is considered as a

1

C;D ! A j (atomic concept)

> j (top)

C uD j (conjunction)

C tD j (disjunction)

p # q j (agreement)

p : C (selection)

C@X j (temporal quali�er)

C[Y]@X j (temporal subst. quali�er)

3(X Y � � �) Tc

1

Tc

2

� � �.C (temporal quanti�er)

p; q ! f j (atomic feature)

?g j (atomic parametric feature)

p � q (feature chain)

Tc ! (X (R) Y) (temporal constraint)

R; S ! R , S j (temporal disjunction)

s j mi j f j : : : (Allen temporal relations)

X; Y !] j x j y j : : : (temporal variables)

Figure 1: Syntax rules for the temporal concept language

step referring to a di�erent individual action, and an

appropriate function relates a plan to its steps.

The distinction made by the language between the

conceptual and assertional aspect of the knowledge al-

lows us to describe actions both at an abstract level (ac-

tion type) and instance level (individual action). In this

environment we exploit the subsumption calculus as the

main inference tool for managing collections of action

types. Given a set of observations of individual actions

in the world the system is able to recognize which type of

action has taken place at a certain time interval; this task

is known as recognition. Action types are organized in a

subsumption-based plan taxonomy, which can play the

role of a plan library to be used for plan retrieval and

individual plan recognition tasks

[

Kautz,1991

]

. In this

way, we have re�ned the concept of what is currrently

called plan recognition, by splitting it into the di�erent

tasks of plan description classi�cation and speci�c plan

recognition with respect to a plan description. In

[

Ar-

tale and Franconi,1994a

]

we proved the decidability and

proposed an actual algorithm for the subsumption and

recognition reasoning tasks in the basic language.

An interesting feature of this representational frame-

work is its extensibility to cover di�erent standard

problems from the AI literature on actions. Homoge-

neous concepts can be introduced, for representing states

whose properties holding at an interval do also hold at

all subintervals

[

Artale et al.,1994

]

. We propose an ap-

proach to the frame problem, i.e., the problem to com-

pute what is unchanged by an action. By introduc-

ing an inertial operator in the language we express the

persistence of the truth of a proposition if there is no

evidence of its falsity; with this approach the famous

Yale Shooting Problem can be easily solved

[

Artale and

Franconi,1994b

]

. We consider here the possibility to re-

late an action with more elementary actions, by decom-

posing it in partially ordered steps; this kind of repre-

sentation is found in hierarchical planners.

2 The Formal Language

We brie
y describe the basic description logic able to

represent classes of individuals and their temporal rela-

tions { for a full discussion of the language please refer to

[

Artale and Franconi,1994a; Artale and Franconi,1995

]

.

Basic types of the language are concepts, individuals,

temporal variables and intervals. A concept is a descrip-

tion gathering the common properties among a collec-

tion of individuals. Concepts can describe entities of the

world, states, events. Temporal variables denote inter-

vals bound by temporal constraints, by means of which

abstract temporal patterns in the form of constraint net-

works are expressed. Concepts (resp. individuals) can

be speci�ed to hold at a certain interval variable (resp.

value) de�ned by the constraint network. In this way, ac-

tion types (resp. individual actions) can be represented

in a uniform way by temporally related concepts (resp.

individuals).

Concept expressions (denoted by C;D) are syntacti-

cally built out of atomic concepts (denoted by A), atomic

features (denoted by f), atomic parametric features (de-

noted by ?g) and constrained interval variables (denoted

by X;Y) according to the abstract syntax rules of �g-

ure 1. Temporal variables are introduced by the tem-

poral existential quanti�er \3". Variables appearing in

temporal constraints should be declared within the same

temporal quanti�er, with the exception of the special

variable]. Explicit temporal variables allow for com-

plex temporal patterns to be speci�ed.

[

Bettini,1993

]

proposes a variable-free temporal extension of a descrip-

tion logic, which can not express temporal patterns like

(y starts x)(z �nishes x)(y meets z). We believe that the

introduction of variables in the language does not a�ect

the principle of description logics which are considered

as variable-free languages; in fact, variables are limited

in the temporal realm.

We are going now to informally present the meaning

of the terms of the language. Concept expressions are

interpreted in our logic over pairs of temporal intervals

and individuals hi; ai, meaning that the individual a is in

the extension of the concept at the interval i. If a concept

is intended to denote an action, then its interpretation

can be seen as the set of individual actions of that type

occurring at some interval.

Within a concept, the special \]" variable denotes the

generic interval at which the concept itself holds; in the

case of actions, it refers to the temporal interval at which

the action itself occurs. A concept holds at an interval

X if it is temporally quali�ed at X { written C@X; in

this way, every occurrence of] embedded within the con-

cept expression C is interpreted as the X variable. Since

any concept is implicitly temporally quali�ed at the spe-

cial] variable, it is not necessary to explicitly qualify

concepts at]. The temporal existential quanti�er intro-

duces interval variables, related each other and possibly

to the] variable in a way de�ned by the set of tempo-

ral constraints. The informal meaning of a concept with

a temporal existential quanti�cation can be understood

with the following example in the action domain.

Basic-Stack

:

=

3(x y)(x m])(] m y).

(?BLOCK : (OnTable@x u OnBlock@y))

Basic-Stack denotes, according to the de�nition (a ter-

minological axiom), any action occurring at some inter-

2

-

-

��

�

-

OnTable(BLOCK)

Basic-Stack(BLOCK)

OnBlock(BLOCK)

x

]

y

Figure 2: Temporal dependencies in the de�nition of the

Basic-Stack action.

val involving a ?BLOCK that was once OnTable and then

OnBlock. The] interval could be understood as the oc-

curring time of the action type being de�ned: referring

to it within the de�nition is an explicit way to temporally

relate states and actions occurring in the world with re-

spect to the occurrence of the action itself. The temporal

constraints (x m]) and (] m y) state that the interval

denoted by x should meet the interval denoted by] {

the occurrence interval of the action type Basic-Stack

{ and that] should meet y. Figure 2 shows the tem-

poral dependencies of the intervals in which the con-

cept Basic-Stack holds. The parametric feature ?BLOCK

plays the role of formal parameter of the action, mapping

any individual action of type Basic-Stack to the block

to be stacked, independently from time. Please note

that, whereas the existence and identity of the ?BLOCK

of the action is time invariant, it can be quali�ed dif-

ferently in di�erent intervals of time, e.g. the ?BLOCK

is necessarily OnTable only during the interval denoted

by x. On the other hand, the (non-parametric) feature

OnTable may change its value over time { thus, repre-

senting a changing state.

The assertion Basic-Stack(i; a) says that a is an in-

dividual action of type Basic-Stack occurred at the in-

terval i. Moreover, the same assertion implies that a is

related to a ?BLOCK , say b, which is of type OnTable

at some interval j, meeting i, and of type OnBlock at

another interval l, met by i.

Basic-Stack(i; a) =)

9b. ?BLOCK(a; b) ^

9j; l. (OnTable(j; b) ^ OnBlock(l; b) ^

m(j; i) ^m(i; l))

Now we show how from a series of observations in the

world we can make action recognition { i.e. the task we

have already called speci�c plan recognition with respect

to a plan description. This is an inference service which

computes if an individual action is an instance of an ac-

tion type at a certain interval. Given the following state

of a�airs, describing a world where blocks can be on the

table and/or on each other and where a generic individ-

ual action a is taking place at time interval i

a

having the

block block-a as its parameter:

?BLOCK(a; block-a);

m(i

1

; i

a

); OnTable(i

1

; block-a);

mi(i

2

; i

a

); OnBlock(i

2

; block-a)

then, the system recognizes that in the context of a

knowledge base �, composed by the above theory and

the de�nition of the Basic-Stack concept, the individ-

ual action a is an instance of the concept Basic-Stack

at the time interval i

a

, i.e. � j= Basic-Stack(i

a

; a).

3 Decomposition of Actions

In this section we consider plans as hierarchical struc-

tures whose constituent actions could be seen as its de-

composing steps. Functional relations decompose an in-

dividual plan to its steps, allowing us to take into ac-

count plans where the component actions do not share

the same actual parameters. Suppose, for example, that

we want represent the plan composed by a sequence of

two Stack actions. This plan could be represented as:

Double-Stack

:

=

3(x y)(x d])(y d])(x m y).

(Basic-Stack@x u Basic-Stack@y)

According to this plan description, each individual plan

{ say for example a { of type Double-Stack has to be

an instance of two Basic-Stack actions occurring at two

\meeting" intervals, too.

Double-Stack(i; a) =)

9j; l. (Basic-Stack(j; a) ^ Basic-Stack(l; a) ^

d(j; i) ^ d(l; i) ^m(j; l))

This representation does not take into account the

case where the actual parameters involved in the two

Basic-Stack actions are di�erent. In fact, there is only

one action involved in the former de�nition: a. The in-

dividual action a is quali�ed as a Double-Stack plan

at the current interval, it is a Basic-Stack action at

the interval j, and it is a Basic-Stack action again at

the interval l. The crucial point is that the parameters

involved in the Stack actions are described by means

of parametric features { functions that remain invariant

during time { which in this case apply to the same in-

dividual Basic-Stack action { a. So, the parameter of

the action a must be the same at the intervals j and

l, and the case of sequential actions of the same type

but with di�erent parameters can not be expressed. In

the case of the Basic-Stack actions, the actual ?BLOCK

parameter value should be the same at both j and l in-

tervals, disallowing the possibility of expressing the plan

composed by the sequence of two Basic-Stack actions

manipulating two di�erent blocks.

The described behavior is the consequence of having a

fully substitutional framework for plan de�nitions. Since

plans are seen just as complex actions, the parts compos-

ing a plan are just di�erent quali�cations on the same

individual entity. A solution to this problem is to as-

sociate distinct individual actions for each action step

occuring in a given plan, in such a way that paramet-

ric features, being applied on distinct action instances,

can introduce di�erent parameter values. This is real-

ized by relating the plan to the component action types

by means of di�erent functions, using the decomposition

operator. We add the following syntactic rules, to be

used for plan de�nitions:

3

C;D ! C@@X (decomposition)

p; q ! p@@X # q@@Y (temporal agreement)

where C@@X means that C is a step in a plan and

the temporal agreement speci�es equality constraints be-

tween paths of features de�ned in di�erent steps of a plan

(see, e.g.

[

Weida and Litman,1994

]

).

More formally, we add the following semantic equa-

tions to the semantics of the basic description logic

[

Ar-

tale and Franconi,1994a

]

:

(C@@X)

I;S

V;t;H

=

fa 2 dom (X

S

) j X

S

(a) 2 C

I;S

V;V(X);H

g

(p@@X # q@@Y)

I;S

V;t;H

=

fa 2 dom (X

S

� p

I;S

V;V(X);H

) \ dom (Y

S

� q

I;S

V;V(Y);H

) j

X

S

� p

I;S

V;V(X);H

(a) = Y

S

� q

I;S

V;V(Y);H

(a)g

where �

S

{ called the Step Interpretation { is a function

associating a newly generated function to each interval

introduced by a decomposition operator.

The representation of the Double-Stack plan in the

extended language is:

Double-Stack

:

=

3(x y) (x d])(y d])(x m y).

(Basic-Stack@@x u Basic-Stack@@y)

Since the nodes x and y of the conceptual temporal con-

straint network introduce distinct individual actions, we

can now distinguish the di�erent instances of the two

Basic-Stack actions occurring in distinct intervals:

Double-Stack(i; a) =)

9b; c; j; l. (X(a; b) ^ Basic-Stack(j; b) ^

Y(a; c) ^ Basic-Stack(l; c) ^

d(j; i) ^ d(l; i) ^m(j; l))

where X and Y are newly generated functions, mapping

the individual plan a to its individual steps b and c. It

is now possible the accomplishment of a plan moving

two di�erent blocks during two Basic-Stack events in

sequence.

The case of simultaneous occurrences of the same ac-

tion type with di�erent parameters can be expressed in

the extended language. The plan where two possibly dif-

ferent blocks are moved by two Basic-Stack actions at

the same time is:

Sim-Double-Stack

:

=

3(x y)(x d])(y d])(x = y).

(Basic-Stack@@x u Basic-Stack@@y)

We want now to address the case where di�erent in-

dividual actions share common parameters or where a

plan is made of the repetition, in di�erent intervals,

of the same individual action. We exploit the tempo-

ral agreement construct { p@@X # q@@Y , which spec-

i�es equality constraints between features introduced

in di�erent intervals. In the following example, the

Same-Block-Double-Stack plan is constituted of two

Basic-Stack actions moving the same ?BLOCK:

Same-Block-Double-Stack

:

=

3(x y) (x d])(y d])(x m y).

(Basic-Stack@@x u Basic-Stack@@y u

?BLOCK@@x # ?BLOCK@@y)

Same-Double-Stack is a plan where a Stack action oc-

curs twice in distinct intervals, with the same �llers for

the actual parameters:

Same-Double-Stack

:

=

3(x y) (x d])(y d])(x m y).

(Basic-Stack@@x u Basic-Stack@@y u

@@x # @@y)

The construct @@X # @@Y { a particular case of tem-

poral agreement { imposes an equality constraint be-

tween the functions associated to the nodes X and Y ,

so that the two Basic-Stack actions are instantiated by

the same individual object; thus, the actual parameters

associated to the Basic-Stack actions are equal.

Finally we propose an example where the actions com-

posing the plan have di�erent types. Consider, in the

cooking domain, the following example:

Heat-Noodles

:

=

3(x y) (x d])(y d])(x b;m y).

(Make-Noodles@@x u Heat@@y u

?Agent@@x # ?Agent@@y)

The de�nition speci�es that the plan has two steps,

Make-Noodles and Heat, instantiated by distinct indi-

vidual actions, while the temporal agreement forces the

?Agents of the two steps to be the same.

References

[

Allen, 1991

]

James F. Allen. Temporal reasoning and

planning. In James F. Allen, Henry A. Kautz,

Richard N. Pelavin, and Josh D. Tenenberg, editors,

Reasoning about Plans, chapter 1, pages 2{68. Morgan

Kaufmann, 1991.

[

Artale and Franconi, 1993

]

Alessandro Artale and En-

rico Franconi. A uni�ed framework for representing

time, actions and plans. In F. D. Anger, H. W. Gues-

gen, and J. van Benthem, editors, Workshop Notes

of the IJCAI-93 Workshop on Temporal and Spatial

Reasoning, pages 193{217, Chambery, France, August

1993. Also in the Workshop Notes of the IJCAI-93

Workshop on Object-Based Representation System,

pages 32{44; a shorter version appears in the Proceed-

ings of the Italian Planning Workshop 1993 (IPW'93),

pages 167{172, Roma Italy, September 1993.

[

Artale and Franconi, 1994a

]

Alessandro Artale and En-

rico Franconi. A computational account for a descrip-

tion logic of time and action. In Proc. of the 4

th

International Conference on Principles of Knowledge

Representation and Reasoning (KR-94), pages 3{14,

Bonn, Germany, May 1994.

[

Artale and Franconi, 1994b

]

Alessandro Artale and

Enrico Franconi. Persistent properties in a descrip-

tion logic of time and action. In Working Notes of the

4

AI*IA Temporal Reasoning Workshop 1994, pages 9{

12, Parma, Italy, September 1994.

[

Artale and Franconi, 1995

]

Alessandro Artale and En-

rico Franconi. Time, actions and plans representation

in a description logic. International Journal of Intel-

ligent Systems, 1995. To appear.

[

Artale et al., 1994

]

Alessandro Artale, Claudio Bettini,

and Enrico Franconi. Homogeneous concepts in a tem-

poral description logic. In Proceedings of the Interna-

tional Workshop on Description Logics, pages 36{41.

DFKI, Saarbr�ucken, Bonn, Germany, May 1994.

[

Bettini, 1993

]

Claudio Bettini. A family of temporal

terminological logics. In Proc. of the third Congress

of the Italian Association for Arti�cial Intelligence,

AIIA-93, LNAI. Springer-Verlag, 1993.

[

Kautz, 1991

]

Henry A. Kautz. A formal theory of plan

recognition and its implementation. In James F. Allen,

Henry A. Kautz, Richard N. Pelavin, and Josh D.

Tenenberg, editors, Reasoning about Plans, chapter 2,

pages 69{126. Morgan Kaufmann, 1991.

[

Lifschitz, 1987

]

Vladimir Lifschitz. On the semantics of

strips. In The 1986 Workshop on Reasoning about

Actions and Plans, pages 1{10. Morgan Kaufman,

1987.

[

McCarthy and Hayes, 1969

]

J. McCarthy and P. J.

Hayes. Some philosophical problems from the stand-

point of Arti�cial Intelligence. In B. Meltzer and

D. Michie, editors, Machine Intelligence, volume 4,

pages 463{502, Edinburgh, UK, 1969. Edinburgh Uni-

versity Press.

[

Schmiedel, 1990

]

A. Schmiedel. A temporal termino-

logical logic. In Proc. of AAAI-90, pages 640{645,

Boston, MA, 1990.

[

Weida and Litman, 1992

]

Robert Weida and Diane Lit-

man. Terminological reasoning with constraint net-

works and an application to plan recognition. In Proc.

of the 3

rd

International Conference on Principles of

Knowledge Representation and Reasoning (KR-92),

pages 282{293, Cambridge, MA, October 1992.

[

Weida and Litman, 1994

]

Robert Weida and Diane Lit-

man. Subsumption and recognition of heterogeneous

constraint networks. In Proceedings of CAIA-94, 1994.

5

Terminological Logics with Modal Operators

Franz Baader

Lehr- und Forschungsgebiet Theoretische Informatik, RWTH Aachen,

Ahornstra�e 55, 52074 Aachen, Germany

Armin Laux

German Research Center for Arti�cial Intelligence (DFKI GmbH)

Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germany

Abstract

Terminological knowledge representation for-

malisms can be used to represent objective,

time-independent facts about an application

domain. Notions like belief, intentions, and

time which are essential for the representation

of multi-agent environments can only be ex-

pressed in a very limited way. For such no-

tions, modal logics with possible worlds se-

mantics provides a formally well-founded and

well-investigated basis. This paper presents a

framework for integrating modal operators into

terminological knowledge representation lan-

guages. These operators can be used both in-

side of concept expressions and in front of ter-

minological and assertional axioms. We show

that satis�ability in the extended language is

decidable, provided that all modal operators

are interpreted in the basic logic K, and that

the increasing domain assumption is used.

1 Introduction

Terminological knowledge representation languages in

the style of kl-one

[

Brachman and Schmolze,1985

]

have

been developed as a structured formalismto describe the

relevant concepts of a problem domain and the inter-

actions between these concepts. Various terminological

systems have been designed and implemented that are

based on the ideas underlying kl-one (see

[

Woods and

Schmolze,1992

]

for an overview). Representing knowl-

edge of an application domain with such a kind of system

amounts to introducing the terminology of this domain

via concept de�nitions, and then describing (an abstrac-

tion of) the relevant part of the \world" by listing the

facts that hold in this part of the world. In a tradi-

tional terminological system, such a description is rigid

in the sense that it does not allow for the representa-

tion of notions like time, or beliefs of di�erent agents.

In systems modeling aspects of intelligent agents, how-

ever, intentions, beliefs, and time-dependent facts play

an important role. Modal logics with possible worlds se-

mantics is a formally well-founded and well-investigated

framework for the representation of such notions. The

present paper is concerned with integrating modal op-

erators (for time, belief, etc.) into a terminological for-

malism. The �rst task is to �nd an appropriate seman-

tics for the combined language. In addition, if such a

language should be used in a system, one must design

algorithms for the important inference problems (such

as consistency of knowledge bases) for the language.

Several approaches have been proposed for the com-

bination of terminological formalisms with notions like

time or beliefs. A very simple possibility to represent

beliefs of agents is realized in the partition hierarchy

sb-part

[

Kobsa,1989

]

, which is an extension of the sb-

one system. In this approach, each agent may have

its own set of terminological axioms (TBox), and these

TBoxes can be ordered hierarchically. However, this ex-

tension lacks a formal semantics and it does not allow

for representing properties of belief, such as introspec-

tion, or interactions between beliefs of di�erent agents.

A more formal approach is used in m-krypton

[

Saf-

�otti and Sebastiani,1988

]

, where a sub-language of the

krypton representation language is extended by modal

operators B

i

, which can be used to represent the be-

liefs of agent i. Properties of beliefs are taken into con-

sideration by using the well-known modal logic KD45.

Due to the undecidable base language, however,

[

Saf-

�otti and Sebastiani,1988

]

just introduces a formal se-

mantics, without giving any inference algorithms for the

extended language. In

[

Schild,1991

]

, it has been shown

that terminological systems already have a strong con-

nection to modal logic. In fact, the concept language

ALC is nothing but a syntactic variant of the proposi-

tional multi-modal logic K

(m)

. Building upon this ob-

servation,

[

Schild,1993

]

augments ALC by tense opera-

tors. The two approaches that come next to the one

we shall introduce below are described in

[

Laux,1994a;

Laux,1994b

]

and in

[

Ohlbach and Baader,1993

]

. Both

extend ALC by modal operators, but with di�erent em-

phasis. The di�erences between these approaches and

ours are clari�ed in the next section.

2 Classi�cation

When extending a terminological knowledge representa-

tion language by modalities for belief, time, etc. one has

6

various degrees of freedom. Before describing the speci�c

choices made in this article, we shall informally explain

the di�erent alternatives.

For simplicity, assume that we are interested in time

and belief operators only. Thus, in addition to the ob-

jects we have time points and belief worlds. This means

that the domain of an interpretation is the Cartesian

product

~

D = D

object

� D

time

� D

belief

of the set of ob-

jects, the set of time points, and the set of belief worlds.

Concepts are no longer just sets of objects; their inter-

pretation also depends on the actual belief world and

time point. Thus, they can be seen as subsets of

~

D, and

not just as subsets of D

object

. Roles operate on objects,

whereas modalities for time (like future or tomorrow)

operate on time points, and modalities for belief (like

bel-John) operate on belief worlds. As for concepts, how-

ever, the interpretation of roles and modalities depends

on all dimensions. Thus, a role loves is interpreted as a

function from

~

D into 2

D

object

, which relates any individ-

ual in D

object

(say John) with a set of individuals (the

individuals John loves), but this set depends on the ac-

tual time point and belief world. Modalities like future

are treated analogously. Modal operators can now be

used both inside of concept expressions and in front of

concept de�nitions and assertions. For example, we can

describe the set of individuals that love a woman that|

according to John's belief|is pretty by the concept ex-

pression 9 loves:(Womanu [bel-John]Pretty), and we can

express that|according to John's belief|a happy hus-

band is one married to a womanwhom he (John) believes

to be pretty by the terminological axiom

[bel-John](Happy-husband =

9married-to:(Womanu [bel-John]Pretty)):

The assertion [bel-John]hfuturei(Peter married-toMary)

says that John believes that, at some point in the future,

Peter will be married to Mary.

With the usual interpretation of the Boolean opera-

tors, of value and exists restrictions on roles, and of box

and diamond operators for the modalities, this yields a

multi-dimensional version of the multi-modal logic K

m

.

As described until now, this logic is a strict sub-language

of the one introduced in

[

Ohlbach and Baader,1993

]

.

The restriction lies in the fact that, unlike in

[

Ohlbach

and Baader,1993

]

, we do not consider roles and modali-

ties that have a complex structure (such as [wants]own,

where the modality wants is used to modify the role

own). There are several reasons why this approach is not

yet satisfactory. First, the object and the other dimen-

sions are treated analogously. This means, for example,

that the interpretation of the modality future depends

not only on the actual time point, but also on the current

object and the belief world. Whereas the dependence

from the belief world may seem to be quite reasonable,

it is rather counterintuitive that the future time points

reached from time t

0

are di�erent, depending on whether

we are interested in the individual Sue or Mary. Thus, it

seems to be more appropriate to treat the object dimen-

sion in a special way: whereas the interpretation of roles

should depend on the actual time point etc., the inter-

pretation of modalities should not depend on the object

under consideration.

The need for a special treatment of the object dimen-

sion can also be motivated by considering the semantics

of concept de�nitions (and assertions). In

[

Ohlbach and

Baader,1993

]

, concept de�nitions are required to hold

for all objects, time points, and belief worlds. This is

a straightforward generalization of the treatment of def-

initions in terminological languages, where a de�nition

C = D must hold for all objects, i.e., in a model of

C = D all objects o must satisfy that o belongs to the

interpretation of C i� it belongs to the interpretation of

D. For the other dimensions, however, this di�ers from

the usual de�nition of models in modal logics, where a

formula is only required to hold in one world.

Another problem is that not only the roles, but also

all the other modalities are just interpreted in the ba-

sic logic K, i.e., they are not required to satisfy spe-

ci�c axioms for belief or time. In the present paper, we

shall not take into account this last aspect, but we shall

treat the object dimension in a special way, thus elimi-

nating the problems mentioned above. In

[

Laux,1994a;

Laux,1994b

]

both aspects are considered. However,

modal operators are not allowed to occur inside of con-

cept expressions, which considerably simpli�es the al-

gorithmic treatment of the formalism. The di�erence

to

[

Ohlbach and Baader,1993

]

is, on the one hand, the

special treatment of the object dimension. In addition,

[

Ohlbach and Baader,1993

]

does not consider assertions,

and even though concept de�nitions are introduced, they

are not handled by the satis�ability algorithm. On the

other hand,

[

Ohlbach and Baader,1993

]

allows for very

complex roles and modalities, which are not considered

here.

3 Syntax and Semantics of ALC

M

First, we present the syntax of our multi-dimensional

modal extension of the concept language ALC. As for

ALC, we assume a set of concept names, a set of role

names, and a set of object names to be given. Beside the

object dimension (which will be treated di�erently from

the other dimensions), we assume that there are � �

1 additional dimensions (such as time points, epistemic

alternatives, or intensional states). In each dimension,

there can be several modalities, which can be used in box

and diamond operators. For example, in the dimension

time points we could have future and tomorrow, and in

the dimension belief worlds we could have belief-John

and belief-Mary. If o is a modality of dimension i we

write dim(o) = i. In this case, [o] and hoi are modal

operators of dimension i.

De�nition 3.1 (Syntax) Concepts of ALC

M

are in-

ductively de�ned as follows. Each concept name is a

concept, and > and ? are concepts. If C and D are

concepts, R is a role name, and o is a modality then

C u D (concept conjunction), C t D (concept disjunc-

tion), :C (concept negation), 8R:C (value restriction),

7

9R:C (exists restriction), [o]C (box operator), and hoiC

(diamond operator) are concepts.

Terminological axioms of ALC

M

are of the form

m (C = D) where C and D are concepts of ALC

M

and

m is a (possibly empty) sequence of modal operators. As-

sertional axioms of ALC

M

are of the form m (xRy) or

m (x : C) where x and y are object names, R is a role

name, C is a concept, and m is a (possibly empty) se-

quence of modal operators. An ALC

M

-formula is either

a terminological or an assertional axiom.

Traditional terminological systems impose severe re-

strictions on the admissible sets of terminological ax-

ioms: (1) The concepts on the left-hand sides of axioms

must be concept names, (2) concept names occur at most

once as left-hand side of an axiom (unique de�nitions),

and (3) there are no cyclic de�nitions. The e�ect of

these restrictions is that terminological axioms are just

macro de�nitions (introducing names for large descrip-

tions), which can simply be expanded before starting

the reasoning process. Unrestricted terminological ax-

ioms are a lot harder to handle algorithmically (see, e.g.,

[

Buchheit et al.,1993

]

), but they are very useful for ex-

pressing constraints on concepts that are required to hold

in the application domain. In the presence of modal op-

erators, the requirement of having unique de�nitions is

not appropriate anyway. For example, Peter may have a

de�nition of Happy-husband that is quite di�erent from

John's de�nition. Thus, it is desirable to have di�erent

de�nitions m

1

(A = C) and m

2

(A = D) of the same

concept name A for di�erent modal sequences m

1

and

m

2

. Even though m

1

and m

2

are di�erent, there can be

interactions between these de�nitions. For example, m

1

could be of the form hoi and m

2

of the form [o] . Thus,

it is not a priori clear how the requirement of \unique

de�nitions" can be adapted to the case of terminological

axioms with modal pre�x. To avoid these problems, we

consider the more general case where arbitrary axioms

are allowed.

Let us now turn to the semantics of ALC

M

. The

modal operators will be interpreted by a Kripke-style

possible worlds semantics. Thus, for each dimension i

we need a set of possible worlds D

i

. Modalities of di-

mension i correspond to accessibility relations on D

i

,

which may, however, depend on the other dimensions as

well. Concepts and roles are interpreted in an object do-

main, but this interpretation also depends on the modal

dimensions.

De�nition 3.2 (Semantics) A Kripke structure K =

(W;�;K

I

) consists of a setW of possible worlds, a set of

accessibility relations �, and a K-interpretation K

I

over

W, which are given as follows. First, the set of possible

worldsW is the Cartesian product of non-empty domains

D

1

; : : : ; D

�

, one for each dimension. Second, � contains

for each modality o of dimension i an accessibility rela-

tion

o

, which is a function

o

: W ! 2

D

i

. We also

write ((d

1

; : : : ; d

i

; : : : ; d

�

); (d

1

; : : : ; d

0

i

; : : : ; d

�

)) 2

o

for

d

0

i

2

o

(d

1

; : : : ; d

i

; : : : ; d

�

). Finally, the K-interpretation

K

I

consists of a domain �

K

I

and an interpretation func-

tion �

K

I

. The domain is the union of non-empty do-

mains �

K

I

(w) for all worlds w 2 W. The interpre-

tation function associates (i) with each object name x

an element x

K

I

2 �

K

I

, (ii) with each concept name

A and world w 2 W a set (A;w)

K

I

� �

K

I

(w), (iii)

with the top concept and the bottom concept the sets

(>; w)

K

I

= �

K

I

(w) and (?; w)

K

I

= ; (for each world

w), and (iv) with each role name R and world w 2 W a

binary relation (R;w)

K

I

� �

K

I

(w) ��

K

I

(w).

Note that the interpretation of object names does not

depend on the particular world (i.e., we are using so-

called \rigid designators"), whereas the interpretation

of concept and role names depends on the world. For a

given world w, the interpretation of a concept A (resp.

of a role R) in w is a subset of (resp. a binary relation

on) the domain �

K

I

(w) associated with w. The inter-

pretation of concept names and roles is expanded to the

concept forming operators as follows: If C and D are

concepts, R is a role, and w is a world, then

(C uD;w)

K

I

= (C;w)

K

I

\ (D;w)

K

I

(C tD;w)

K

I

= (C;w)

K

I

[(D;w)

K

I

(:C;w)

K

I

= �

K

I

(w) n (C;w)

K

I

(8R:C ;w)

K

I

= f� 2 �

K

I

(w) j �

0

2 (C;w)

K

I

for each �

0

with (�; �

0

) 2 (R;w)

K

I

g

(9R:C ;w)

K

I

= f� 2 �

K

I

(w) j �

0

2 (C;w)

K

I

for some �

0

with (�; �

0

) 2 (R;w)

K

I

g

([o]C;w)

K

I

= f� 2 �

K

I

(w) j � 2 (C;w

0

)

K

I

for each w

0

with (w;w

0

) 2

o

g

(hoiC;w)

K

I

= f� 2 �

K

I

(w) j � 2 (C;w

0

)

K

I

for some w

0

with (w;w

0

) 2

o

g

Observe that, for each concept C and world w, we have

(C;w)

K

I

� �

K

I

(w). Two ALC

M

concepts C and D

are called equivalent i� for all Kripke structures K =

(W;�;K

I

) and all worlds w 2 W we have (C;w)

K

I

=

(D;w)

K

I

.

Now we can de�ne under which conditions an ALC

M

-

formula F is satis�ed in a Kripke structure K =

(W;�;K

I

) and a world w 2 W, written as K;w j= F ,

by induction on the length of the modal pre�x:

K;w j= C = D i� (C;w)

K

I

= (D;w)

K

I

;

K;w j= x :C i� x

K

I

2 (C;w)

K

I

;

K;w j= xRy i� (x

K

I

; y

K

I

) 2 (R;w)

K

I

;

K;w j= [o]G i� K;w

0

j= G

for each world w

0

with (w;w

0

) 2

o

;

K;w j= hoiG i� K;w

0

j= G

for some world w

0

with (w;w

0

) 2

o

:

Here G is an ALC

M

-formula, C, D are concepts, x, y

are object names, R is a role name, and o is a modality.

A set fF

1

; : : : ; F

n

g of ALC

M

-formulas is satis�able i�

there exists a Kripke structure K = (W;�;K

I

) and a

world w

0

2 W such that K;w

0

j= F

i

for i = 1; : : : ; n. In

this case we write K j= F

1

; : : : ; F

n

.

Even though we have introduced a domain �

K

I

(w)

for each world w, we have not yet said anything about

the relationship between the domains of di�erent worlds.

In the simplest approach, the domains �

K

I

(w

1

) and

�

K

I

(w

2

) of each pair w

1

; w

2

of worlds are independent

of each other. This approach is known as varying do-

main assumption. In most cases, however, it is more

8

reasonable to assume certain relationships between the

domains of di�erent worlds. The most commonly used

approach is the so-called increasing domain assumption,

where �

K

I

(w) � �

K

I

(w

0

) if the world w

0

is accessible

from the world w, i.e., there exists a modality o such

that (w;w

0

) 2

o

. The advantage of this approach is

that domain elements that have been introduced in w

can also be referred to in all worlds that are accessible

from w, i.e., domain elements do not \vanish" when we

move from one world to another. As a special case, the

constant domain assumption is sometimes used, where

the domains �

K

I

(w

1

) and �

K

I

(w

2

) are identical for all

worlds w

1

and w

2

. Finally, the decreasing domain as-

sumption can be used to express that new domain ele-

ments cannot arise when moving from one world to an-

other one.

As an example that demonstrates the consequences

of changing the requirements on the relationship be-

tween domains of worlds, consider the ALC

M

-formulas

x : (hoi C) and hoi (x :C), where x is an object name, o

is a modality, and C is a concept. For a Kripke struc-

ture K = (W;�;K

I

) and a world w 2 W we have (i)

K;w j= x : hoi C i� x

K

I

2 �

K

I

(w) and there exists

a world w

0

such that (w;w

0

) 2

o

and x

K

I

2 (C;w

0

)

K

I

,

and (ii) K;w j= hoi(x :C) i� there exists a world w

0

such

that (w;w

0

) 2

o

, x

K

I

2 �

K

I

(w

0

), and x

K

I

2 (C;w

0

)

K

I

.

Thus, the main di�erence is that in the �rst case x

K

I

is

required to be in �

K

I

(w), whereas this is not necessary

in the second case. The reason is that, in the �rst case, x

must belong to the interpretation of a concept in world

w. In the second case, x is just required to be in the

interpretation of a concept in the successor world.

If we assume just increasing domains, it is possible

that x

K

I

2 �

K

I

(w

0

), but x

K

I

62 �

K

I

(w). Hence it may

be the case thatK;w j= hoi(x :C), butK;w 6j= x : (hoiC).

If we assume constant domains, however, it holds that

�

K

I

(w) = �

K

I

(w

0

), and thus K;w j= x : (hoi C) i�

K;w j= hoi (x :C).

In the full paper

[

Baader and Laux,1994

]

we discuss

the algorithmic problems that are caused by assuming

constant domains. It turned out that testing satis�a-

bility with respect to the constant domain assumption

requires more than a straightforward modi�cation of

the satis�ability algorithm for increasing domains (which

will be presented in the next section). In fact, until now

we did not succeed in �nding an appropriate modi�ca-

tion.

In this paper we shall restrict our attention to increas-

ing domains. Furthermore, we assume that all termino-

logical axioms are of the form m (C = >), where C is a

concept and m is a (possibly empty) sequence of modal

operators. As in the case of ALC without modalities, it

is easy to verify that this can be done without loss of

generality.

Lemma 3.3 Let K = (W;�;K

I

) be a Kripke structure,

w be a world in W, m be a (possibly empty) sequence

of modal operators, and C;D be concepts. Then K;w j=

m (C = D) i� K;w j= m

�

(C uD) t (:C u :D) = >

�

.

4 Testing Satis�ability of

ALC

M

-formulas

We present an algorithm for testing satis�ability of a

�nite set fF

1

; : : : ; F

n

g of ALC

M

-formulas.

1

To keep no-

tation simple we assume (without loss of generality) that

concepts are in negation normal form, i.e., negation signs

occur immediately in front of concept names only. Our

calculus for testing satis�ability of ALC

M

-formulas is

based on the notions of labeled ALC

M

-formulas and of

world constraint systems. A labeled ALC

M

-formula con-

sists of an ALC

M

-formulaF together with a label l, writ-

ten as F jj l. The label l is a syntactic representation of a

world in which F is required to hold. A world constraint

is either a labeledALC

M

-formulaor a term l 1

o

l

0

, where

l; l

0

are labels and 1

o

is a syntactic representation of the

accessibility relation of modality o. A world constraint

system is a �nite, non-empty set of world constraints.

A Kripke structure K = (W;�;K

I

) satis�es a world

constraint system W i� there is a mapping � that maps

labels inW to worlds inW such that (i) K;�(l) j= F for

each world constraint F jj l in W , and (ii) (�(l); �(l

0

)) 2

o

for each world constraint l 1

o

l

0

in W . A world con-

straint system W is satis�able i� there exists a Kripke

structure satisfying W . In order to test satis�ability

of a set fF

1

; : : : ; F

n

g of ALC

M

-formulas we translate

this set into the world constraint system W

0

= fx

0

:

>jj l

0

; F

1

jj l

0

; : : : ; F

n

jj l

0

g, where x

0

is a new object name

not occurring in fF

1

; : : : ; F

n

g, and l

0

is an arbitrary

label (which is intended to represent the real world).

We say the world constraint system W

0

is induced by

fF

1

; : : : ; F

n

g. It is easy to verify that fF

1

; : : : ; F

n

g is

satis�able i� W

0

is satis�able. The world constraint

x

0

: >jjl

0

can obviously be satis�ed by any Kripke struc-

ture. This constraint is necessary to guarantee that the

domains �

K

I

(w) of the canonical Kripke structure con-

structed in the proof of completeness are non-empty (see

the full paper

[

Baader and Laux,1994

]

).

The ALC

M

-satis�ability algorithm takes as input a

world constraint system W

0

that is induced by a �nite

set of ALC

M

-formulas. It successively adds new world

constraints to W

0

by applying several propagation rules,

which will be de�ned later. A world constraint system

that is induced by a �nite set of ALC

M

-formulas, or

that is obtained by a �nite sequence of applications of

propagation rules to an induced system, will be called

derived system.

In the following, we use the letters x; y; z to denote

object names, l to denote labels, A;B to denote con-

cept names, C;D to denote concepts, and R to denote

role names. If necessary, these letters will have an ap-

propriate subscript. Before introducing the propagation

rules in a formal way (in Figure 1), let us �rst de-

scribe the underlying ideas on an intuitive level. The

rules that handle the usual ALC concept forming op-

erators are well-known and rather straightforward (see,

1

It is easy to see that all the other interesting inference

problems (like the subsumption or the instance problem) can

be reduced to this problem.

9

e.g.,

[

Baader and Hollunder,1991

]

). In order to illustrate

the rules that handle modalities and world constraints

of the form C = > jj l, suppose that the ALC

M

-formula

hoi (B = >) is given, where o is a modality of some

dimension. In order to test satis�ability of this ALC

M

-

formula, we start with the induced world constraint sys-

tem W

0

= fx

0

: > jj l

0

; hoi (B = >) jj l

0

g. By de�ni-

tion,W

0

is satis�able i� there is a Kripke structure K =

(W;�;K

I

), a mapping �, and a world w

0

= �(l

o

) 2 W

such that x

K

I

0

2 �

K

I

(w

0

) and K;w

0

j= hoi (B = >).

Since K;w

0

j= hoi (B = >) i� K;w

1

j= B = > for some

world w

1

with (w

0

; w

1

) 2

o

, the!

3

rule adds the world

constraints l

0

1

o

l

1

and B = > jj l

1

to W

0

, where l

1

is a

new label. This yields the new world constraint system

W

1

= W

0

[fl

0

1

o

l

1

; B = > jj l

1

g. Because of the se-

mantics of ALC

M

-formulas, we furthermore know that

K;w

1

j= B = > i� � 2 (B;w

1

)

K

I

for all � 2 �

K

I

(w

1

).

By the increasing domain assumption, x

K

I

0

2 �

K

I

(w

0

)

implies x

K

I

0

2 �

K

I

(w

1

). Summing up, we must guar-

antee that x

K

I

0

2 (B;w

1

)

K

I

and therefore must add the

world constraint x

0

:B jj l

1

to W .

More generally, we say that an object name x is rel-

evant for label l (in a world constraint system W) i�

there is a label l

0

occurring in W such that (i) W con-

tains a world constraint of the form x : C jj l

0

, xRy jj l

0

, or

yRx jj l

0

, and (ii) l is accessible from l

0

, i.e., either l is l

0

or there are world constraints l

0

1

o

1

l

1

; : : : ; l

n�1

1

o

n

l in

W for some modalities o

1

; : : : ; o

n

. Now, if x is relevant

for l and there is a world constraint C = > jj l in W for

some concept C, then the !

=

rule adds x :C jj l to W

(unless this world constraint is already contained in W).

In our example, this rule applies to W

1

, and it yields

the world constraint system W

2

= W

1

[fx

0

: B jj l

1

g:

To W

2

no more propagation rules are applicable, and|

as shown in

[

Baader and Laux,1994

]

|we can use this

system to construct a Kripke structure that satis�es the

ALC

M

-formula hoi (B = >). A world constraint system

to which no more propagation rules are applicable will

be called complete.

Termination of the propagation rule applications can

only be guaranteed if applicability of the usual rule for

handling exists restrictions is restricted in an appropri-

ate way. This is due to the presence of axioms of the

form C = >. To illustrate this problem, consider the

world constraint system W = fx :A jj l; 9R:C = > jj lg.

Since x is relevant for l, the !

=

rule adds x :9R:C jj l.

Now, the usual propagation rule !

9

that treats exists

restrictions would add xRy jj l and y :C jj l to W , where

y is a new object. However, y is again relevant for l,

and thus we must add y :9R:C jj l. The !

9

rule would

thus be applicable to y :9R:C jj l, generating new world

constraints yRz jj l and z :C jj l, etc.

In order to avoid such in�nite chains of rule applica-

tion, we introduce the notion of blocked objects.

2

Intu-

itively, an object x is blocked w.r.t. label l if we need

2

This idea was already used in

[

Buchheit et al.,1993;

Baader et al.,1994

]

, with slightly di�ering de�nitions of

blocked objects.

not introduce a new object in order to be sure that the

exists restrictions on x can be satis�ed. Consider, for in-

stance, the world constraint systemW = fx :9R:C jjl; x :

D jj l; xRy jj l; y :9R:C jj lg. In this case, it is su�cient to

apply the!

9

rule just to x. In fact, since all constraints

for y are also constraints for x, any contradiction that

could be obtained by applying this propagation rule to

y can already be obtained by applying it to x. The idea

is thus to say that y is blocked by x with respect to a

label l if fC j y :C jj l 2Wg � fD j x :D jj l 2Wg. In the

above example, y would thus be blocked by x, and the

!

9

rule would only be applied to x. In general, this no-

tion of blocking is too strong, though. In fact, consider

the system W

0

that is obtained from W by deleting the

constraint x :D jjl. In this system, x would be blocked by

y and vice versa. Such cyclic blocking is clearly not ap-

propriate since contradictions that are possibly hidden

in C would never be detected.

In order to avoid cyclic blocking, we assume that the

(countably in�nite) set of all object names is given by

an enumeration y

1

; y

2

; y

3

; : : :We write y < x if y comes

before x in this enumeration. This ordering is used as

follows. Whenever a new object y is introduced by ap-

plying the !

9

rule to a world constraint system W , y

is chosen such that all objects in W are smaller than

y w.r.t. this ordering. In addition, only smaller objects

can block a given object.

De�nition 4.1 An object y is blocked by an object x

w.r.t. label l in a world constraint system W i� fC j y :

C jj l 2 Wg � fD j x :D jj l 2Wg and x < y.

Now, the !

9

rule is applicable to a world constraint

x : 9R:C jj l in a world constraint system W only if

x is not blocked by some object z w.r.t. l in W . A

formal description of the propagation rules is given in

Figure 1. Given a set fF

1

; : : : ; F

n

g of ALC

M

-formulas

the ALC

M

-satis�ability algorithm proceeds as follows.

Starting with the world constraint system W

0

that is in-

duced by fF

1

; : : : ; F

n

g, propagation rules are applied as

long as possible.

The transformation rules are sound in the sense that,

if W is a satis�able world constraint system, each appli-

cable propagation rule can be applied in such a way that

the obtained derived system is satis�able (see

[

Baader

and Laux,1994

]

for a proof). For the \don't-know" non-

deterministic!

t

rule there are two alternative successor

systems, and soundness means that one of them is satis-

�able if the original system is satis�able.

3

For the other

rules (which are deterministic), soundness just means

that application of the rule transforms a satis�able sys-

tem into a new satis�able system. Furthermore, given an

arbitrary induced world constraint system W

0

, only a �-

nite number of propagation rules can successively be ap-

plied, starting withW

0

(see also

[

Baader and Laux,1994

]

for a proof). This termination property means that, af-

ter a �nite number of propagation rule applications to

3

Note that the choice of an applicable rule is \don't-care"

non-deterministic, i.e., we need not try di�erent orders of rule

applications.

10

W !

3

fl 1

o

l

0

; '

0

jj l

0

g [W

if ' jj l is in W , where ' is hoi F (resp. x : hoi C), '

0

is F (resp. x :C), there is no label l

00

in W such

that the world constraints l 1

o

l

00

and '

0

jj l

00

are in W , and l

0

is a new label.

W !

2

f'

0

jj l

0

g [W

if ' jj l and l 1

o

l

0

are in W , where ' is [o]F (resp. x : [o]C), '

0

is F (resp. x :C), and '

0

jj l

0

is not in W .

W !

u

fx :C

1

jj l; x :C

2

jj lg [W

if x :C

1

u C

2

jj l is in W and W does not contain both world constraints x :C

1

jj l and x :C

2

jj l.

W !

t

fx :D jj lg [W

if x :C

1

t C

2

jj l is in W , neither x :C

1

jj l nor x :C

2

jj l is in W , and D is either C

1

or C

2

.

W !

9

fxRy jj l; y :C jj lg [W

if x :9R:C jj l is in W , x is not blocked in W , and y is a new object such that y > z for all objects z

occurring in W .

W !

8

fy :C jj lg [W

if x :8R:C jj l and xRy jj l are in W and W does not contain the world constraint y :C jj l.

W !

=

fx :C jj lg [W

if x is relevant for l, C = > jj l is in W , and x :C jj l is not in W .

Figure 1: Propagation rules of the ALC

M

-satis�ability algorithm.

W

0

we obtain a complete world constraint system (i.e.,

a system to which no more rules apply), say W

0

. If

W

0

is satis�able we can conclude that W

0

is satis�able

(since W

0

is a subset of W

0

). Otherwise, if W

0

is unsat-

is�able, we can possibly derive another complete world

constraint system fromW

0

by another choice for the non-

deterministic !

t

rule. If all the (�nitely many) choices

lead to an unsatis�able complete system then soundness

of the rules implies that the original system W

0

was un-

satis�able.

Thus, it remains to be explained how satis�ability of

a complete world constraint system can be decided. For

this purpose, we say that a world constraint system W

contains an obvious contradiction (or clash for short) if

it contains either a pair of labeled ALC

M

-formulas of the

form x :A jj l and x ::A jj l or a labeled ALC

M

-formula

x :? jj l (for some object x, concept name A, and label

l). Obviously, a world constraint system containing a

clash is unsatis�able. On the other hand, if a system is

clash-free and complete then it is satis�able (see

[

Baader

and Laux,1994

]

for a proof of this property, which shows

completeness of the propagation rules). Summing up,

we obtain the following theorem.

Theorem 4.2 Satis�ability of a �nite set of ALC

M

-

formulas is decidable if we assume increasing domains.

5 Conclusion

The framework for integrating modal operators into

terminological knowledge representation languages pre-

sented in this paper should be seen as the starting point

for developing more elaborate hybrid languages of this

type. Extensions in at least two directions will be nec-

essary.

First, for the adequate representation of notions like

belief and time, the basic modal logic K is not su�cient.

Instead, one must consider modalities that satisfy appro-

priate modal axioms. Second, the multi-dimensionality

of our language has not really been made use of. In

fact, it is easy to see that with respect to satis�abil-

ity there is no di�erence between the �-dimensional and

the corresponding 1-dimensional case (see

[

Baader and

Laux,1994

]

for details). We have introduced a multi-

dimensional framework since it is more
exible. In an

extended language, di�erent dimensions could satisfy dif-

ferent modal axioms (e.g., KD45 in the belief dimension,

and at least S4 in the time dimension).

4

In addition, one

might want to specify certain interactions between dif-

ferent dimensions such as independence of one dimension

from certain other dimensions.

The reason for considering a simpli�ed framework

without any of these extensions in the present paper

is that in this context it is possible to design a rather

intuitive calculus for satis�ability. Also, the proof of

soundness, termination and completeness of this calcu-

lus is still relatively short and comprehensible. For this

reason, we claim that this calculus can serve as a ba-

sis for satis�ability algorithms for more complex lan-

guages. Another topic of future research will be investi-

gating the constant domain assumption and its algorith-

mic rami�cations. The answer to the question whether

constant domain assumption or increasing domain as-

sumption is more appropriate from the semantic point

4

In the propositional case, the combination of di�er-

ent modal logics obtained this way corresponds to what

Gabbay calls \dove-tailing of propositional modal logics"

[

Gabbay,1994

]

.

11

of view strongly depends on the intended interpretation

of the modalities (belief, knowledge, time, etc.).

Acknowledgment: An extended version of this arti-

cle will appear in the proceedings of the conference IJ-

CAI'95. This work has been supported by the German

Ministry for Research and Technology (BMFT) under re-

search contract ITW 8903 0, and the EC Working Group

CCL, EP6028.

References

[

Baader and Hollunder, 1991

]

F. Baader and B. Hollun-

der. A terminological knowledge representation sys-

tem with complete inference algorithms. In Proc. of

PDK'91, 1991.

[

Baader and Laux, 1994

]

F. Baader and A. Laux. Ter-

minological logics with modal operators. Research Re-

port RR-94-33, DFKI Saarbr�ucken, 1994.

[

Baader et al., 1994

]

F. Baader, M. Buchheit, and

B. Hollunder. Cardinality restrictions on concepts. In

Proc. of KI'94, 1994.

[

Brachman and Schmolze, 1985

]

R. J. Brachman and

J. G. Schmolze. An overview of the KL-ONE

knowledge representation system. Cognitive Science,

9(2):171{216, 1985.

[

Buchheit et al., 1993

]

M. Buchheit, F. M. Donini, and

A. Schaerf. Decidable reasoning in terminological

knowledge representation systems. In Proc. of IJ-

CAI'93, 1993.

[

Gabbay, 1994

]

D. M. Gabbay. LDS { Labelled Deduc-

tive Systems, Volume 1 | Foundations. Technical

Report MPI-I-94-223, Max-Planck-Institut f�ur Infor-

matik, Saarbr�ucken, 1994.

[

Kobsa, 1989

]

A. Kobsa. The SB-ONE knowledge rep-

resentation workbench. In Preprints of the Workshop

on Formal Aspects of Semantic Networks, 1989.

[

Laux, 1994a

]

A. Laux. Beliefs in multi-agent worlds: A

terminological logics approach. In Proc. of ECAI'94,

1994.

[

Laux, 1994b

]

A. Laux. Integrating a modal logic of

knowledge into terminological logics. In Proc. of IB-

ERAMIA'94, 1994.

[

Ohlbach and Baader, 1993

]

H.-J. Ohlbach and F. Baa-

der A multi-dimensional terminological knowledge

representation language. In Proc. of IJCAI'93, 1993.

[

Sa�otti and Sebastiani, 1988

]

A. Sa�otti and F. Se-

bastiani. Dialogue modelling in M-KRYPTON, a hy-

brid language for multiple believers. In Proc. of IEEE,

1988.

[

Schild, 1991

]

K. Schild. A correspondence theory for

terminological logics: Preliminary Report. In Proc. of

IJCAI'91, 1991.

[

Schild, 1993

]

K. Schild. Combining terminological log-

ics with tense logic. In Proc. of EPIA'93, 1993.

[

Woods and Schmolze, 1992

]

W. A. Woods and J. G.

Schmolze. The KL-ONE-family. In F. W. Lehmann,

editor, Semantic networks in arti�cial intelligence.

1992.

12

Epistemic ALC-knowledge bases

Francesco M. Donini, Daniele Nardi, Riccardo Rosati

�

Dipartimento di Informatica e Sistemistica,

Universit�a di Roma \La Sapienza",

Via Salaria 113, I-00198 Roma, Italy,

email:fdonini,nardi,rosatig@dis.uniroma1.it

Statement of interest

We consider the epistemic concept language proposed

in

[

5

]

, which has been used to formalize procedural rules

and weak de�nitions using a very restricted form of epis-

temic sentences. Our statement is that there are a num-

ber of other uses of the epistemic operator that require

di�erent forms of epistemic sentences in the knowledge

base. To justify this statement we brie
y recall the epis-

temic language ALCK, then address the formalization

of defaults, and provide examples of assertions including

epistemic operators in the construct for universal quan-

ti�cation on roles and in the scope of existential quan-

ti�cation on roles.

1 Introduction

Concept languages (also called terminological logics,

description languages) have been studied in the past

years to provide a formal characterization of frame-

based system. However, while the fragment of �rst-order

logic which characterizes the most popular constructs

of these languages has been clearly identi�ed (see for

example

[

25

]

), there is not yet consensus on the prac-

tical aspects of frame systems that cannot be formal-

ized in a �rst-order setting. In fact, frame-based sys-

tems, as well as systems based on concept languages

[

3;

13

]

, admit both forms of non-monotonic reasoning, such

as defaults and closed world reasoning, and procedu-

ral features, e.g. rules. These issues have been ad-

dressed in the recent literature (see for example

[

1; 5;

16; 17; 22

]

), but the proposals typically capture one

of the above mentioned aspects. In this paper we

propose a concept language with an epistemic opera-

tor interpreted in terms of minimal knowledge

[

8; 6;

11

]

, and we show that it provides an adequate treatment

of the following features: defaults, procedural rules,

weak de�nitions and role closures, as they are provided in

the most popular systems based on concept languages.

The intuitive reason that makes our approach suitable

for a precise characterization of the behaviour of imple-

mented systems is that the minimization of knowledge

�

This paper has been submitted for presentation at the

Fourth Congress of the Italian Association for Arti�cial In-

telligence, AI*IA-95.

on possible world structures carries the idea of restricting

reasoning on individuals that are known to the knowl-

edge base (i.e. individuals that have an explicit name).

In fact, most implementations are object centered, which

enables them to perform e�cient reasoning on the prop-

erties of individuals. However, the resulting behaviour

is not only justi�ed by implementation considerations,

but carries an intuitive and natural restriction of the

reasoning that the system is required to perform. Since

in our setting both forms of reasoning are allowed, the

expressivity of the formalism is substantially enriched,

giving the knowledge base designer the option to choose

between standard logical reasoning and reasoning which

is restricted to the individuals known to the system. We

provide an example of this enriched expressivity by ex-

tending the idea of closure to concepts.

The work extends the approach taken in

[

5

]

in two

respects. From the point of view of the formalism we

consider a family of logics, i.e. the ground nonmonotonic

modal logics, that is parameterized with respect to the

possible world structures used to interpret the modal

operator. From the point of view of the language we are

able to address defaults, and to show that they can not

be adequalely represented in the framework proposed in

[

5

]

.

The paper is organized as follows. We brie
y recall the

epistemic language ALCK, then discuss di�erent inter-

pretations of the modal operator and address the repre-

sentation of defaults in the epistemic concept language.

We �nally address other uses of the epistemic operator

both capturing the behaviour of the most popular knowl-

edge representation systems based on concept languages,

and proposing new features.

2 An Epistemic Concept Language

In this section we brie
y introduce an epistemic con-

cept language, which is an extension of the concept

language ALC with an epistemic operator. Generally

speaking, we use KC to denote the set of individ-

uals known to be instances of the concept C in ev-

ery model for the knowledge base. The syntax of

ALCK admits the epistemic operator before any con-

cept and role expression of the language ALC. The se-

mantics of ALCK is an adaptation to the framework

13

of concept languages of the one proposed in

[

10; 11;

19

]

, which is based on the CommonDomain Assumption

(i.e. every interpretation is de�ned over a �xed domain,

called �) and on the Rigid Term Assumption (i.e. for

every interpretation the mapping from the individuals

into the domain elements, called
, is �xed).

The syntactic de�nition of ALCK is as follows (C;D

denote concepts, R denotes a role, A denotes a primitive

concept and P a primitive role):

C;D �! A j (primitive concept)

> j (top)

? j (bottom)

C uD j (intersection)

C tD j (union)

:C j (complement)

8R.C j (universal quanti�cation)

9R.C j (existential quanti�cation)

KC (epistemic concept)

R �! P j (primitive role)

KP (epistemic role):

An epistemic interpretation is a triple (I;W;R) where

I is a possible-world,W a set of possible-worlds, andR is

a binary relation onW, such that the following equations

are satis�ed:

>

I;W;R

= �

?

I;W;R

= ;

A

I;W;R

= A

I

� �

P

I;W;R

= P

I

� ���

(C uD)

I;W;R

= C

I;W;R

\D

I;W;R

(C tD)

I;W;R

= C

I;W;R

[D

I;W;R

(:C)

I;W;R

= � nC

I;W;R

(8R.C)

I;W;R

= fd

1

2 � j 8d

2

.

(d

1

; d

2

) 2 R

I;W;R

! d

2

2 C

I;W;R

g

(9R.C)

I;W;R

= fd

1

2 � j 9d

2

.

(d

1

; d

2

) 2 R

I;W;R

^ d

2

2 C

I;W;R

g

(KC)

I;W;R

=

\

(I;J)2R

(C

J ;W;R

)

(KP)

I;W;R

=

\

(I;J)2R

(P

J ;W;R

):

An ALCK-knowledge base 	 is a pair 	 = hT ;Ai,

where T , called the TBox, is a set of inclusion state-

ments of the form C v D, with C;D 2 ALCK, and A

(the ABox) of is a set of membership assertions, of one

of the forms C(a); R(a; b) with C;R 2 ALCK and a; b

are names of individuals. The truth of inclusion state-

ments and membership assertions in an epistemic inter-

pretation is de�ned as set inclusion and set membership,

respectively. The general form of the semantics is based

on a preference criterion on epistemic interpretations; a

full de�nition is given in

[

15

]

. Here we recall the special

case where R = W �W, corresponding to consider the

so-called universal S5 models, considered in

[

5

]

. In such a

case an epistemic model for 	 is a triple (I;W;W�W),

where I 2 W and W is any maximal set of worlds such

that for each J 2 W, every sentence (inclusion or mem-

bership assertion) of 	 is true in (J ;W;W �W).

An ALCK-knowledge base 	 is said to be satis�able

if there exists an epistemic model for 	, unsatis�able

otherwise. 	 logically implies an assertion �, written

	 j= �, if � is true in every epistemic model for 	.

3 Defaults as epistemic sentences

In this section we discuss whether defaults are repre-

sentable as epistemic sentences in ALCK. We start by

observing that the interpretation of the modal opera-

tor in ALCK corresponds to the �rst-order extension of

the propositional ground nonmonotonic logic S5

G

. We

will show that this particular logic does not admit any

modular translation for default theories, while such a

translation is possible in the case of ground logics built

from modal systems di�erent from S5.

We �rst brie
y recall propositional ground modal log-

ics

[

20; 23; 9; 6

]

and default logic

[

18

]

, then show some

properties of this family of logics with respect to their

ability to capture rules and defaults, and �nally turn our

attention to concept languages by de�ning a modal con-

cept language which admits a modular translation for

default theories.

Given a normal modal logic S, a consistent set of for-

mulas T is an S

G

-expansion for a set I � L

K

if

T = Cn

S

(I [f:K' j ' 2 L n Tg):(1)

where Cn

S

is the consequence operator of modal logic

S, L is the propositional language and L

K

is the propo-

sitional language augmented by the modal operator K.

The resulting (nonmonotonic) consequence operator is

de�ned as the intersection of all S

G

-expansions for I.

Therefore, for every normal modal logic S, the corre-

sponding ground nonmonotonic modal logic S

G

is ob-

tained by means of the above �xpoint equation.

We recall that a propositional default theory is a pair

(D;W), such that D is a set of defaults, i.e. inference

rules of the form

�:M�

1

;:::;M�

n

, where �; �

i

;
 2 L, W is

a theory in L and M� is interpreted as: \it is consistent

to assume �". A justi�cation-free default is a default

where the justi�cation part is empty, i.e. of the form

�:

.

As we shall see later, this kind of defaults correspond to

trigger rules, whose formalization in the language ALCK

has been studied in

[

5

]

.

We are interested in the translation of a default theory

into a modal theory. Therefore we give the following

de�nitions (taken from

[

7

]

).

De�nition 3.1 A faithful translation from default logic

to a ground nonmonotonic logic S

G

is a mapping tr

which transforms each default theory D into a modal

theory tr(D) such that the objective parts of the S

G

-

expansions of tr(D) are exactly the default extensions

of D.

14

As pointed out by Gottlob

[

7

]

, not every translation that

is faithful is useful in practice. In particular, we would

like to be able to turn each default into a modal sentence,

independently of other defaults. Such translations are

called modular.

De�nition 3.2 A translation tr from default logic to a

ground nonmonotonic logic S is modular i� for each de-

fault set D and each W � L it holds that tr(D;W) =

tr(D; ;) [W .

We shall use the modular translation emb introduced in

[

24

]

.

emb(d) = K� ^K:K:�

1

^ : : :^K:K:�

n

�

emb(D;W) = W [femb(d) j d 2 Dg

where d is a default. We now show some properties of

ground logics with respect to their ability to capture de-

faults.

A �rst interesting result concerns the existence of

modular translations for justi�cation-free defaults. In

particular, we have that emb(D;W) provides the desired

result for any ground nonmonotonic logic.

Theorem 3.3 There exists a faithful modular transla-

tion from justi�cation-free default theories to any ground

nonmonotonic logic.

Proof. Let (D;W) be a default theory such that D is a

collection of justi�cation-free defaults. Then (D;W) has

exactly one default extension S. The theory emb(D;W)

has ST (S), i.e. the unique stable theory T such that

T \ L = Cn(S), where Cn is the propositional conse-

quence operator, as its only K

G

-expansion

1

(see Theo-

rem 3.5 below). Moreover, it can be shown that every

S5-modelM for emb(D;W) is such that Th(M)\L � S,

which implies that ST (S) is the only S5

G

-expansion

for emb(D;W). Thus, for every logic S such that

K � S � S5, theory emb(D;W) admits exactly one

S

G

-expansion ST (S). Therefore for such logics emb is a

faithful translation for justi�cation-free defaults.

With respect to defaults we start with a negative result

on the logic S5

G

. Notice that this result also holds for

logicALCK, which corresponds to a �rst-order extension

of S5

G

.

Theorem 3.4 There exists no faithful modular transla-

tion from default logic to S5

G

.

Proof. Consider the default theory (D;W

0

) such that

D = f

:a

a

g, W

0

= ;, and suppose tr is a faith-

ful modular translation from DL to S5

G

. This im-

plies that tr(D;W

0

) has only one S5

G

-expansion T =

ST (a). Therefore, in every (monotonic) S5-modelM for

tr(D;W

0

) it holds thatM j= a. Now, given W

1

= f:ag,

by the hypothesis of modularity of tr it follows that

tr(D;W

1

) = tr(D;W

0

) [W

1

. Consequently, tr(D;W

1

)

1

K

G

denotes the ground logic obtained from the modal

logic K, not to be confused with the symbol used for the

epistemic operator.

is an S5-inconsistent theory, and hence it has no S5

G

-

expansions, while on the other hand the default theory

(D;W

1

) has the default extension Cn(f:ag), thus con-

tradicting the hypothesis of faithfulness of tr.

The impossibility of a faithful modular translation

from default theories to S5

G

originates from the mono-

tonicity of this particular logic with respect to objective

formulae, in the sense that for each I; ' 2 L

K

and for

each 2 L, if I j=

S5

G

 then I [' j=

S5

G

 . Therefore

in S5

G

only modal formulae can change their validity

when new information is added. Since no other ground

logic shares this characteristic with S5

G

, this negative

behaviour seems to be restricted to the logic S5

G

only.

On the other hand, for a wide class of ground logics we

obtain the following positive result (which is analogous

to that obtained for McDermott and Doyle's logics in

[

24

]

).

Theorem 3.5 Given a modal logic S such that K �

S � S4F , there exists a faithful modular translation from

default logic to the ground nonmonotonic logic S

G

.

Sketch of the proof. (For the detailed proof see

[

15

]

)

First, it is shown that if S is a default extension for the

default theory (D;W), then ST (S) is an S

G

-expansion

for emb(D;W) for any modal logic S such that K � S �

S5. Then, we prove that if ST (S) is a S4F

G

-expansion

for emb(D;W), then S is a default extension for (D;W).

This is obtained by exploiting a correspondence between

minimal expansions in McDermott and Doyle logics and

ground expansions. The two above results imply that,

for each modal logic S such that K � S � S4F , emb is

a faithful translation for S; since emb is modular, this

concludes the proof.

We now turn our attention to the problem of express-

ing defaults in concept languages. We denote the family

of concept languages ALCK(S

G

) as the epistemic con-

cept language where the modal operator is interpreted as

in ground propositional logic S

G

, by choosing the prop-

erties of the accessibility relation. In the setting of con-

cept languages we have to deal with the issue of giving

a semantics to open defaults, i.e. defaults in which free

variables occur. The semantics of open defaults is still

debated

[

12; 2

]

. We assume the semantics proposed by

Baader and Hollunder

[

1

]

, which restricts the application

of defaults only to the individuals explicitly mentioned

in the ABox. Notice that this semantics can be viewed

as the natural extension of the semantics of rules given

in

[

5

]

, where rules apply only to the known individuals

in the knowledge base.

The following theorem shows that, under this seman-

tics, default theories are expressible in a large subset of

the family ALCK(S

G

).

Theorem 3.6 Given a modal logic S such that K �

S � S4F , there exists a faithful modular translation from

default logic to the concept language ALCK(S

G

).

Proof. We show that the following modular translation

� is faithful:

15

d =

� :M�

1

: : :M�

n

� (d) = K(O ^ �) ^K:K:�

1

^ : : :^K:K:�

n

�
(2)

where O is a concept whose extension comprises all the

individuals explicitly mentioned in the ABox, namely we

assume that for each individual a there exists an asser-

tion O(a) in the ABox. We can see formula K(O ^ �)^

K:K:�

1

^ : : :^K:K:�

n

�
 as the set of its instances

on all individuals (both known and unknown), i.e. as

two sets of closed formulae, one on known individuals

and the other one on unknown individuals, which we call

respectively KD and UD. These formulae correspond to

propositional defaults according to the translation emb.

Now, Theorem 3.5 guarantees that the set of formulae

KD exactly corresponds to the instances of the default

rule on known individuals. On the other hand, none of

the propositional defaults corresponding to the set UD

can be applied, because of the presence of the conjunct

O in the prerequisite: consequently, � is a faithful trans-

lation for default theories under the semantics of Baader

and Hollunder.

Notice that the formalization of procedural rules

given by

[

5

]

, is the same obtained by applying emb to

justi�cation-free defaults. It can be shown that, with

respect to ALCK(S5

G

), the modi�cation of the seman-

tics for the modal operator does not a�ect the behaviour

of knowledge bases which employ the epistemic operator

only in the formalization of weak de�nitions and rules as

introduced in

[

5

]

. Now we consider logic ALCK(S4F

G

).

The modi�ed semantics does not change the interpreta-

tion of epistemic queries (this is a result valid for each

concept language ALCK(S

G

)). Therefore we can ex-

tend to ALCK(S4F

G

) the properties shown in

[

5

]

for

ALCK(S5

G

), in particular the ability to express forms

procedural rules. Moreover, the last theorem states that

ALCK � S4F

G

allows for the formalization of defaults.

We can de�ne a decision procedure for ALCK(S4F

G

)-

knowledge bases containing defaults, and allowing epis-

temic queries. Such a procedure employs the calculus for

ALCK(S5

G

) de�ned in

[

4

]

and separately treats defaults,

for example using the method of Schwind and Risch

[

21

]

on the instances of the defaults on all the known indi-

viduals. Consequently, instance checking for this kind of

ALCK(S4F

G

)-knowledge bases is a decidable problem.

4 Epistemic knowledge bases

The use of the modal operator to represent features of-

fered by current systems based on concept languages has

been addressed in

[

5

]

, where two settings are proposed:

1. the knowledge base is constituted by a set of non-

epistemic assertions and the epistemic operator is

allowed in the query language only. In this set-

ting it has been shown that one can express a form

of closed-world reasoning, as well as integrity con-

straints in the style of

[

19

]

;

2. the knowledge base is constituted by a pair (R;A),

where A is a set of non-epistemic assertions as before

and R is a set of epistemic assertions of the form

KC v D, where C;D are ALC-concepts. In this

setting it is possible to formalize procedural rules

in the style of CLASSIC

[

3

]

, and weak de�nitions

that arise by treating the de�nition A

:

= D as the

two weaker inclusions fKA v D;KD v Ag.

In this section we consider knowledge bases with more

general forms of epistemic sentences. First of all, as we

have shown in the previous section, defaults can be ex-

pressed as a particular class of epistemic sentences 3,

interpreted by re�ning the semantics of the modal oper-

ator.

In the following we �rst show that role closure can be

nicely formalized in our setting by using epistemic roles,

then we discuss a new form of closure obtained by using

epistemic concept expressions.

Closure on roles is available both in CLASSIC(see

[

3

]

)

and in LOOM (see

[

13

]

). The idea is to restrict universal

role quanti�cations to the known individuals �lling the

role in the knowledge base. The following example has

been developed in the system CLASSIC. Let us consider

the following knowledge base:

vegetarian

:

= 8EATS.plant

EATS(Bob; Celery)

plant(Celery)

If one applies the closure operator to the role EATS,

CLASSIC infers vegetarian(Bob). We can formalize

the above sequence of operations by introducing the

epistemic operator in the knowledge base. In particu-

lar, the de�nition vegetarian

:

= 8EATS.plant plus the

closure of EATS could be represented by vegetarian

:

=

8KEATS.plant. The di�erence with CLASSIC is that a

subsequent assertion EATS(Bob,Meat) would cause a sys-

tem warning in CLASSIC, while in our epistemic set-

ting would simplymean that vegetarian(Bob) no longer

holds.

Another interesting example points out the procedu-

ral nature of the closure operator. Let us consider the

following knowledge base, which includes two rules ex-

pressed as epistemic sentences, and the closure operator

is again expressed in epistemic terms:

K(8KR.A) v (FILLS Qc)

K(8KQ.B) v (FILLS Rc)

R(a; b); Q(a; b); A(b); B(b)

This knowledge base admits two epistemic models, one

in which Q(a; c) holds by e�ect of the �rst rule, and an-

other one in which R(a; c) holds because the second rule

is applied. The situation is reproducible in CLASSIC,

which selects one extension or the other, based on the

order in which the closure operations are executed. In

other words, if R is closed �rst, than the result of the

application of the �rst rule inhibits the application of the

second one and vice versa.

Finally, we turn our attention to other uses of the epis-

temic operator that become possible in our setting. In

16

particular, we can state complete knowledge about a con-

cept. Consider for example a university, whose profes-

sors have o�ces inside buldings. Let � be the following

knowledge base:

university(ULS) building(MainBld)

professor(George) has-office(George; room1)

professor(Bob) has-office(Bob; room2)

is-in(room1; MainBld) is-in(room2; MainBld)

and consider the assertion A = \the university has a rec-

tor, who is a professor". One may express the assertion

as 9has-rector.professor(ULS). Consider the question

to the knowledge base \Do you know where the rector's

o�ce is?", which can be expressed as the following query

Q:

K9has-rector.9has-office.9is-in.Kbuilding(ULS)

Of course the answer is No, since the rector can be any

(unknown) professor whose o�ce we don't know about.

This is captured by the fact that

� [f9has-rector.professor(ULS)g j= :Q

because there is one epistemic model, where in di�er-

ent worlds there can be a di�erent (known or unknown)

rector, with the o�ce in any building.

Suppose now that we know who the professors are,

that is, we have complete knowledge about professors of

the university. In this case, the assertion A should be

expressed as 9has-rector.Kprofessor(ULS)

2

. Now we

have that

� [f9has-rector.Kprofessor(ULS)g j= Q

which correctly captures the fact that the knowledge

base knows where the rector's o�ce is, namely, in the

main building. In fact, there are two epistemic models

of �[f9has-rector.Kprofessor(ULS)g. In one model,

George is the rector, while in the other Bob is. In both

models, every world contains the fact that the rector's

o�ce is in the main building.

Notice that the kind of closure on roles that we have

just described is not available in implemented systems,

although it seems to be both useful and natural. We

expect that other uses of the epistemic operator can be

found and we are currently investigating this possibility.

5 Conclusions

In this paper we have proposed a nonmonotonic modal

formalism based on the idea of minimization of knowl-

edge, that captures the intuition of restricting certain

forms of reasoning to the individuals known to the knowl-

edge base. We have shown that the formalism allows for

the representation of defaults, by adopting the semantics

of the modal operator given by ground non monotonic

modal logics. Moreover, we have shown that a number of

2

In fact, the last expression captures the assertion \the

university has a rector, which is one of the (known)

professors".

non-�rst order features that are available in knowledge

representation systems based on concept languages can

be nicely formalized by allowing various forms of modal

statements in the knowledge bases. The proposed for-

malism �lls in the gap between theory and practice by

providing forms of reasoning that both have a natural

interpretation and correspond to some of the features

implemented in the systems. We plan to develop our

work by investigating the reasoning methods that are

more appropriate for the di�erent classes of epistemic

sentences that are included in the knowledge base.

References

[

1

]

F. Baader and R. Hollunder. Embedding defaults

into terminological knowledge representation for-

malisms. In Proceedings of KR-92, pages 306{317,

Morgan Kaufmann, 1992.

[

2

]

F. Baader and K. Schlechta. A semantics for open

normal defaults via a modi�ed preferential approach.

DFKI research report RR-93-13, 1993.

[

3

]

R. J. Brachman, D. McGuinness, P. F. Patel-

Schneider, L. A. Resnick. Living with CLASSIC:

When and How to Use a KL-ONE-Like Language. In

Principles of Semantic Networks, J. Sowa ed., Mor-

gan Kaufmann, 1990.

[

4

]

Francesco M. Donini, Maurizio Lenzerini, Daniele

Nardi, Werner Nutt, Andrea Schaerf. Adding epis-

temic operators to concept languages. In Proceedings

of KR-92, pages 342{353, Morgan Kaufmann, 1992.

[

5

]

Francesco M. Donini, Maurizio Lenzerini, Daniele

Nardi, Werner Nutt, Andrea Schaerf. Queries, Rules

and De�nitions as Epistemic Sentences in Concept

Languages. In Theoretical Foundations of Knowl-

edge Representation and Reasoning, Gerhard Lake-

meyer and Bernhard Nebel eds., LNAI 810, Springer-

Verlag, 1994.

[

6

]

F. M. Donini, D. Nardi and R. Rosati. Ground Non-

monotonic Modal Logics for Knowledge Representa-

tion. To appear in Proceedings of WOCFAI-95.

[

7

]

Georg Gottlob. The Power of Beliefs - or - Trans-

lating Default Logic into Standard Autoepistemic

Logic. In Proc. of the 13th Int. Joint Conf. on Arti�-

cial Intelligence IJCAI-93, Chambery, France, 1993.

[

8

]

J. Halpern and Y. Moses. Towards a theory of

knowledge and ignorance: preliminary report. In

K. Apt editor, Logics and models of concurrent sys-

tems, pages 459{476, Springer-Verlag, 1985.

[

9

]

M. Kaminski. Embedding a default system into non-

monotonic logic. Fundamenta Informaticae, 14:345{

354, 1991.

[

10

]

Hector J. Levesque. Foundations of a functional

approach to knowledge representation. Arti�cial In-

telligence Journal, 23:155{212, 1984.

[

11

]

Vladimir Lifschitz. Nonmonotonic databases and

epistemic queries. In Proc. of the 12th Int. Joint

17

Conf. on Arti�cial Intelligence IJCAI-91, Sydney,

1991.

[

12

]

Vladimir Lifschitz. On open defaults. In Proc. of the

Symposium on Computational Logics, Br�ussel, Bel-

gium, 1990.

[

13

]

Robert MacGregor. A deductive pattern matcher.

In Proc. of the 7th Nat. Conf. on Arti�cial Intelli-

gence (AAAI-88), pages 403{408, 1988.

[

14

]

V.W. Marek and M. Truszczy�nski. Nonmonotonic

logic. Context-dependent reasoning. Springer-Verlag,

1993.

[

15

]

D. Nardi and R. Rosati. Modal logics of mini-

mal knowledge. Technical Report, Dip. Informatica

e Sistemistica, Univ. \La Sapienza", Roma, 1995.

Available by anonymous ftp at dis.uniroma1.it, in

/pub/nardi/NaRo95.ps.

[

16

]

Lin Padgham and Tingting Zhang. A terminologi-

cal logic with defaults: a de�nition and an applica-

tion. In Proc. of the 13th Int. Joint Conf. on Arti-

�cial Intelligence IJCAI-93, pages 662{668, Cham-

bery, France, 1993.

[

17

]

J. Quantz and V. Royer. A preference semantics for

defaults in terminological logics. In Proceedings of

KR-92, pages 294{305, Morgan Kaufmann, 1992.

[

18

]

R. Reiter, A Logic for Default Reasoning. Arti�cial

Intelligence Journal, 13:81-132, 1980.

[

19

]

R. Reiter. On asking what a database knows. In

J. W. Lloyd, editor, Symposium on Computational

Logics, pages 96{113. Springer-Verlag, ESPRIT Ba-

sic Research Action Series, 1990.

[

20

]

G. Schwarz. Bounding introspection in nonmono-

tonic logics. In Proceedings of the 3rd international

conference on principles of knowledge representa-

tion and reasoning (KR-92), pages 581{590, Morgan

Kaufmann, 1992.

[

21

]

C. Schwind and V. Risch. A tableau-based char-

acterisation for default logic. In Proceedings of the

First European Conference on Symbolic and Quan-

titative Approaches for Uncertainty, pages 310{317,

Marseilles, France, 1991.

[

22

]

Umberto Straccia. Default inheritance reasoning in

hybrid KL-ONE-style logics. In Proc. of the 13th

Int. Joint Conf. on Arti�cial Intelligence IJCAI-93,

pages 676{681, Chambery, France, 1993.

[

23

]

M. Tiomkin and M. Kaminski. Nonmonotonic de-

fault modal logics. In Proceedings of the Third Con-

ference on Theoretical Aspects of Reasoning about

Knowledge (TARK-90), pages 73{84, 1990.

[

24

]

M. Truszczy�nski. Modal interpretations of default

logic. In Proc. of the 12th Int. Joint Conf. on Arti-

�cial Intelligence IJCAI-91, Sydney, 1991.

[

25

]

William A. Woods and James G. Schmolze. The

KL-ONE Family. Semantic Networks in Arti�cial In-

telligence. Published as a special issue of Computers

& Mathematics with Applications, Volume 23, Num-

ber 2{9, 1992, pages 133{178.

18

Hierarchical Correspondance between

Physical Situations and Action Models

V�eronique Royer, ONERA DES/SIA

29 avenue de la division Leclerc, BP 72, F-92322 Châtillon

email: royer@onera.fr

Abstract

The framework of the paper is the recogni-

tion of ongoing actions of groups of agents in

a scene watched by image sensors. In such ap-

plications, the actions are not directly observed

but must be interpreted from observed physi-

cal situations. In particular, as the perception

ressources are usually limited, one crucial issue

is whether more informed situations correspond

to more speci�c actions.

The physical situations are given an extensional

representation and partially ordered w.r.t some

information speci�city. The action models are

represented using Description Logics, thus or-

ganized into subsumption taxonomies. The

correspondance between both representation

spaces is formalized and shown to behave

monotonically w.r.t. the respective taxonomic

structures under speci�c \homogeneity" condi-

tions over the situations. The application of

this formal framework to situation recognition

is then discussed.

Keywords: action modeling, taxonomic rep-

resentations, situation recognition.

1 Introduction

The global framework of the paper is the recognition of

ongoing actions of groups of agents (human or arti�cial)

in a scene watched by image sensors. The need for in-

teraction between the observation and the interpretation

tasks raises the general issue of the structural correspon-

dance between the representation of situations { physical

happenings observed in the scene { and the representa-

tion of actions { prototypical models used for situation

recognition.

The situations reasonably need a hierarchical structure

for capturing the fact that some situations are "more

informed" than others, which is an important criterion

when evaluating or comparing several candidate inter-

pretations. The actions usually have a taxonomic struc-

ture: typically, an action is said more speci�c than an-

other one if the formed re�nes the latter [Kautz]. There-

fore one more issue is whether the correspondance is hier-

archical, that is whether more informed situations corre-

spond to more speci�c actions. From a strategic point of

view, this property is highly desirably because it garan-

teed some monotonicity of situation recognition under

limited perception ressources: that the actions recog-

nized from observed situations { usually less informed

than the real ones { subsume the real intended actions.

The literature in Plan Recognition just ignores these is-

sues because most works apply to non physical domains,

like speech-act understanding or intelligent help systems

[Cohen et al.]. So, the actions are assumed to be di-

rectly observed [Kautz, Weida-Litman,Artale-Franconi].

Even works like [Dousson et al.], in the context of pro-

cess monitoring, assume that the observations directly

instantiate action models. The correspondance issue is

naturally addressed in the domain of active vision [Black

et al., Howards-Buxton, Kuniyoshi-Inoue], yet not seen

as a formal mapping between two heterogeneous repre-

sentation spaces.

The paper contributes by addressing these issues in the

context of the surveillance of a urban site, a parking

lot. The physical situations, possible intertwined, in-

volve movements of groups of people and vehicles like

'somebody goes out of a building towards the parking lot,

goes into a car and drives away'. We present an ex-

tensional representation for the situations, with a par-

tial order capturing a notion of information speci�city.

Actions modeling movements of groups of anonymous

agents are represented as formal terms in a Description

Logic, thus organized into subsumption taxonomies. We

then establish the formal correspondance between both

representation spaces: two de�nitions are actually pro-

posed depending on how the groups of agents are in-

terpreted in terms of individual behaviors and targets.

Under speci�c \homogeneity" conditions the correspon-

dance is shown to behave monotonically w.r.t. the re-

spective taxonomic structures. Finally, we consider the

application of our formal framework to situation recogni-

tion regarding both identi�cation and recognition prob-

lems. In particular, we shed some light on the nonmono-

tonicity of reasoning.

19

2 Taxonomic representation of physical

situations

In all the paper we call taxonomy any set T equipped

with a partial order �

T

and a unique maximal ele-

ment >

T

. Given elements t and t' in the taxonomy

(T;�

T

;>

T

), t is said more speci�c than t' i� t�

T

t'.

We start by giving initial data for describing the obser-

vations, by means of a typed environment. The physical

objects participating in situations are typed according

to an Object taxonomy and located in a geometrical 2D

referential R. We assume a typing of R's geometrical po-

sitions into a domain of topological zones, Zone, also

organized into a taxonomy | typically, one can distin-

guish between foot zones and car zones, foot zones could

be further specialized into building areas, etc... A third

taxonomy,Attitude, captures the qualitative spatial rela-

tions between objects | typically a Move attitude can

be specialized into MoveFrom, MoveTo, etc...

The perception system outputs observations about phys-

ical objects located in the scene which after suitable data

fusion are collected into facts, formally triples (o,t,p),

where o is an object name, t is an object type in Object,

and p represents a discrete trajectory in R. A situation is

thus de�ned as a set of facts for distinct object names. A

situation S is said more informed than a situation S' i� S

informs about more objects than S' and for any common

object S gives a more speci�c type and a more detailed

trajectory than S'.

De�nition 1 A typed environment E is given by:

- three taxonomies: Object, Zone, Attitude, describing

respectively the object types, topological zones and quali-

tative spatial relations of E;

- a domain of names: O ;

- a geometrical referential: R ;

- a time space: T (discrete, linear);

- a mapping zone: R! Zone.

A trajectory in E is an element f(z

1

; t

1

); :::; (z

n

; t

n

)g

of 2

R�T

such that n � 2 and 8i 6= j; t

i

6= t

j

. P denotes

the set of trajectories in E.

A situation in E is an element of 2

O�Object�P

such

that: if (o,t,p) 6= (o,t',p') in S, then o 6= o'.

For any situation S, objects(S) = fo, (o,t,p)2Sg.

A situation S is said more informed than a situa-

tion S', written S � S', i� objects(S') � objects(S)

and 8o2objects(S'), if (o,t,p)2S and (o,t',p')2S' then

t�

Object

t' and p'�p.

The relation � de�nes a partial order on the space of

situations in E. It actually captures a notion of "informa-

tion speci�city" compatible with the standards of data

fusion: aggregating new observations to one situation re-

sults in a more informed situation.

Note that situations should desirably satisfy other do-

main dependent properties like persistency of the ob-

jects, coherence of the trajectories according to speed

laws, etc..., not addressed here.

3 Representing actions

3.1 Modeling choices

Following classical approaches in Plan Recognition

[Kautz, Cohen] plans are seen as collections of actions

together with temporal constraints. We implicitly rely

on the de�nition of plan speci�city of [Weida-Litman].

As opposed to plans, actions will capture only time in-

variant knowledge about the situations. The reason is

that image processing will be performed in a non contin-

uous way { one image each x seconds will be processed {

so that actions have to be analysed from discrete, quasi-

static observations. Therefore we do not need any tem-

poral extension of DL as opposed to [Artale-Franconi],

to represent actions.

Inspiring from the modeling of movements from an ob-

server's point of view in [Kuyinoshi-Inoue], we will dis-

tinguish between:

� the agents { mobile objects during the action { and

the targets { static objects during the action,

� motion actions, qualitatively describing how agents

are moving relative to one target, andmovement ac-

tions qualitatively describing how agents are moving

in an absolute way.

To emphasize the presence of the target, we will speak

in the following of target actions for motions and of free

actions for movements.

For both kinds of actions, the agents are assumed to be

anonymous. Indeed, the surveillance system will hardly

track individual objects, especially human beings. An

object will be recognized | typed as `somebody' | but

may not be identi�ed as being one particular object |

'that person'. Unlike [Borgida,Di-Eugenio], we thus do

not need "same-as" DL operators to express coreferences

between objects.

Without loss in generality, we also consider target ac-

tions with a single target. Actions at several targets, like

'somebody going from one spot to another one', have to

be described as temporal networks of elementary actions

at one single target. An action may also specify further

constraints like a location zone. Other aspects like qual-

itative estimates of the durations may be added.

3.2 Description Logic based representation

Recent works have promoted Description Logics (DL)

as formal languages for action representation [Devanbu-

Litman, Borgida] because they can both support the def-

inition of taxonomic domains and provide built-in clas-

si�cation mechanisms [Nebel]. In [Weida-Litman] the

bene�t of using DL lies mainly in the clear management

of action classi�cation rather than in DL's expression

power. Works like [Borgida, DiEugenio] show how DL

can be used to represent complex compositional actions.

Figure 1, together with the appendice, gives a
avour of

our DL-based action representation. The reader is re-

ferred to [Nebel] for a detailed introduction DL.

DL helps to formalize action taxonomies. An action li-

brary is represented by an action terminology, that is a

20

set of action names together with their descriptions, as

shown in Figure 1.

The taxonomic structure is given by the subsumption

Role declarations:

agt :< domain(Action) and range(Object) (action's agents)

loc :< domain(Action) and range(Zone) (action's locations)

tgt :< domain(Action) and range(Object) (action's target)

att :< domain(Action) and range(Attitude) (attitudes)

Concept declarations:

Object :< Anything Zone:< Anything

Ped(estrian):< Object FootZ(one) :< Zone

Car :< Object ParkZ(one) :< Zone

Attitude :< Anything Move:< Attitude

Movement :< Attitude Close :< Move

Slow :< Movement MoveFrom :< Move

Still :< Movement MoveTo:< Move

Action := atleast(1,agt,Object) and atmost(1,tgt,Object)

Tgt.Action := Action and atleast(1,tgt,Object) and

all(att,Move)

Free.Action := Action and atmost(0,tgt,Object) and

all(att,Movement)

Ped.Moving := Free.Action and all(agt,Ped) and

all(loc,FootZ) and all(att,Slow)

Car.Parked := Free.Action and all(agt,Car) and

all(att,Still) and all(loc,ParkZ)

Sth.Moving.At.Sth := Tgt-Action and atleast(1,att,Move)

Ped.Moving.At.Car := Sth.Moving.At.Sth and

atleast(1,agt,Ped) and all(tgt,Car)

Ped.Moving.To.Car := Ped.Moving.At.Car and

atleast(1,att,MoveTo)

Ped.Moving.From.Car := Ped.Moving.At.Car and

atleast(1,att,MoveFrom)

Ped.Moving.FromTo.Car := atleast(2,agt,Ped) and

Ped.Moving.To.Car and Ped.Moving.From.Car

Ped.Taking.Car := Ped.Moving.To.Car and

all(loc,ParkZ) and atleast(1,att,Close)

Figure 1: Sample of an action terminology

order :< induced by the terminology on the set of action

names (cf appendice). Given a typed environment E, the

notion of action terminology in E is then introduced as

any DL terminology TA containing:

� the four role declarations and the three concept dec-

larations Action, Target-Action and Free-Action of

Figure 1,

� three concept names Object, Attitude and Zone,

such that the sets of concepts names of TA sub-

sumed respectively by Object, Attitude and Zone

are isomorphic

1

to the corresponding taxonomies

Object, Attitude and Zone of E.

The initial action terminology, written!xdvi A(E), is de-

�ned as the least action terminology in E for set inclu-

sion of names and terminological axioms

2

For any action

terminology TA we call target-action (resp. free-action)

1

Two taxonomies (T;�

T

;>

T

) and (T

0

;�

T

0
;>

T

0
) are iso-

morphic i� there is a bijective mapping f : T ! T

0

such that

f(>

T

) = >

T

0
and t �

T

t

0

, f(t) �

T

0
f(t

0

).

2

It corresponds to a free term algebra.

any concept term subsumed by the concept Tgt-Action

(resp. Free-Action).

4 Interpreting situations as actions

The essence of our approach is to abstract physical sit-

uations into formal DL-expressions and to classify the

resulting descriptions in the action terminology TA. Ex-

actly, any physical situation is associated to a set of

DL-assertions in the language of A(E): assertions about

an hypothetical action instance to be recognized in TA.

Therefore, interpreting a situation w.r.t. some action

terminology can be based on the instance recognition

mechanisms of DL. The correspondance is proved

3

hier-

archical if the abstraction process behaves monotonically

w.r.t. to the respective speci�city orders. Before, some

interpretation choices must be discussed.

4.1 Group vs troop interpretations

There are several ways of abstracting physical situations

depending on how the set of agent's attitudes of one sit-

uation is meant, whether conjunctively or disjunctively.

For example, a situation like 'somebody moving towards

a car and somebody else moving away from the car' can

be interpreted as:

� either one "group action" Ped.Moving.FromTo.Car

where the attitude constraint sums up the collec-

tion of the individual attitudes, and the global

action corresponds to a g.l.b. (for :<) of

the individual actions, Ped.Moving.To.Car and

Ped.Moving.From.Car.

� or one "troop action" Ped.Moving.At.Car where the

attitude constraint means the most speci�c attitude

common to all the agents, and the global action cor-

responds to the l.u.b. of the individual actions.

The interpretation choices depend on the application do-

main. For our parking lot application, we chose the

group interpretation for situations corresponding to tar-

get actions, the troop interpretation for situations cor-

responding to free actions.

4.2 Interpreting geometrical positions

The interpretation also involves translating the geomet-

rical object positions into qualitative estimates of the

relative attitudes of the agents w.r.t. the target in the

case of target actions, or the absolute directions and the

speed of the agents in case of free actions. Formally, two

translation mappings are presupposed:

� RA : P�P ! Attitude gives from the trajectories p

and p' of two objects o and o' the most speci�c qual-

itative estimate of the relative attitude of o w.r.t. to

o' in the Attitude taxonomy

4

.

3

The proofs can be found in [Castel et al.].

4

This can be done by comparing the sum vectors induced

by the discrete trajectories, given suitable thresholds. Typi-

cally, if the sum vector of one mobile object meets the grav-

ity center of one static target, then a MoveTo attitude is

recognized. One could also exploit neuronal techniques for

recognizing attitudes.

21

� AA : P ! Attitude gives from the trajectory of any

object the most speci�c qualitative estimate of its

direction and speed

5

.

4.3 Correspondance with target actions

As said before, situations corresponding to target ac-

tions get a group interpretation. Technically, the set of

DL assertions associated to S, describe(S,g,x), describes

an abstract action instance x which is linked to all the

qualitative attitudes of S's agents w.r.t. to the target g.

De�nition 2 Let TA be an action terminology in E. Let

A be a target action description in TA. Let S be a situ-

ation. Let g be an object name. S is said to match A

at target g in TA i�:

9(g; e

g

; p

g

) 2 S such that TA, describe(S,g,x) j= x::A,

where describe(S,g,x) = fx::tgt:g, g::t

g

g [fx::agt:o,

o::e, x::att:p, p::RA(p,p

g

), 8(o,e,p)2 S n f(g; e

g

; p

g

)g [

fx::loc:zi, zi::zone(zi), 8(o,e,p)2S, 8(zi,ti)2pg.

By considering the initial action terminology A(E), one

can de�ne for any situation S the equivalence class

of its most speci�c action descriptions at a target g

(shortly, MSA). For any such representative element, say

MSA(S,g), and for any action terminologyTA, S matches

A at g in TA i� TA j= MSA(S,g):<A. Consequently, rec-

ognizing a situation w.r.t. an arbitrary action taxonomy

TA can proceed by classifying its MSA in TA | that is

searching for most speci�c TA's actions subsuming the

MSA and for less speci�c TA's actions subsumed by the

MSA.

De�nition 3 Let E be a typed environment, S be a sit-

uation in E and g an element of objects(S).

A term A of A(E) is said a most speci�c action de-

scription of S at g i�:

- S matches A at g in A(E),

- for any term A' such that S matches A' at g in A(E),

then A(E) j= A :< A'.

Proposition 1 Let E be a typed environment, S a situ-

ation in E and g an element of objects(S).

If A and A' are most speci�c action descriptions of S at

g, then A(E) j= A :< A

0

and A(E) j= A

0

:< A.

Let TA be an action terminology in E and A a target

action in TA. Let MSA(S,g) be a most speci�c action

description of S at g. Then, S matches A at g in TA i�:

TA j=MSA(S; g) :< A .

4.4 Correspondance with free actions

For troop interpretation each agent of the situation must

individually satisfy the attitude constraints given by the

action description. This means turning to local matching

conditions, free.describe(a,x,g) for each object a to be

interpreted as an agent, as in the following de�nition.

De�nition 4 Let E be a typed environment. Let TA be

an action terminology and A a free action in TA. Let S

be a situation in E. Then S is said to match (freely)

5

This implies a suitable partitionning of the Attitude

taxonomy

A in TA i� 8s2S, TA , free.describes(s,x) j= x::A,

where free.describes((o,e,p),x) = fx::agt:o, o::e, x::att:p,

p::AA(p)g [fx::loc:zi, zi::zone(zi), 8(zi,ti)2pg.

Results similar to 4.3 hold for free actions. Up to DL

logical equivalence, the MSA of one situation S is now

obtained as the disjunction (lub for :<) of the individual

MSA's abstracted from the sets free.describes(s,x), for

each element s 2 S.

For example, the situation of 4.1 'somebody moving to-

wards a car and somebody else moving from the car' gets

the following MSA's (1) and (2) under group and troop

interpretation respectively:

(1) atleast(2,agt,Ped) and exactly(1,tgt,Car) and

atleast(1,att,MoveFrom) and atleast(1,att,MoveTo),

(2) atleast(2,agt,Ped) and exactly(1,tgt,Car) and

(atleast(1,att,MoveFrom) or atleast(1,att,MoveTo)).

Classifying (1) into the action terminology of Figure 1

gives Ped.Moving.FromTo.Car as immediate subsumer,

while (2) gives Ped.Moving.At.Car.

By the way, let us notice that no Closed World Assump-

tion is made for computing MSA's. If only two agents

are observed in S, like in the previous situation, then

one action with the 'atleast(2,agt,Ped)' constraint is only

recognized. The likely inference that the two observed

agents are the only ones should be performed at plan

recognition level, depending on how the alleged action

relates to previous and predicted ones.

4.5 Hierarchical correspondance

It turns out that more informed situations do not gen-

erally match more speci�c actions. The correspondance

fails to be hierarchical because of possible \discontinu-

ities" in the trajectories of the agents, which may in-

duce \switch" of qualitative attitudes. Instead, if the

trajectories were qualitatively invariant during the ob-

servation period of the situation then the same qualita-

tive attitudes would be recognized in any sub-situation

and the situation and its sub-situations would have the

same MSA's. We slightly extend the classical notion of

\homogeneity" | time invariance | to a monotonicity

condition of the qualitative attitudes.

De�nition 5 Let E be a typed environment. A situation

S in E is said homogeneous i�:

- 8(o

1

; t

1

; p

1

) 2 S; 8(o

2

; t

2

; p

2

) 2 S; 8q

1

2 P; 8q

2

2 P;

q

1

� p

1

; q

2

� p

2

) RA(p

1

; p

2

) �

Attitude

RA(q

1

; q

2

)

- 8(o,t,p)2S, 8q2P, q � p) AA(p) �

Attitude

AA(q)

Proposition 2 : Let E be a typed environment. Let H

be a situation in E and H' be a homogeneous situation in

E, both to be interpreted as target actions at some object

g 2 objects(H

0

) \ objects(H). Then:

H

0

� H) A(E) j=MSA(H

0

; g) :< MSA(H; g) .

A similar property holds for the correspondance with

free actions.

22

5 Situation recognition

The formal framework presented so far essentially aims

at clarifying the link between actions models and their

physical occurrences, situations. We now discuss compu-

tational issues in the perspective of situation recognition.

5.1 Identi�cation

Several independent plans may occur in the scene, like si-

multaneous departures or arrivals of people by car. Even

inside a same zone, agents may belong to independent

situations. This raises the problem of partitionning the

set of observations in order to identify the di�erent situ-

ation units to be interpreted as actions, then fused and

recognized as plans.

Some combinatorics arises if an object can play both

the role of an agent and the role of a target in di�er-

ent actions. The problem vanishes if in the underlying

action terminology the agent types are functionally de-

pendent of the target types, and if a given object type

cannot be the target type of two incompatible actions

6

These assumptions are quite reasonable for the parking

lot application, though not for action domains involving

relative motions of objects of the same type, like some-

body running after somebody

7

.

The computation cost also di�ers between group and

troop interpretations. Troop interpretations yield dis-

junctive MSA's, hence potentially lead to expensive in-

ferences and low performance of the DL classi�er

8

. To

avoid this problem, we will consider that the situations

units corresponding to free actions are constituted of

agents having identical qualitative behaviors.

We therefore propose the following reasoning strategy:

1. Given new observations, the new situations units

are constituted of maximal groups of agents with

one target: each potential target object is associated

with any neighbor object whose type is compatible

with the agent types prescribed to that target

9

.

2. The remaining objects are associated into groups

of \free" agents, according to the identity of their

types and their absolute attitudes and to some prox-

imity criterion.

3. The situation units are interpreted as shown in Sec-

tion 4: by computing their MSA's and classifying

them in the action terminology, that is computing

both their immediate subsumers and subsumees.

Step (3) allows to distinguish between observed actions

and prototypical actions. The MSA's indeed correspond

to observed actions as abstracted from observed situ-

ations, while the classi�cation results characterize the

6

Two elements A and A' are incompatible i� they have no

common subsumee (they de�ne disjoint taxonomic classes).

7

In that case, one should �nd other criteria to discriminate

between targets and agents.

8

E�cient DL systems like Back and Classic don't allow

concept disjunction [Back,Classic].

9

Actually, a target type de�nes both an attraction range

and types of associated agents.

prototypical actions approximating them as known from

the underlying action taxonomy. So (3) is just recogniz-

ing situations w.r.t. one action taxonomy, but not yet

w.r.t. plan models. Situation recognition means eventu-

ally matching the observed actions with actions nodes of

candidate plans. The question now is how the approxi-

mation result of step (3) makes sense for plan recogni-

tion.

5.2 Recognition

[Weida-Litman] formalize the notion of action recogni-

tion w.r.t. plans as follows: one observed action A

o

can

match one action node A

p

of some plan i� both actions

are compatible in the underlying action taxonomy, that

is have a common subsumee A

r

. Intuitively, A

o

is the

partial observation of some real action A

r

, which must

re�ne the action A

p

in order to match the intended plan.

This intuition presupposes the \observation monotonic-

ity": that the observed actions are less speci�c that the

real actions (TA j= A

r

:< A

o

). The strategic bene�t is

clearly that the search space during action recognition

can be circumscribed to a subsumption class.

Section 4 aimed precisely at formally justifying such

an \observation monotonicity" property, starting from

physical situations instead of action instances

10

. Propo-

sition 2 (hierarchical correspondance) states the observa-

tion monotonicity, but under two assumptions: the real

situation should be (1) more informed than the observed

situation and (2) homogeneous.

Assumption (1) is valid as long as the decomposition into

situation units needs not to be revised: either by elim-

inating a \false" target or by splitting a situation unit

into smaller independent ones. In a case like 'somebody is

passing at a car just incidentally, before going elsewhere',

the maximal association strategy of 5.1 will produce at

�rst an overinformed situation unit with a \false target"

that can be diagnosed only later on with new observa-

tions. The problem is that revising the former interpre-

tation as target action into one as free action does no

more yield a move up inside a taxonomic class, as target

actions and free actions de�ne disjoint classes

11

. Action

recognition thus remains nonmonotonic because of the

possible switch from target actions to free actions.

Assumption (2) suggests that homogeneous situations

are persistent, thus leading to plan interpretations maxi-

mizing homogeneity while minimizing the number of ac-

tions. This assumption is quite reasonable for surveil-

lance applications where \erratic" moves | deviances

from standard trajectories or non signi�cant intermedi-

ate actions | need not to be diagnosed.

Let us �nally notice that other preference criteria could

also be considered, like statistical frequencies or risk fac-

tors. This raises a further issue regarding the integration

of preference hierarchies [Bauer,Cayrol et al.] with the

taxonomic structures discussed so far.

10

Remind that the actions are not directly observed !

11

atmost(0,target,Object) and atleast(1,target,Object) are

incompatible constraints.

23

5.3 A small example

v2v1

v1
v2

v1 v2

Figure 2: car departure and pedestrian traversal

Figure 2 represents three successive snapshots of a scene

with two vehicles (the square boxes labelled v1 and v2)

and two pedestrians (unlabelled circles). The arrows rep-

resent the direction vectors of the movements.

As shown in Figure 3 the strategy of 5.1 provides with an

\objective" analysis of the scene, before exploiting the

background knowledge about the plans. Note that, by

situation units (target, agents) interpretations

First image:

S1 (v1, 2 pedestrians) Ped.Moving.At.Car

S2 (; , v2) Car.Parked

Second image:

S3 (; , v1) Car.Parked

S4 (v2, 2 pedestrians) Ped.Moving.At.Car

Third image:

S5 = S3

S6 (; , v2) Car.Moving

S7 (; , 1 pedestrian) Ped.Moving

Revised situation units:

S4a (; , 1 pedestrian) Ped.Moving

S4b (v2, 1 pedestrian) Ped.Moving.At.Car

S1a (; , 1 pedestrian) Ped.Moving

S1b (; , 1 pedestrian) Ped.Moving

Figure 3: action interpretation of the scene

the maximal association strategy, S4 is chosen in the sec-

ond image instead of associating one pedestrian to each

car.

The next step proceeds by trying to match plan mod-

els. Whatever the reasoning for selecting candidate plans

may be, it is clear that till the second image the pedes-

trians are likely following the same plan: going to v2 in

order to leave with v2. This is contradicted by the third

image as the expected action | v2 moves away and the

pedestrians are no more seen | is not observed. To cope

with S7

12

, S4 must be revised into two smaller indepen-

dent units: S4a and S4b. Then the situation composed of

fS1a, S2, S4.b, S6g can match the plan Car.Departure,

de�ned as the sequence of actions ((Ped.Moving and

12

Assuming that no pedestrian may appear by magics.

Car.Parked) ; Ped.Taking.Car ; Car.Moving). The ac-

tion abstracted from S4.b is indeed compatible (less spe-

ci�c) with the plan's action Ped.Taking.Car | it corre-

sponds to an incomplete observation of the pedestrian's

motion towards the car. Two independent situations are

eventually recognized: one car departure and one pedes-

trian traversal, the latter being reduced to the single

action Ped.Moving.

Acknowledgement

This work is supported by the project PERCEPTION DGA-

DRET France. I am grateful to M.Barat, P.Laublet,

C.Castel, C.Saurel and C.Tessier for their helpful comments.

References

[Artale-Franconi] A.Artale, E.Franconi, A Computational

Account for a Description Logic of Time and Action, KR'94,

pp 3-14, 1994.

[Back] T.Hoppe, C.Kindermann, JJ.Quantz, A.Schmiedel,

M.Fischer, BACK V5 Tutorial and Manual, KIT.Report 100,

Technische Universit�at of Berlin, March 1993.

[Black et al.] J.Black et alias, Action, Representation and

Purpose : Reevaluating the foundations of Computational Vi-

sion, panel session, IJCAI'93, vol. 2, pp 1661-66, 1993.

[Bauer] M.Bauer, Integrating Probabilistic Reasoning into

Plan Recognition, KR'94, pp 621-24, 1994.

[Borgida] A.Borgida, Towards a Systematic Development of

Terminological Reasoners: Clasp reconstructed, KR'92, pp

259-269, 1992.

[Castel et al.] C.Castel. V.Royer, C.Saurel. C.Tessier. Inter-

nal report available of the PERCEPTION Project, available

at ONERA, Juanary 1995.

[Cayrol et al.] C.Cayrol, V.Royer, C.Saurel, Managing Pref-

erences in Assumption.Based Reasoning, Information Pro-

cessing and Management of Uncertainty (IPMU'92), LNCS

682, pp 13-22, 1992.

[Cohen et al.] P.R.Cohen, J.M.Morgan, M.E.Pollack, Eds,

Intentions in Communication, the MIT Press, 1990.

[Classic] R.Brachman, \Reducing" CLASSIC to Practice:

Knowledge Representation Theory Meets Reality, KR'92, pp

247-58, 1992.

[Devanbu-Litman] P.T.Devanbu, D.Litman, Plan.based Ter-

minological Reasoning, KR'91, pp 128-138, 1991.

[Dousson et al.] C.Dousson, P.Gaborit, M.Ghallab, Situa-

tion Recognition: Representation and Algorithms, IJCAI'93,

vol.1, pp 166-172, 1993.

[DiEugenio] B.DiEugenio, Action Representation for Inter-

preting Purpose Clauses in Natural Language Instructions,

KR'94, pp 158-169, 1994.

[Howarth.Buxton] R.Howarth, H.Buxton, Selective Attention

in Dynamic Vision, IJCAI'93, vol.2, pp 1579-84, 1993.

[Kautz] H.Kautz, A Circumscriptive Theory of Plan Recog-

nition, pp 105-133 in [Cohen et al].

[Kuniyoshi-Inoue] Y.Kuniyoshi, H.Inoue, Qualitative Recog-

nition of Ongoing Human Action Sequences, IJCAI'93, vol.2,

pp 1600-09 , 1993.

[Nebel] B.Nebel, Reasoning and Revision in Hybrid Repre-

sentation Systems, Lecture Notes in Arti�cial Intelligence

422, Springer Verlag 1990.

[Weida-Litman] R.Weida, D.Litman, Terminological Reason-

ing with Constraint Networks and an Application to Plan

Recognition, KR'92, pp 282-293, 1992.

24

Closing the Terminology

Robert (Tony) Weida

IBM T. J. Watson Research Center

P.O. Box 218, Route 134

Yorktown Heights, NY 10598

weida@watson.ibm.com

Computer Science Department

Columbia University

New York, NY 10027

weida@cs.columbia.edu

1 Introduction

This paper pursues the idea of closing the set of con-

cepts in a description logic (dl) knowledge base (kb)

after the kb is developed and before problem solving

begins. Essentially, our closed-terminology assumption

(cta) holds that all relevant concepts from the do-

main of interest are explicitly de�ned in the kb, and

that every individual, once fully speci�ed, will corre-

spond directly to at least one concept.

1

For cer-

tain applications, this enables useful inferences which

would not be possible otherwise. Consider con�guration,

where dl has already found practical success

[

Wright

et al.,1993

]

. The standard open-terminology assump-

tion (ota), which presumes an incomplete terminology,

is appropriate during knowledge engineering when we

construct a model of systems, components, and related

concepts. However, during a speci�c con�guration task,

closed-terminology reasoning may be more suitable be-

cause all relevant concepts, e.g., types of systems, are

known in advance. We will show how this enhances our

ability to identify concepts which an individual cannot

instantiate and thus draw conclusions from the remain-

der. Imagine that a user incrementally speci�es an indi-

vidual computer system, along with its individual com-

ponents, in collaboration with a con�guration engine. In

general, the user can make choices in any order and at

any level of abstraction. We can exploit the closed tax-

onomy and its subsumption-based organization to (1)

e�ciently track the types of systems and components

which are consistent with the user's current choices, (2)

infer constraints on the system and components which

follow from current choices and the taxonomy's spe-

ci�c contents, and (3) suitably restrict future con�gu-

ration choices to those which are consistent with past

choices. Thus, we can help focus the e�orts of both the

user and the con�guration engine. The ideas described

here evolved from my work on dl-based plan recog-

nition in the t-rex system

[

Weida and Litman,1994;

Weida and Litman,1992

]

. This work is implemented in

the k-rep system

[

Mays et al.,1991

]

. Further details ap-

pear in

[

Weida,1995

]

.

1

We do not make a closed-world assumption over

individuals.

2 Description Logic

dl provides a formal language for de�ning concepts and

individuals

[

Woods and Schmolze,1992

]

. Key dl infer-

ences include subsumption, classi�cation and recogni-

tion. Concept C1 subsumes concept C2 when every in-

stance of C2 is also an instance of C1. We write this

as C2) C1. Implementations of dl maintain a con-

cept taxonomy, or kb, where each concept subsumes its

descendants and is subsumed by its ancestors. When-

ever a new concept is de�ned, classi�cation integrates it

into the taxonomy. Then recognition determines the set

of most speci�c concepts which an individual currently

instantiates.

A concept is an intensional description of a class of

individuals. Both are described in k-rep with a sin-

gle language, where roles denote binary relationships be-

tween individuals. A role's value restriction is a concept

which constrains the range of the relationship; only in-

stances of the value restriction may �ll the role. Cyclic

descriptions are forbidden. A role also has at-least and

at-most restrictions which constrain how many �llers it

may have. Restrictions on role R are referred to as value-

restriction(R), �llers(R), at-least(R), and at-most(R);

they default to thing (the universal concept), the empty

set, 0, and 1 respectively. A concept or individual may

inherit from base concepts. Local and inherited prop-

erties are combined by logical intersection. The set of

roles restricted by concept or individual X is speci�ed as

follows, where R

X

denotes role R of X:

De�nition 1 The restricted roles of concept or individ-

ual X are the roles R

X

for which value-restriction(R

X

)

is properly subsumed by thing, or j �llers(R

X

) j > 0,

or at-least(R

X

) > 0, or at-most(R

X

) < 1.

This paper uses concepts from the kb de�ned in Fig-

ure 1, where all gives a value restriction, exactly com-

bines at-least and at-most restrictions of the same car-

dinality, and the combines a value restriction with a car-

dinality restriction of exactly one. The resulting con-

cept taxonomy appears in Figure 2, with primitive con-

cepts (see below) marked by an asterisk. Individuals

such as ibm are not shown. The following individual is a

computer-system whose primary-storage, secondary-

storage and operating-system roles are not yet �lled:

25

(define-primitive-concept company)

(define-primitive-concept cpu)

(define-primitive-concept risc)

(define-primitive-concept ram)

(define-primitive-concept disk)

(define-primitive-concept system)

(define-primitive-concept os

system)

(define-primitive-concept unix

os)

(define-concept ibm-cpu

(and cpu (�lls vendor ibm)))

(define-concept risc-cpu

(and cpu (the technology risc)))

(define-concept ibm-risc-cpu

(and cpu

(�lls vendor ibm)

(the technology risc)))

(define-primitive-concept computer-system

(and system

(the vendor company)

(all processor cpu) (at-least 1 processor)

(all primary-storage ram) (at-least 1 primary-storage)

(all secondary-storage disk)

(all operating-system os)))

(define-concept uniprocessor-system

(and computer-system (exactly 1 processor)))

(define-concept dualprocessor-system

(and computer-system (exactly 2 processor)))

(define-concept diskless-system

(and computer-system (exactly 0 secondary-storage)))

(define-concept risc-multiprocessor-system

(and computer-system

(all processor risc-cpu) (at-least 2 processor)))

(define-concept dual-ibm-processor-system

(and computer-system

(all processor ibm-cpu) (exactly 2 processor)))

(define-concept unix-risc-system

(and computer-system

(all processor risc-cpu)

(the operating-system unix)))

Figure 1: Sample Concept De�nitions

(create-individual computer-system123

(and computer-system

(�lls vendor ibm)

(�lls processor 486dx-33MHz-123)))

It still inherits restrictions on those roles from

computer-system.

computer-system is a primitive concept; whereas

fully de�ned concepts specify necessary and su�cient

conditions for class membership, primitive concepts

specify only necessary conditions. Primitive concepts

do not subsume other concepts unless the subsumption

is explicitly sanctioned, e.g., computer-system sub-

sumes uniprocessor-system. A description's prim-

itiveness is characterized by the primitive concepts

among its ancestors (inclusive) in the taxonomy:

De�nition 2 The primitives of concept or individual X

are the primitive concepts in the set consisting of X and

the transitive closure of its base concepts.

For example, both primitives(computer-system)

and primitives(computer-system123) are the set

fcomputer-system, systemg.

Many dl systems, including k-rep, support explicit

declarations that sets of primitive concepts are mutually

disjoint. Our sample kb has no disjointness declarations

for brevity, but declaring suitable disjointness conditions

in a kb is crucial to sound knowledge engineering. More-

over, it helps to guide recognition as we shall see.

3 Incremental Instantiation

To help decide if incremental speci�cation of an indi-

vidual may be �nished, we distinguish between concrete

and abstract concepts. In con�guration, only concrete

concepts can be included per se in a �nished system.

Abstract concepts represent the commonality among a

class of concrete concepts. (All concepts in Figure 1 are

abstract; concrete concepts are omitted for brevity.) For

example, an actual system's processor may be of type

486dx-33MHz,which is concrete (fully speci�c), but not

merely of type cpu, which is abstract (too general). Note

that concrete concepts need not be leaves in the tax-

onomy. It is useful to introduce bijective instantiation,

which demonstrates that concept C explicitly accounts

for each of individual I's primitives and role restrictions:

De�nition 3 Individual I bijectively instantiates con-

cept C i�

1. primitives(I) � primitives(C)

2. restricted-roles(I) � restricted-roles(C)

3. For every role R on restricted-roles(I)

(a) at-least(R

I

) � at-least(R

C

)

(b) at-most(R

I

) � at-most(R

C

)

(c) value-restriction(R

I

)) value-restriction(R

C

)

(d) �llers(R

I

) � �llers(R

C

)

26

THING

DISK *

RAM *

SYSTEM *

COMPUTER-SYSTEM *

UNIX-RISC-SYSTEM

RISC-MULTIPROCESSOR-SYSTEM

DISKLESS-SYSTEM

DUALPROCESSOR-SYSTEM DUAL-IBM-PROCESSOR-SYSTEM

UNIPROCESSOR-SYSTEM

OS * UNIX *

RISC *

CPU *
RISC-CPU

IBM-RISC-CPUIBM-CPU

COMPANY *

Figure 2: Sample Taxonomy

The distinction between concrete and abstract concepts

is application-speci�c, but can be characterized in terms

of bijective instantiation:

De�nition 4 A knowledge engineer designates concept

C as concrete to indicate the possibility that an individ-

ual which bijectively instantiates C (independent of any

subsumees) is su�ciently speci�c for the purposes of the

intended application.

In con�guration, 486dx-33MHz would be designated

concrete, whereas more general concepts such as cpu

would be designated abstract:

De�nition 5 A concept is presumed to be abstract i� it

is not concrete.

The \possibility" alluded to in De�nition 4 is realized

if the individual in question is also �nished:

De�nition 6 Individual I is �nished when

1. I bijectively instantiates a concrete concept

2. For every role R on restricted-roles(I)

(a) jfillers(R

I

)j � at-least(R

I

)

(b) Every �ller of R

I

is �nished

The k-rep description language forbids cyclic descrip-

tions, so this de�nition is well-founded. Observe that

computer-system123 instantiates system and bijec-

tively instantiates computer-system, but is not yet

�nished. With respect to con�guration, a �nished in-

dividual system is complete and speci�c such that it

can be ordered from the manufacturer. We could �n-

ish computer-system123 by adding suitable role �llers

which are themselves �nished, including an operating

system, one or more memory boards, etc.

4 Predictive Concept Recognition

Once an individual system is �nished, the standard dl

recognition inference establishes which concepts it in-

stantiates. However, we want to recognize potential in-

stantiations throughout the con�guration process to in-

form both the user and the con�guration engine. That

is, given an un�nished description of an individual, we

want to reason about which concepts it may come to

instantiate. Such concepts are consistent with the indi-

vidual. We commit to a cta:

De�nition 7 Under the closed-terminology assump-

tion, all relevant concepts are explicitly de�ned in the

kb, and every individual will be �nished as in De�ni-

tion 6.

Although the set of individuals is not closed, this as-

sumption imposes constraints on the descriptions of indi-

viduals, and hence restricts the extension of each concept

compared with ota. It would be interesting to study the

formal semantics of these properties.

The cta is just right for applications like con�gura-

tion, where domain modeling is completed prior to prob-

lem solving. When an individual is no longer subject to

update, i.e., a customer has chosen a �nished con�gura-

tion, the cta ensures that it will bijectively instantiate

at least one ultimate concrete concept:

De�nition 8 Given that an individual will bijectively

instantiate one or more concrete concepts once its de-

scription is �nalized, those concepts are its ultimate con-

cept(s).

While an ultimate concept restricts every property of

an individual, it may do so at an abstract level, in the

sense that computer-system requires a processor but

only constrains it to be some cpu. Furthermore, the

individual may decline to �ll optional roles of an ul-

timate concept by specifying an at-most restriction of

zero, e.g., (at-most 0 disk). We also assume, provision-

ally, that the individual will be updated monotonically.

Monotonic update of an individual entails adding base

concepts and/or role restrictions. If our monotonic up-

date assumption proves unfounded, we can back out of

it gracefully.

4.1 Closed-Terminology Consistency

Under cta, we assume that all relevant concepts are ex-

plicitly de�ned in the kb. During con�guration, we want

27

to know which of them are cta-consistent with a par-

tially described individual system, and which are not.

cta is vital to our methodology: in contrast with ota,

an individual can be monotonically updated to instan-

tiate a concept only if it can be monotonically updated

to bijectively instantiate an explicitly de�ned subsumee

of that concept (inclusive). To expedite recognition, we

are also concerned with cta-consistency between con-

cepts. We decide cta-consistency via the mutually re-

cursive de�nitions that follow. For a pair of concepts,

we must consider two cases. First, a pair of concepts are

directly consistent under cta whenever some bijective

instantiation of one can also instantiate the other. We

will see that risc-multiprocessor-system and dual-

ibm-processor-system meet this test. To capture this

case, we introduce a direct consistency inference from

concept C1 to concept C2, written C1 7! C2:

De�nition 9 C1 7! C2 i�

1. primitives(C1) � primitives(C2)

2. No primitive of C1 is disjoint from any (additional)

primitive of C2

3. restricted-roles(C1) � restricted-roles(C2)

4. For every role R on restricted-roles(C1), R

C1

and

R

C2

are cta-consistent

Intuitively, C1 7! C2 demonstrates that the primitives

and role restrictions of C2 admit a bijective instantiation

of C2 which also instantiates C1. Now we must de�ne

cta-consistency for restricted roles:

De�nition 10 Roles R

X

and R

Y

are cta-consistent i�

1. Their cardinality restrictions intersect

2. If at-least(R

X

) > 0 or at-least(R

Y

) > 0, then value-

restriction(R

X

) and value-restriction(R

Y

) are cta-

consistent

3. j �llers(R

X

) [�llers(R

Y

) j � minimum(at-

most(R

X

), at-most(R

Y

))

4. Every �ller of R

X

is cta-consistent with value-

restriction(R

Y

), and every �ller of R

Y

is cta-

consistent with value-restriction(R

X

)

As discussed below, ibm-cpu and risc-cpu are cta-

consistent. This, along with overlapping cardinal-

ity restrictions, means that dual-ibm-processor-

system and risc-multiprocessor-system have cta-

consistent processor roles. In addition, both con-

cepts inherit all their primitives and remaining role

restrictions from computer-system, so dual-ibm-

processor-system 7! risc-multiprocessor-system

and vice versa. We conclude they are cta-consistent.

There is a second, indirect case of cta-consistency be-

tween concepts. Even if two concepts are not directly

consistent, their consistency may still be explicitly sanc-

tioned by a common (user-de�ned) subsumee. This sit-

uation can arise when each concept has a primitive or

restricted role that the other lacks. For example, only

from the existence of ibm-risc-cpu can we conclude that

ibm-cpu and risc-cpu are cta-consistent. As a result,

we have:

De�nition 11 Concepts C1 and C2 are cta-consistent

i� C1 7! C2, or C2 7! C1, or there exists an explicit

concept C3 such that C1 and C2 both subsume C3.

This de�nition is justi�ed as follows:

Theorem 1 Under cta, the extensions of concepts C1

and C2 intersect i� they are cta-consistent.

Proof: See

[

Weida,1995

]

.

Now we examine cta-consistency between an individ-

ual and a concept. A direct consistency inference from

individual I to concept C, written I 7! C, essentially fol-

lows De�nition 9:

De�nition 12 I 7! C i�

1. primitives(I) � primitives(C)

2. No primitive of I is disjoint from any (additional)

primitive of C

3. restricted-roles(I) � restricted-roles(C)

4. For every role R on restricted-roles(I), R

I

and R

C

are cta-consistent

Intuitively, direct consistency of an individual with a

concept establishes that the individual can bijectively in-

stantiate the concept, perhaps after monotonic updates.

Due to cta and our monotonic observation assumption,

an individual is always directly consistent with its ulti-

mate concept(s). Consider this individual:

(create-individual computer-system45

(and computer-system

(all processor risc-cpu)))

Although computer-system45 is directly consistent

with both risc-multiprocessor-system and dual-

ibm-processor-system, it instantiates neither: re-

garding risc-multiprocessor-system, the cardinality

of its processor role is not known to be at least 2, and

regarding dual-ibm-processor-system, its processor

role is neither restricted to �llers of type ibm-cpu nor

a cardinality of exactly 2. However, monotonic updates

might still add these restrictions later.

In the context of a kb, if an individual can be mono-

tonically updated to instantiate some concept, then it

can be monotonically updated to every subsumer of that

concept. For example, imagine that the kb of Figure 1

also contained this concept:

(define-concept ibm-processor-device

(all processor ibm-cpu))

It would be classi�ed with thing as its parent and dual-

ibm-processor-system as its child. Then computer-

system45 would be indirectly consistent with ibm-

processor-device by way of dual-ibm-processor-

system. Not all indirectly consistent concepts can be

identi�ed this way. Consider:

(create-individual computer-system67

uniprocessor-system)

We could not make a direct consistency inference from

computer-system67 to ibm-processor-device or

to its only subsumee, dual-ibm-processor-system.

28

Still, computer-system67 could be monotonically up-

dated to:

(and uniprocessor-system

(the processor ibm-cpu))

Then computer-system67 would instanti-

ate uniprocessor-system such that it also instanti-

ates ibm-processor-device. To generalize, if individ-

ual I can potentially instantiate concept C' such that it

also instantiates concept C, then I is indirectly consistent

with C via C':

De�nition 13 Individual I and concept C are indirectly

cta-consistent i� there exists a concept C' such that I

7! C', C 7! C', and For every role R restricted by both

I and C, R

I

and R

C

are cta-consistent.

cta-consistency identi�es the concepts an individual

might instantiate once it is �nished:

De�nition 14 Individual I and concept C are cta-

consistent i� they are directly or indirectly cta-

consistent.

Its correctness is established by the following:

Theorem 2 Under cta, individual I can be monoton-

ically updated to instantiate concept C i� I and C are

cta-consistent.

Proof: See

[

Weida,1995

]

.

All cta-consistency relationships must hold under ota

too, but the converse is not true. For example, ibm-

cpu and risc-cpu are inherently ota-consistent, but

cta-consistent only when a common subsumee has been

explicitly de�ned.

Our cta-consistency inferences are syntactic, hence

somewhat dependent on the dl language under con-

sideration. This framework can be extended for other

description-forming operators found in k-rep, e.g., the

existential role restriction operator, some. It also ap-

pears extensible for the core operators in the version of

classic

[

Borgida et al.,1989

]

used in prose. We are

not presently concerned with disjunction and negation

operators because k-rep does not support them. It is

not clear how they might be incorporated in the present

framework, but importantly, classic has achieved no-

table success in the con�guration arena without support-

ing either disjunction or negation

[

Wright et al.,1993

]

.

4.2 Knowledge Base Augmentation

Testing for indirect consistency straight from De�ni-

tion 13 would mean repeated run-time searches for a

concept C' by which indirection is licensed. To speed

this process, we augment the kb with concepts for inter-

nal use as follows:

De�nition 15 A kb is augmented i� for all concepts

C1 and C2 such that C1 7!C2, there exists an explicit

concept C3 such that C3 � C1 ^ C2.

For a kb containing only uniprocessor-system and

unix-risc-system, we would add a concept de�ned as:

(and computer-system

(the processor risc-cpu)

(the operating-system unix))

Its processor role re
ects a value restriction of risc-cpu

from unix-risc-system and a cardinality restriction of

exactly one from uniprocessor-system. The insight

is that whenever individual I instantiates concepts C1

and C2 simultaneously, it must instantiate their con-

junction. In an augmented kb, possible conjunctions

of directly cta-consistent concepts are made explicit as

system-de�ned concepts when the user has not already

de�ned them. Then, two concepts are cta-consistent

just in case they have a common subsumee (subsump-

tion is re
exive). Consequently, we can reduce indirect

consistency testing to subsumption checking:

De�nition 16 Individual I is indirectly cta-consistent

with concept C in an augmented kb i� there exists a

concept C' such that I 7! C' and C') C.

With an augmented kb, De�nition 16 is correct:

Theorem 3 Under cta and with an augmented kb, in-

dividual I can be monotonically updated to instantiate

concept C i� I and C are cta-consistent using De�ni-

tion 16 for indirect consistency instead of De�nition 13.

Proof: See

[

Weida,1995

]

.

Recall our assumption that an individual is directly

consistent with an ultimate concept, which is a concrete

concept. Thus, augmentation by De�nition 15 can be

limited to cases where C2 is a concrete. We need only

augment a kb once, after its development concludes and

before problem solving begins. An augmented kb of-

fers simple, fast identi�cation of indirectly consistent

concepts by traversing explicit subsumption links. The

number of system-de�ned concepts in an augmented kb

should be manageable in practice, assuming su�ciently

distinct primitiveness among user-de�ned concepts. We

will test this hypothesis empirically.

4.3 Knowledge Base Partitioning

Given an individual I, a kb, and our assumptions, pre-

dictive recognition determines every concept's status, or

modality, with respect to I. We will say that concept C

is necessary with respect to I if I instantiates C, else op-

tional if I is consistent with C, else impossible. When C

is optional, it is possible but not necessary that I will ul-

timately instantiate C. These de�nitions implicitly par-

tition the taxonomy into regions as shown in Figure 3.

Such a partition constitutes the recognition state of I.

As an individual is incrementally updated, we can

track its recognition state. Initially, all concepts are op-

tional except for the vacuous root concept, thing, which

is trivially necessary. The monotonic update assumption

implies that each update will change the modality of zero

or more optional concepts to necessary or impossible.

Referring to Figure 3, observe that the necessary and

impossible regions expand as the individual is updated,

further con�ning the optional region. (It is straightfor-

ward to test if an update is nonmonotonic. When this

29

impossibleimpossible

necessary

optional

Figure 3: Partition of Concept Taxonomy

happens, we may need to re-expand the optional region.)

Our objective is to e�ciently bound the portion of the

taxonomy containing optional concepts, thereby limit-

ing the number of concepts which must be compared

with the individual. We exploit the subsumption-based

organization of the kb in two ways. First, the current

partition of the kb is used to compute the next one. Sec-

ond, the consequences of comparing an individual with

a concept are propagated to other concepts. To these

ends, we distinguish three sets of concepts:

1. The most speci�c necessary concepts, or msns.

2. The most general optional concepts, or mgos.

3. The most speci�c optional concepts, or msos.

The frontiers of the optional region are maintained by

the mgos and the msos. These sets need not be dis-

joint. The msns serve to speed computation of the msos.

Further details are omitted for brevity.

An initial user-speci�ed con�guration might be:

(create-individual computer-system89

(and computer-system

(at-least 2 processor)

(at-least 1 secondary-storage)))

Considering Figure 2, the necessary concepts are

thing, system and computer-system. The optional

ones are unix-risc-system, risc-multiprocessor-

system, dualprocessor-system, and dual-ibm-

processor-system. The remainder are impossible.

This recognition state is captured as:

msns = fcomputer-systemg

mgos = fdualprocessor-system,

unix-risc-system,

risc-multiprocessor-systemg

msos = fdual-ibm-processor-system,

unix-risc-system,

risc-multiprocessor-systemg

This recognition state indicates precisely which concepts

computer-system89might eventually instantiate. No-

tice that uniprocessor-system and diskless-system

are ruled out. In fact, all other concepts which do

not subsume computer-system are ruled out, e.g.,

company is impossible. If the user now states that

computer-system89 should have exactly 4 proces-

sors, the subsequent recognition state will also rule out

dualprocessor-system and dual-ibm-processor-

system:

msns = fcomputer-systemg

mgos = funix-risc-system,

risc-multiprocessor-systemg

msos = funix-risc-system,

risc-multiprocessor-systemg

Notice how the mgos succinctly capture the most gen-

eral choices available in the current state. A user inter-

face can exploit this by prompting the user to choose a

subset of the mgos which describe the desired system.

5 Constraint Derivation

We can take further advantage of predictive recogni-

tion to derive additional constraints on an individ-

ual. Suppose the kb is partitioned according to the

current description of some individual, I. If I does

not bijectively instantiate an msn concept which is

concrete, then by cta, I will ultimately instantiate

some optional concept. Therefore, the commonality

among mgo concepts constitutes a set of implicit con-

straints imposed on I by the taxonomy under cta.

For example, if risc-uniprocessor-system and risc-

dualprocessor-system are the mgos for an individ-

ual, then it has at most 2 processors and all its pro-

cessors are risc-cpus. Cohen, et al., have shown how

to compute the least common subsumer (lcs) of a set

of concepts

[

Cohen et al.,1992

]

. The lcs of the mgos,

written lcs(mgos), is a concept representing their com-

monality (we never actually install the lcs in the kb).

Any constraint on lcs(mgos) not re
ected in I should

be added to I. The basic strategy is: until arriving at a

�xed point, repeatedly

1. Compute lcs(mgos)

2. If lcs(mgos) implies further constraints on I

(a) Fold lcs(mgos) into the description of I, and

(b) Incrementally update the recognition state of I

In this way, k-rep may be able to infer constraints on

I after it is �rst created and whenever it is updated.

Similar reasoning applies recursively to �llers of I's roles.

Recall the second recognition state for computer-

system89 in Section 4.3, and note that computer-

system is not a concrete concept. By computing

the lcs of funix-risc-system, risc-multiprocessor-

systemg, k-rep discovers that computer-system89's

processors must be of type risc-cpu. This conclusion

can only come from closed-terminology reasoning about

the kb's speci�c contents. As a result, future choices re-

garding the processors will be suitably constrained. The

preceding discussion was simpli�ed for clarity; we can

sometimes do better because ultimately I must instanti-

ate one of the most general optional concepts which are

concrete.

6 Related Work

An early use of dl for con�guration was reported

in

[

Owsnicki-Klewe,1988

]

, which cast the entire con�g-

uration problem as a matter of maintaining internal

30

kb consistency, i.e., logical contradictions should fol-

low from all invalid con�gurations but no valid ones.

This goal is more ambitious than ours or that of

[

Wright

et al.,1993

]

. However,

[

Owsnicki-Klewe,1988

]

considered

only \an (admittedly limited) example" and did not close

the terminology. prose is a successfully deployed con�g-

urator featuring product kbs written in classic

[

Wright

et al.,1993

]

. Like prose, our work positions the dl sys-

tem as a product knowledge reasoner | a key module in

a larger con�gurator architecture. In both cases, the dl

system maintains internal kb consistency during con�g-

uration but relies on con�guration-speci�c modules for

further reasoning. We share the views of the prose de-

velopers that (1) dl fosters a reasonable, even natural

approach to product knowledge representation, and (2)

knowledge engineering e�orts bene�t from enforcing in-

ternal kb consistency.

This work draws on a predictive recognition method-

ology originally formulated for constraint networks rep-

resenting rich temporal patterns, e.g., plans

[

Weida and

Litman,1994; Weida and Litman,1992

]

. The present pa-

per addresses new issues which arise in this setting, e.g.,

the presence of primitives and the interaction among

types of role restrictions. Our con�guration application

led us to introduce the distinction between abstract and

concrete concepts to dl. It also led us to devise in-

ferences for characterizing the progress of incremental

concept instantiation, i.e., bijective and �nished instan-

tiation. Other contributions of this paper include an in-

cremental strategy for partitioning a subsumption-based

taxonomy by modality, and novel use of the lcs infer-

ence to extract constraints on an individual from the kb

during predictive recognition. Our predictive recogni-

tion algorithm bears an interesting resemblance to the

candidate-elimination algorithm of

[

Mitchell,1982

]

, how-

ever the candidate-elimination algorithm is given explicit

negative examples that are used to exclude concepts,

while we derive the concepts to be excluded using the

cta. Another di�erence is that candidate-elimination

operates on sets of di�erent positive and negative exam-

ples, while we are concerned with successive descriptions

of the same (positive) instance. The work described in

this paper is the �rst to pursue closed-terminology rea-

soning over a description logic kb.

7 Conclusion

This paper presents a predictive concept recognition

methodology for dl which demonstrates, for the �rst

time, the value of closed-terminology reasoning over a

dl kb. These ideas apply to tasks such as con�guration

where all relevant concepts are known in advance. We

take advantage of the closed taxonomy in several ways.

As an individual system is incrementally described, we

e�ciently track the types of systems which may result.

We partition the kb by categorizing concepts as nec-

essary, optional or impossible with respect to the cur-

rent description. This information is inherently useful

for both user and con�guration engine. We also exploit

the current partition to derive implicit constraints on

the system. This, in turn, may yield a more re�ned

partition. Similar reasoning applies recursively to the

system's components. Finally, we take advantage of the

derived constraints to inform the user and the con�gura-

tion engine, and to appropriately restrict future choices.

Although we focused on con�guration, our methodology

is domain-independent.

Acknowledgements

I am extremely grateful to Diane Litman, Ste�en Fohn,

Bonnie Webber, Brian White, and an anonymous re-

viewer for valuable comments on earlier drafts, and to

Eric Mays for useful discussions.

References

[

Borgida et al., 1989

]

A. Borgida, R. J. Brachman, D. L.

McGuinness, and L. A. Resnick. Classic: A structural

data model for objects. In SIGMOD-89, pages 58{67,

1989.

[

Cohen et al., 1992

]

W. Cohen, A. Borgida, and H.

Hirsh. Computing least commonsubsumers in descrip-

tion logics. In AAAI-92, 1992.

[

Mays et al., 1991

]

E. Mays, R. Dionne, and R. Weida.

K-rep system overview. SIGART Bulletin, 2(3):93{97,

June 1991.

[

Mitchell, 1982

]

T. M. Mitchell. Generalization as

search. Arti�cial Intelligence, 18:203{226, 1982.

[

Owsnicki-Klewe, 1988

]

B. Owsnicki-Klewe. Con�gura-

tion as a consistency maintenance task. In GWAI-88,

pages 77{87, Berlin, Germany, 1988.

[

Weida and Litman, 1992

]

R. Weida and D. J. Litman.

Terminological reasoning with constraint networks

and an application to plan recognition. In KR'92,

1992.

[

Weida and Litman, 1994

]

R. Weida and D. Litman.

Subsumption and recognition of heterogeneous con-

straint networks. In CAIA-94, 1994.

[

Weida, 1995

]

R. Weida. Closed-world reasoning and

temporal reasoning in description logic for concept

and plan recognition. Forthcoming Ph.D. dissertation,

Columbia University, 1995.

[

Woods and Schmolze, 1992

]

W. A. Woods and J. G.

Schmolze. The kl-one family. Computers and Mathe-

matics with Applications, 74(2-5), 1992.

[

Wright et al., 1993

]

J. R. Wright, E. S. Weixelbaum,

G. T. Vesonder, K. E. Brown, S. R. Palmer, J. I.

Berman, and H. H. Moore. A knowledge-based con�g-

urator that supports sales, engineering, and manufac-

turing at at&t network systems. AI Magazine, 14(3),

1993.

31

Towards a uni�ed architecture for knowledge representation and

reasoning based on terminological logics

�

Liviu Badea

AI Research Department

Research Institute for Informatics

8-10 Averescu Blvd., Bucharest, ROMANIA

e-mail: badea@roearn.ici.ro

Abstract

This paper presents a uni�ed architecture for

knowledge representation and reasoning based

on terminological (description) logics. The nov-

elty of our approach consists in trying to use

description logics not only for representing do-

main knowledge, but also for describing beliefs,

epistemic operators and actions of intelligent

agents in an unitary framework. For this pur-

pose, we have chosen a decidable terminological

language, called ALC

reg + id(C)

, whose expres-

sivity is high enough to be able to represent

actions and epistemic operators corresponding

to the majority of modal logics of knowledge

and belief.

Additionally, we describe practical inference al-

gorithms for the language ALC

reg + id(C)

which

lies at the heart of ourRegAL

1

knowledge rep-

resentation system. The algorithms are sound

and complete and can be used directly for de-

ciding the validity and satis�ability of formu-

las in the propositional dynamic logic (PDL)

by taking advantage of the correspondence be-

tween PDL and certain terminological logics

[

10

]

.

1 Term subsumption languages

Term subsumption languages

2

(TSLs) are descendants

of the famous KL-ONE language

[

4

]

and can be viewed

as formalizations of the frame-based knowledge represen-

tation systems.

The relationship between TSLs and logic is analogous

to the relationship between structured and unstructured

programming languages. Indeed, the TSLs impose a cer-

tain discipline in the logical structure of a formula (con-

cept) in the very same way in which the structured pro-

gramming paradigm imposes a discipline in the control

structure of a program. Although they somehow restrict

�

This research was partially supported by the European

Community project

PE

KADS (CP-93-7599).

1

The id(C) - Regular closure of the ALC language.

2

Also known as terminological (or description) logics.

the expressivity of the description language, TSLs are

most of the time preferable to general logic because of

their increased understandability and usability in build-

ing practical knowledge bases. Also, as opposed to gen-

eral logic, certain TSLs may possess decidable inference

problems while retaining a fairly high expressivity which

enables them to represent complex ontologies.

The terminological description language usually pro-

vides a variety of concept and role constructors, includ-

ing the boolean operators (conjunction u, disjunction t,

and negation :). Value- (8R:C), existential- (9R:C)

and number restrictions (�

n

R, =

n

R, �

n

R), role-value

maps (R

1

< R

2

) and structural descriptions (C : R) are

some of the most important concept constructors. We

could also mention the following role constructors: id(C)

(the restriction of the identity role to the concept C),

R

�1

(role inverse), RbC (range restriction), R

1

� R

2

(role composition), R

�

(re
exive-transitive closure) and

R

1

� R

2

(bindings used in structural descriptions).

Not all of the above constructors are independent. For

example, role-value maps and structural descriptions can

be expressed in a language that admits role negation

3

as:

R

1

< R

2

= 8(R

1

u:R

2

):?

C : R = 9R:C; where

R = R

1

� Q

1

u : : :uR

n

� Q

n

R

i

� Q

i

= :(R

i

� :Q

�1

i

):

Role-value maps and structural descriptions usually

lead to very expressive but undecidable languages

[

12;

8

]

. These observations suggest the following conjecture:

\The only cause of undecidability of a reasonably expres-

sive terminological language is the irreducible presence of

role negation in the language." Note that concept nega-

tion is usually harmless w.r.t. decidability, as opposed

to role negation which usually leads to undecidable lan-

guages

[

9

]

.

3

and also other common concept and role constructors

32

2 Complete decision algorithms for the

terminological language ALC

reg + id(C)

The terminological language we are using in our knowl-

edge representation system RegAL is ALC

reg + id(C)

,

the regular closure of the well-known language ALC of

Schmidt-Schau� and Smolka

[

11

]

extended with the role

constructor id(C).

In the following, we shall present complete inference

algorithms

4

for ALC

reg + id(C)

. By taking advantage of

the correspondence of ALC

reg + id(C)

with the proposi-

tional dynamic logic (PDL) of programs

[

10

]

, we shall

be able to apply our algorithms for deciding the validity

and satis�ability of formulas in PDL too.

As far as we know, there exists a single TSL sys-

tem with complete inference algorithms and a reason-

ably high expressivity, namely KRIS

[

2

]

. The termino-

logical language ALCFNR provided by KRIS extends

the standard language ALC with attributes (functional

roles), number restrictions and role conjunctions.

The language ALC

reg + id(C)

we are using in RegAL

was chosen having somewhat di�erent goals in mind,

namely to be able to represent procedural knowledge,

actions and epistemic operators in our descriptive logic.

Number restrictions and role conjunctions wouldn't have

been very helpful in this context.

The satis�ability (consistency) of a concept in our ter-

minological language can be tested by using a variant of

the well known tableaux calculus, adapted to this speci�c

context

[

6

]

. Starting from a formula which implicitly as-

serts the satis�ability of the given concept, the calculus

tries to construct a model of the respective formula. In

doing so, it may discover obvious contradictions (clashes)

and report the inconsistency of the original formula, or

it may come up with a complete clash-free model, thus

proving the satis�ability of the formula. This method

is directly applicable only if the language possesses the

�nite model property (which is fortunately the case with

ALC

reg + id(C)

).

The tableaux calculus combines two di�erent pro-

cesses. The �rst is analogous to a refutation theorem

prover which tries to discover contradictions, while the

second concentrates on building models. In

[

6

]

a vari-

ant of the tableaux calculus (called rule-based calculus

operating on constraints) is used for obtaining complete

decision procedures for the satis�ability problem in the

languages ranging between ALC and ALCFNR. On

the other hand, Franz Baader

[

1

]

succeeds in obtain-

ing a practical decision algorithm for the regular closure

ALC

reg

of ALC. As far as we know, no practical decision

algorithms for languages more expressive than ALC

reg

are known.

Adding the role constructor id(C) to the language

ALC

reg

increases the expressivity but introduces sub-

stantial complications in the inference algorithms. These

4

The validity and satis�ability problems in ALC

reg + id(C)

are known to be decidable (more precisely, EXPTIME{

complete).

complications are mainly due to the fact that existen-

tial restrictions are no longer separable in the language

ALC

reg + id(C)

.

The complete satis�ability checking algorithm is a con-

sequence of the reduction and cycle-characterization the-

orems presented in

[

3

]

. The idea of the algorithm con-

sists in reducing the satis�ability of a given concept to

the satis�ability of several simpler concepts. This reduc-

tion process can be alternatively viewed as a process of

model construction. In order to ensure the termination

of the algorithm, we have to check for the presence of

cycles at each reduction step. In case a cycle has been

detected, the cycle-characterization theorem is used to

determine its nature. As in the case of ALC

reg

, only the

good cycles lead to a model, the bad cycles being merely

shorthands for in�nite reduction chains.

The satis�ability testing algorithm, presented in �g-

ure 1, involves a preprocessing step in which the following

computations are performed:

1) The concept C to be tested is brought to the nega-

tion normal form (nnf). The main di�erence viz.

ALC

reg

consists in having to consider the concepts

I within id(I) roles too. This has to be done de-

pending on the context in which the role id(I) ap-

pears (i.e. within an 8 or a 9 restriction) in order

to facilitate the extraction of the proper conjuncts

of C. More precisely, if id(I) appears in an 9 re-

striction, then rnf

9

(id(C)) = id(nnf(C)); and if

it occurs in an 8 restriction, then rnf

8

(id(C)) =

id(:nnf(:C)):

2) Since comparisons between role expressions R oc-

curring in C are quite frequent (especially when

testing the existence of cycles), it seems to be a

good idea to bring the roles R to a canonical form.

This can be done by constructing for each role R the

corresponding deterministic �nite automaton DFA

and by minimizing the disjoint union of these au-

tomata. The initial states of the resulting minimal

deterministic �nite automaton mDFA represent the

canonical forms of the roles occurring in C.

3) Finally, the procedure roles to mStates replaces the

roles occurring in C with the corresponding states

of the mDFA. The replacements a�ect the concepts

I inside id(I) transitions of the mDFA too.

In the following, we shall make no distinction between

a role, its corresponding state in the mDFA and the lan-

guage accepted starting from this state. Also, the fol-

lowing substitutions are performed for all value- and ex-

istential restrictions in which " 2 R (or, equivalently, the

state of the mDFA corresponding to R is �nal):

8R:Ca ! Ca u 8(R n f"g):Ca

9R:Ce ! Ce t 9(R n f"g):Ce:

The actual satis�ability testing algorithm extracts a

conjunct of the given concept at a time, removes the

separable existential restrictions and subsequently tries

to determine the satis�ability of the remaining nonsep-

arable conjunct.

33

satisfiable(C)

C

0

 nnf(C)

uDFA ;

forall roles R occurring in C

0

DFA role to DFA(R)

uDFA DFA [uDFA

2

mDFA minimize(uDFA)

C

00

 roles to mStates(C

0

)

sat(C

00

; [])

2

sat(C;L)

Conj conjunct(C)

sat conjunct(Conj; L)

2

sat conjunct(Conj; L)

if cycle(Conj; L; " GoodBad) then

if GoodBad = good then succeed

else fail

else

Conj proper conjunct(Conj)

assign a new unique label Ne to all

9

no label

Re:Ce restrictions

// Conj =

Q

i

C

i

u

Q

j

9

Ne

Re

j

:Ce

j

u

Q

k

8Ra

k

:Ca

k

if

Q

i

C

i

contains a clash (i.e. C

i

1

= :C

i

2

) then

fail

else

// solve the separable 9 restrictions

// and collect the nonseparable ones

NS E sat separable exists(

Q

j

9Re

j

:Ce

j

u

Q

k

8Ra

k

:Ca

k

; [u node(Conj)jL])

// solve the nonseparable 9 restrictions

sat nonseparable exists(

Q

i

C

i

uNS E

u

Q

k

8Ra

k

:Ca

k

; [u node(Conj)jL])

2

2

2

sat exists(C

9

; L)

sat exists solved(C

9

; L)

or // nondeterministic choice

sat exists postponed(C

9

; L)

2

Figure 1: The satis�ability testing algorithm for con-

cepts in ALC

reg + id(C)

sat separable exists(

Q

j

9Re

j

:Ce

j

u

Q

k

8Ra

k

:Ca

k

; L)! NS E

// NS E = conjunct of nonseparable 9 restrictions

NS E >

forall 9Re:Ce in

Q

j

9Re

j

:Ce

j

sat exists(9Re:Ceu

Q

k

8Ra

k

:Ca

k

; L)

or // nondeterministic choice

NS E 9Re:Ce uNS E

2

return NS E

2

sat nonseparable exists(

Q

i

C

i

uNS E u

Q

k

8Ra

k

:Ca

k

; L)

C

Q

i

C

i

u

Q

k

8Ra

k

:Ca

k

forall 9

Ne

Re:Ce in NS E

if id(I) 2 Re then

C (I u Ce) u C

else fail

or // nondeterministic choice

if id(I)

�1

Re n f"g 6= ; then

C

�

I u 9

Ne

(id(I)

�1

Re n f"g):Ce

�

u C

else fail

2

sat(C;L)

2

sat exists solved(C

9

; L)

// C

9

= 9Re:Ce u

Q

k

8Ra

k

:Ca

k

if there exists an R 2 Re such that R 6= id(�) then

Ca

0

Q

k

R2Ra

k

Ca

k

u

Q

k

R

�1

Ra

k

nf"g6=;

8(R

�1

Ra

k

n f"g):Ca

// solve the 9 restriction

sat(Ce u Ca

0

; L)

else fail

2

sat exists postponed(C

9

; L)

// C

9

= 9

Ne

Re:Ce u

Q

k

8Ra

k

:Ca

k

let R

�1

Re be the target state of the transition

Re

R

�! R

�1

Re with R 6= id(�)

Ca

0

Q

k

R2Ra

k

Ca

k

u

Q

k

R

�1

Ra

k

nf"g6=;

8(R

�1

Ra

k

n f"g):Ca

// postpone the 9 restriction

sat(Ca

0

u 9

Ne

(R

�1

Re n f"g):Ce; L)

2

34

De�nition 1 A restriction 9Re

j

:Ce

j

is called sepa-

rable w.r.t. the proper conjunct

5

C

u

=

Q

i

C

i

u

Q

j

9Re

j

:Ce

j

u

Q

k

8Ra

k

:Ca

k

i� the concept C

9

j

=

9Re

j

:Ce

j

u

Q

k

8Ra

k

:Ca

k

is satis�able. The proper con-

junct C

u

itself is called nonseparable i� none of its

9Re

j

:Ce

j

restrictions is separable.

There are two possibilities of proving the satis�ability

of the concept C

9

j

, namely by solving the existential

restriction, or by postponing it.

In a similar way, the (nonseparable) existential re-

strictions from a nonseparable conjunct can be solved or

postponed w.r.t. id(I) transitions, but they cannot be

separated because of possible interactions between the

concepts I.

In order to be able to determine whether a given exis-

tential restriction has been obtained by postponing or by

solving another existential restriction involved in a cy-

cle, we shall attach a unique label N to each existential

restriction 9

N

Re:Ce.

All existential restrictions are initially unlabeled.

An unlabeled restriction 9

no label

Re:Ce receives a new

unique label N

j

only when it reaches the \top level" of a

conjunct

6

C

u

=

Q

i

C

i

u

Q

j

9

N

j

Re

j

:Ce

j

u

Q

k

8Ra

k

:Ca

k

:

When an existential restriction is postponed, its label

is conserved and can be used to track an uninterrupted

chain of postponings. Such a chain cannot correspond to

a model unless at least one of the existential restrictions

in the chain is eventually solved.

In the following, we shall see how the labels can be

used to determine the nature of cycles. Let C

u

and

C

0

u

be the two concepts involved in a cycle. C

u

and

C

0

u

are equal, except maybe the labels N

j

and N

0

j

of

the existential restrictions (j = 1; : : : ; n). Such a cy-

cle will be represented by the label-correspondence table

�

N

1

N

2

: : : N

n

N

0

1

N

0

2

: : : N

0

n

�

, each column of this table be-

ing related to equal existential restrictions 9

N

i

Re:Ce =

9

N

0

i

Re:Ce from C

u

and C

0

u

respectively. Because 9 re-

strictions get unique labels when they reach the top level

of a conjunct, we have N

i

6= N

j

and N

0

i

6= N

0

j

for i 6= j.

The following theorem can be used in determining the

nature of a cycle.

Theorem 1 (cycle characterization)

A cycle represented by the label correspondence table

above is bad (i.e. it does not induce a model) i� the

label correspondence table contains a cyclic permutation,

5

In ALC

reg + id(C)

, it is important to distinguish between

simple and proper conjuncts. The simple conjuncts are the

ones obtained by ignoring possible id(I) roles that could oc-

cur in the given concept C. The proper conjuncts can be

obtained from the simple ones by taking into account the im-

plicit disjunctions induced by possible id(I) transitions of

roles Ra occurring in value restrictions 8Ra:Ca. For in-

stance, 8id(I):C = :I tC.

6

This happens in sat conjunct after extracting a proper

conjunct from a simple one.

i.e. there exists a subset of indices fj

1

; j

2

; : : : ; j

k

g �

f1; : : : ; ng such that N

j

1

= N

0

j

2

, N

j

2

= N

0

j

3

, : : : , N

j

k�1

=

N

0

j

k

, N

j

k

= N

0

j

1

:

3 Representing epistemic operators in

terminological logics

Since we are aiming at a uni�ed architecture for knowl-

edge representation based on terminological logics, we

shall show that TSLs are powerful enough to represent

epistemic operators corresponding to the majority of

modal logics of knowledge and belief. Not only is it

possible to describe in RegAL the knowledge/beliefs of

several agents, but the di�erent agents could have dif-

ferent epistemic operators with distinct modal proper-

ties so that we could study, for example, the interaction

between an agent whose knowledge is necessarily true

and another agent whose beliefs are just consistent and

believed to be true, but not necessarily true in reality.

One could even have more than one epistemic operator

attached to the same agent in order to distinguish its

beliefs from its knowledge.

Of course, in RegAL epistemic operators can be

nested in an unrestricted fashion and they could even

mention actions and plans. Also, the actions of some

agent could modify the knowledge or beliefs of another

agent so that it becomes possible to study the commu-

nication between agents in a uni�ed framework.

In modal logic, an agent can imagine a set of possible

worlds linked with the real world by the accessibility re-

lation. The facts p known by the agent are facts which

are true in all possible worlds.

Modal formulas are constructed by using the usual

logical connectives together with the modal operators

2 (necessity) and 3 (possibility). The necessity modal

operator 2 will be interpreted in the following as an

epistemic operator, the formula 2p being understood as

\the agent knows the fact p".

Because of the fact that there is no unique interpre-

tation of the modal notions of \necessity", \possibility",

\knowledge", \belief" etc., there exists a large variety of

modal systems which can be distinguished by the proper-

ties of the accessibility relation. Imposing, for instance,

the re
exivity of the accessibility relation � in the modal

system T is equivalent to requiring the truth of knowl-

edge, while imposing the seriality of � leads to the con-

sistency of knowledge. The table 1 presents some of the

most common modal axioms together with the proper-

ties of the accessibility relation they induce.

The most commonmodal systems are de�ned by com-

binations of the modal axioms from table 1. They can

be embedded in a term subsumption language by using

satis�ability preserving translations into the TSL (see

also

[

13

]

). In this way, problems formulated in terms

of (modal) epistemic operators can be reduced to prob-

lems in a TSL which can be solved using the inference

algorithms from the preceding sections.

The general translation scheme from a modal system

35

Name Modal axiom

Property of the

accessibility relation

Comments

K. 2(p! q)! (2p! 2q)

valid in every standard

Kripke frame

Kripke's axiom

(normality axiom)

D. 3> serial deontic axiom

T. 2p! p re
exive knowledge axiom

B.

p! 23p

p! 2:2:p

symmetric Brouwer axiom

4. 2p! 22p transitive

positive introspection

axiom

5.

3p! 23p

:2p! 2:2p

euclidian

negative introspection

axiom

U. 2(2p! p) almost re
exive

beliefs are believed

to be true

(A.) 2(32p! p) almost symmetric

Table 1: Major modal axioms

into a TSL is the following (p

0

is the TSL concept corre-

sponding to the modal formula p):

p 7�! p (for atomic formulas)

:p 7�! :p

0

p ^ q 7�! p

0

u q

0

p _ q 7�! p

0

t q

0

2p 7�! 8L(R): p

0

3p 7�! 9L(R): p

0

:

Note that the modal operators 2 and 3 are translated

into value- and existential restrictions in which roles of

the form L(R) occur. Here L is the particular modal

system and R an arbitrary role name representing the

agent. The role L(R) stands for the accessibility rela-

tion and possesses all the properties this relation should

have in the system L. Thus, we could read the formula

8L(R): p

0

as: \the agent R knows the fact p

0

w.r.t. the

modal system L" (L gives us here the type of knowledge).

The table 2 presents the expression of L(R) for the

most important modal logics of knowledge (in which

knowledge is required to be true

7

) while the table 3

does the same thing for the modal logics of belief (in

which beliefs are believed to be true). The axioms of

re
exivity T and symmetry B from the modal logics of

knowledge are replaced in the modal logics of belief by

the weaker versionsU (almost re
exivity) andA (almost

symmetry) respectively.

Adding the deontic axioms 9OL

+

(R):> or, equiva-

lently, 9L(R): q to the systems OL(R) in table 3 leads

to the deontic systems OL

+

(R) in which the beliefs are

required to be consistent . Note that

OL

+

(R) = OL(R) = L(R) � id(q):

7

except perhaps in the system K.

System Axioms L(R)

K. K R

T. KT R t id

S4. KT4 R

�

S5. KT5 (R tR

�1

)

�

B. KTB R t id tR

�1

Table 2: The accessibility relation L(R) in the modal

logics of knowledge

System Axioms OL(R)/OL

+

(R)

OK/OK

+

. K/KD R � id(q)

OT/OT

+

. KU/KDU (R t id) � id(q)

OS4/OS4

+

. K4U/KD4U R

�

� id(q)

OS5/OS5

+

. K45/KD45 (R tR

�1

)

�

� id(q)

OB/OB

+

. KUA/KDUA (R t id tR

�1

) � id(q)

Table 3: The accessibility relations OL(R)/OL

+

(R) in

the modal logics of belief

The main advantage of our unifying approach is that

the various types of knowledge corresponding to the

aforementioned modal systems can be amalgamated in

a single system. For example, we could describe a multi-

agent system in which the knowledge K

i

and beliefs B

i

of the agents i can be mixed in an unrestricted fashion.

By attaching a unique role name R

i

to each agent i, we

can write the epistemic operators corresponding to the

knowledge and belief of agent i in the following way

8

K

i

= [R

i

] = [S4(R

i

)] = [R

�

i

]

B

i

= [T

i

] = [KD4U (R

i

)] = [R

�

i

� id(q

i

)]:

8

In order to simplify the notation, we shall write, in the

following, [R]C instead of 8R:C.

36

where T

i

veri�es the deontic axiom 9T

i

:>, or equiva-

lently, 9R

�

i

: q

i

:

The common knowledge and common belief operators

are C = [(

`

i

R

i

)

�

] and D = [(

`

i

T

i

)

�

] respectively.

Our method of integrating epistemic operators in a

TSL is much simpler and more natural than other ap-

proaches

[

5; 7

]

which, on one hand, could deal with only

one single type of knowledge at a time and, on the other,

had to develop special purpose algorithms for treating

the epistemic operators (because the underlying TSL

had a too low expressivity to be able to express epis-

temic operators directly).

4 Representing actions and plans in a

TSL

TSLs can be used not only for representing the domain

knowledge or epistemic operators, but also for describ-

ing actions and plans. In order to develop a theory of

action in TSLs, we shall regard a role of a TSL as an

action which transforms the states x from the extension

of the role's domain into the states y from the extension

of its range. Thus, the value restriction 8R:C can be

interpreted as the necessary precondition for the action

R to achieve the postcondition C.

Conditions/facts from our theory of action will be rep-

resented in a TSL by concepts, while actions will be de-

noted by roles. An action A : hInjCtxjOuti (having In

as deleted preconditions, Ctx as context (preserved pre-

conditions) and Out as created postconditions) can be

described by the following terminological axiom, which

is similar to a total correctness assertion from dynamic

logic

9

In u Ctx � 89A: (:In u Ctx uOut)

where 89R:C

def

= 9R:>u 8R:C = 9R:C u 8R:C:

The planning problem can be stated in the following

way: \Given an initial state represented by the con-

cept Initial , a �nal state (goal) Final and a repertory

of actions fA

1

; A

2

; : : : ; A

n

g, �nd a role chain P lan =

A

i

1

�A

i

2

� : : :�A

i

k

(or, more generally, a role term Plan

formed from the roles A

1

; : : : ; A

n

by applying the role

constructors) such that Initial � 89P lan:Final:"

This last equation assures us that the compound ac-

tion Plan is applicable in a state verifying the precondi-

tions Initial and that its application will produce a state

verifying the goals Final .

5 Conclusions

This paper tries to present a uni�ed approach to the do-

mains of knowledge representation and reasoning from

the viewpoint of terminological (description) logics. We

have shown that TSLs are powerful enough to represent

not only the domain knowledge in a particular applica-

tion, but also the epistemic operators, actions and plans

9

This similarity should not be surprising since the plan-

ning problem is similar to the problem of program synthesis

starting from input/output speci�cations.

of a set of interacting agents. Because of our unifying

approach, all these types of knowledge can be combined

in an unrestricted fashion.

In order to support the reasoning involved, we

have chosen a decidable terminological language,

ALC

reg + id(C)

, for which we have developed the key in-

ference algorithms. It should not be surprising that these

algorithms are quite complex, because the underlying

language has a high expressivity.

The resulting system, called RegAL, is implemented

in Prolog and will be used in a very powerful

knowledge-based systems development environment.

References

[

1

]

Baader F. Augmenting concept languages by the

transitive closure : An alternative to terminological

cycles. IJCAI-91, pp. 446-451.

[

2

]

Baader F., Hollunder B. KRIS: Knowledge

Representation and Inference System { System De-

scription. DFKI TM-90-03.

[

3

]

Badea Liviu. A unitary theory and architecture for

knowledge representation and reasoning in Arti�cial

Intelligence (in Romanian) PhD thesis, Bucharest

Polytechnic University, 1994.

[

4

]

Brachman R.J., Schmolze J.G. An Overview

of the KL-ONE Knowledge Representation System.

Cognitive Science 9 (2) 1985.

[

5

]

Donini F.M., Lenzerini M., Nardi D.,

Schaerf A., Nutt W. Adding Epistemic Oper-

ators to Concept Languages. Proceedings KR-92,

Boston.

[

6

]

Hollunder B., Nutt W., Schmidt-Schau� M.

Subsumption Algorithms for Concept Description

Languages. ECAI-90, pp. 384-353, Pitman, 1990.

[

7

]

Laux A. Integrating a Modal Logic of Knowledge

into Terminological Logics. DFKI RR-92-56.

[

8

]

Patel-Schneider P.F. Undecidability of Sub-

sumption in NIKL. Arti�cial Intelligence 39 (1989),

pp. 263-272.

[

9

]

Schild Klaus. Undecidability of Subsumption in

U. KIT Report, Technische Universit�at Berlin, Oc-

tober 1988.

[

10

]

Schild Klaus. A correspondence theory for termi-

nological logics: preliminary report. IJCAI-91, pp.

466-471.

[

11

]

Schmidt-Schau� M., Smolka G. Attributive

concept descriptions with complements. Arti�cial

Intelligence 48 (1), pp. 1-26, 1991.

[

12

]

Schmidt-Schau� M. Subsumption in KL-ONE is

undecidable. Proceedings KR-89, pp. 421-431.

[

13

]

Tuominen H. Translations from Epistemic into

Dynamic Logic. ECAI-88, pp. 586-588.

37

A Hybrid Integration of Rules and Descriptions, with F(rames)-Logic

as an Underlying Formalism

Mira Balaban

Dept. of Mathematics and Computer Science

Ben-Gurion University of the Negev

P.O.B. 653, Beer-Sheva 84105, Israel

mira@black.bgu.ac.il

phone: (972)-7-461622 fax: (972)-7-472909

Abstract

Descriptions and Rules are di�erent, comple-

mentary, essential forms of knowledge. De-

scriptions are analytic and closed; rules are

contingent and open. Historically, descrip-

tions and rules were developed along sepa-

rate lines, by di�erent communities (

[

10; 7; 5;

6

]

). The two forms can be integrated either

by compiling one form within the other, or by

constructing a hybrid framework. The hybrid

solution keeps the modular independent status

of each approach, but needs an underlying in-

tegration framework, in which a coherent com-

positional semantics can be de�ned. In this

paper we use F-Logic (

[

8

]

) as an underlying

framework for a hybrid construction of descrip-

tions and rules. The hybrid framework, termed

DFL, is modular, and enjoys a compositional

semantics. In DFL, the knowledge base man-

ages a database of explicit descriptions, by con-

sulting two separate reasoners: DL { The De-

scription Languages reasoner, and R { The

Rules reasoner. The reasoners can operate un-

der di�erent semantical policies. Four di�erent

compositional semantics possible for the hybrid

DFL framework are discussed and compared.

1 Architecture and Mode of Operation

of a DFL KB

1.1 Architecture

A DFL knowledge base manages a database of explicit

descriptions (a terminology and assertions). The knowl-

edge base reasons about the given descriptions by con-

sulting two separate reasoners:

1. DL { The Description Languages reasoner: A de-

cidable reasoner, that reasons on the basis of the in-

tended meaning of the terminological operators that

form the descriptions.

2. R { The Rules reasoner, that reasons on the basis of

given rules and some agreed upon semantical policy

(e.g., perfect model).

This architecture is described in Figure 1.

While in query mode the DFL manager dispatches

queries to the two reasoners. The reasoners make e�orts

to answer. If they succeed, they return an answer(s)

to the manager. While reasoning, the reasoners may

�nd out new descriptions, which they add directly to

the database. The DL reasoner can operate under the

so called Open World Assumption (OWA), while the R

reasoner can adopt the more conventional Closed World

Assumption (CWA).

1.2 Mode of Operation

We use the industrial plants example from the BACK

manual (

[

7

]

), to demonstrate the operation.

The Descriptions Database, D, is given in tables 1

and 2, below. Table 1 includes the terminology descrip-

tions, and Table 2 includes the assertion descriptions.

We assume that the DL reasoner has a decidable oracle

for answering queries about descriptions built with the

operators: and, all, some, (primitive-)not, domain,

range, inv, trans, comp

1

. The R reasoner consults

the following rules:

r1: A terminological rule: A radioactive material that

is also a waste, is a toxic waste.

X 2 toxic waste �

X 2 and(radioactive material; waste):

r2: A place L in which a product of a dangerous plant

is buried at, is a risky place.

L 2 risky place �

Y 2 dangerous plant; (Y;X) 2 produces;

(X;L) 2 buried at:

r3: If a plant is located at a risky place, it is a

dangerous plant.

Y 2 dangerous plant �

Y 2 plant; (Y;X) 2 located at;

X 2 risky place:

r4: A rule with negation: If a plant uses up a material

that cannot be shown to be a dangerous product,

1

After consulting Franz Baader and Klaus Schild, I realize

that it is not clear whether this collection of operators, where

and is used for concepts' and for roles' conjunction, yields a

decidable DL. However, I prefer to leave the example as is.

38

DFL MANAGER

%. &-

R $ D { DESCRIPTIONS DATABASE $ DL

Figure 1: Architecture of a DFL KB

Kind No. Description in words description

Primitive- t1) product is a top product � top

concept t2) place is a top place � top

t3) type is a top type � top

t4) degree is a top degree � top

t5) danger degree is a degree danger degree � degree

t6) energy is a product energy � product

t7) mechanical product is a product mechanical product � product

t8) safe product is a product safe product � product

t9) dangerous product is a product dangerous product � product

t10) material is a product, not an energy material � and(product;not(energy))

t11) waste is a product, but not an energy waste � and(product;not(energy))

t12) radioactive material is a material radioactive material � material

t13) safe material is a material safe material � material

t14) toxic waste is a waste toxic waste � waste

t15) chemical waste is a material chemical waste � and(

and is a waste material; waste)

t16) plant is a top that is located at plant � and(top; all(located at; place);

place and has a type all(is of type; type))

Primitive- t17) A plant produces products, or, produces � and(domain(plant);

role produces is a relation between plants range(product))

and products

t18) A product may be buried at a place buried at � and(domain(product);

range(place))

t19) located at is a relation between

objects and places located at � range(place)

t20) A product may directly contain directly contains � and(

products domain(product); range(product))

t21) degree of is a relation between degree of � and(domain(product);

products and degrees range(degree))

De�ned- t22) A mechanical plant is a plant that mechanical plant

:

= and(plant;

concept produces only mechanical products all(produces;mechanical product))

t23) A dangerous plant is a plant that dangerous plant

:

= and(plant;

produces a dangerous product some(produces; some(

degree of; danger degree)))

t24) A risky place is a place where risky place

:

= and(place; some(

a toxic waste is buried at inv(buried at); toxic waste))

De�ned- t25) produced by is inverse of produces produced by

:

= inv(produces)

role t26) contains is the transitive closure

role of directly contains contains

:

= trans(directly contains)

t27) uses up is the composition of uses up

:

= and(

produces and contains, restricted comp(produces; contains);

to materials as the range concept range(material))

Table 1: Tbox { Terminology

39

Kind No. Description in words description

Concept- a1) plant

1

is a mechanical plant plant

1

2 mechanica plant

member a2) waste

2

is a wast which is a

radioactive material waste

2

2 and(wast; radioactive material)

a3) product

1

is a chemical waste product

1

2 chemical waste

Role- a4) waste

1

is a waste product of plant

1

(plant

1

; waste

1

) 2 produces

member a5) plant

1

produces a product product

2

(plant

1

; product

2

) 2 produces

a6) plant

2

produces a product product

1

(plant

2

; product

1

) 2 produces

a7) waste

1

is buried at place l (waste

1

; l) 2 buried at

a8) waste

2

is buried at place dump (waste

2

; dump) 2 buried at

a9) plant

1

is located at dump (plant

1

; dump) 2 located at

a10) product

2

directly contains product

1

(product

2

; product

1

) 2 directly contains

a11) The degree of ecology mindedness

is high (ecology mindedness; high) 2 degree of

Table 2: Abox { Assertions

it can be assumed to be a safe material.

X 2 safe material �

Y 2 plant; (Y;X) 2 uses up;

not(X 2 dangerous product)

2

.

r5: A rule with negation: A mechanical product that

cannot be shown to be buried at some place, can be

assumed to be a safe product.

X 2 safe product �

X 2 mechanical product;

not((X;L) 2 buried at):

r6: A rule that extends the

terminology: If ecology mindedness is high, then

chemical waste is a dangerous product.

chemical waste � dangerous product �

(ecology mindedness; high) 2 degree of:

r7: A rule that extends the terminology

3

: If

ecology mindedness is high, then if a plant pro-

duces a dangerous product, then all of its products

are considered dangerous products.

some(produces; dangerous product) �

all(produces; dangerous product) �

(ecology mindedness; high) 2 degree of:

Reasoning: Queries are descriptions that might include

variables, and the reasoners are expected to provide in-

stantiations to the variables, in case of a positive answer.

We assume that the DFL manager adds the answers of

the reasoners to the database D.

1. Iteration between the reasoners is demonstrated in

Table 3.

2. Reasoning with rules with negation is demonstrated

in Table 4.

2

Note that this not operator is the F-Logic's negation

as failure operator, and not the DL negation operator on

primitive concepts (as in t11 and t12, for example). The

distinction can be made on a syntactical basis.

3

This rule is outside the consensus of DLs.

3. Reasoning with rules that extend the terminology

is demonstrated in Table 5. Note that the order

of rules' application matters. If r6 is consulted be-

fore r4, then q9 cannot be concluded. Hence, the

reasoning process is time dependent.

2 Replacing the Standard Set-theoretic

Semantics by the OO Semantics of

F-Logic

In

[

3

]

it was argued that a description language L

P

is

a syntactic variant for a sorted F-Logic language, with

sorts for concepts, roles, and objects. The syntactic ab-

breviations are summarized in Table 6. Note that the

table is not a translation from DLs to F-Logic, but

just a set of abbreviations. DL terms are, already, F-

Logic terms; the table summarizes syntactic variations

and agreed upon abbreviations.

The semantics of L

P

, viewed as an F-Logic language,

is de�ned over a partially ordered domain U , with a

greatest and a least elements, where terms are mapped

to elements of U , and the symbols top and bottom are as-

signed the greatest and least elements, respectively. The

meaning of formulae is directly obtained from the mean-

ing of their F-Logic variants. Formulae are interpreted

by interpreting

:

= and � between concept terms as equal-

ity and the partial ordering, respectively; 2 between an

object symbol and a concept term is interpreted as the

membership binary relation over U ;

:

= and � between

role terms are interpreted as methods' equality and im-

plication, respectively; 2 between a pair of object sym-

bols and a role term is interpreted as a method's value

assertion.

An important notion de�ned in

[

3

]

was that of a corre-

sponding theory for L

P

, which was de�ned as an F-Logic

4

A simpler, although less intuitive, abbreviation is ob-

tained if an L

P

formula o 2 c is replaced by the L

FL

P

formula

o :: c.

5

The subscribed quanti�er \8

ind

" quanti�es over the sort

of individuals.

40

No Query Reasoner Answer Justi�cation

q1) ?X 2 mechanical product DL X := waist

1

(t22); (a1); (a4)

q2) ?X 2 mechanical product DL X := product

2

(t22); (a1); (a5)

q3) ?X 2 toxic waste R X := waste

2

(r1); (a2)

q4) ?X 2 risky place DL X := dump (t24); (t18); (a8); (q3)

q5) ?X 2 dangerous plant R X := plant

1

(r3); (t22); (a1); (a9);

(q4)

q6) ?X 2 risky place R X := l (r2); (q5); (a4); (a7)

q7) ?(X;Y) 2 contains DL X := product

2

; Y := product

1

(t26); (a10)

q8) ?(X;Y) 2 uses up DL X := plant

1

; Y := product

1

(t27); (a5); (q7); (a3);

(t15)

Table 3: Iteration between the reasoners

No Query Reasoner Answer Justi�cation

q9) ?X 2 safe material R X := product

1

(r4); (a1); (t22); (q8)

q10) ?X 2 safe product R X := product

2

(r5); (q2)

Table 4: Reasoning with negation

No Query Reasoner Answer Justi�cation

q11) ?X 2 dangerous product R X := product

1

(r6); (a11); (a3)

q12) ?X 2 some(produces; dangerous product DL X := plant

2

(a6); (q11)

q13) ?X 2 all(produces; dangerous product R X := plant

2

(r7); (a11); (q12)

Table 5: Reasoning with rules that extend the terminology

 2 L

P

FL

2 L

FL

P

c

n

:

= c c

n

:

= c

c

1

� c

2

c

1

:: c

2

o 2 c o : c

4

r

n

:

= r 8

ind

5

X;Y; (X[r

n

!! fY g] � X[r!! fY g])

r

1

� r

2

8

ind

X;Y; (X[r

1

!! fY g] �! X[r

2

!! fY g])

(o

1

; o

2

) 2 r o

1

[r!! fo

2

g]

Table 6: Syntactic variations between a DL to a sorted F-Logic language

41

theory FL

P

such that for every set of formulae �, and a

formula
 in L

P

:

� j=
 iff FL

P

; �

FL

j=

FL

(The �rst j= is the description languages' logical impli-

cation relation, while the second is F-Logic's. The FL

superscript stands for the F-Logic's notational variant.)

A corresponding theory for P = fand, all, at-least1,

and-role g was given. A major result of

[

3

]

is that given

a corresponding theory FL

P

to L

P

, F-Logic provides

a full account to L

P

, i.e., it correctly simulates logical

implication and subsumption relations, while preserving

the direct semantics. In particular, we had the following

corrolary:

Corollary 2.1 Let t

1

; t

2

be terms of L

P

, and FL

P

an F-Logic's theory that corresponds to L

P

. Then,

t

1

is subsumbed by t

2

in a terminology � i�

FL

P

; �

FL

j= (t

1

� t

2

)

FL

.

3 Compositional Semantics

Let L

P

be the language of descriptions in D, FL

P

be

its corresponding F-Logic's theory, and RULES be the

set of rules that R consults. Then, a straightforward

non-hybrid approach to the meaning of KB, can de-

�ne the models of KB as F-Logic models I such that:

I j= D [RULES [FL

P

: This approach is inappro-

priate from a knowledge representation point of view.

The hybrid KB should provide speci�c services, that �t

the mode of operation outlined above. The two main

principles are: Modularity { The KB should be able

to provide separate services, based on the DL or the R

reasoners, andCompositional behavior { The seman-

tics should be composed from the separate semantics of

DL and R, which may operate along di�erent reasoning

policies. Two desirable properties are: Query sensitiv-

ity, and Open behavior { The KB should be tolerant

to changes in the separate services. Clearly, neither of

these principles is kept if the \global" F-Logic theory

D [RULES [FL

P

de�nes the semantics of KB.

In this section we de�ne four alternative compositional

semantics H, F , singleF , and OF , that respect the two

main principles of the hybrid construction. All four se-

mantics are sets of syntactic objects, either in DL terms,

or in terms of the underlying F-Logic formalism. They

are constructed by iteration of the separate semantics

DL and R of the DL and the R reasoners, respectively.

DL and R are also sets of syntactic objects. This way

the principles of modularity and Compositionality are

kept. The general structure of the compositional seman-

tics is visualized in Figure 2. DFL is formally de�ned

as follows:

De�ne: T (KB)

def

= DL [R

and T

0

(KB) = S

0

{semantics dependent

initial version.

T

k+1

(KB) = T (T

k

(KB)) k � 0

T

!

(KB) =

1

[

k=0

T

k

(KB)

Then: DFL(KB)

def

= T

!

(KB)

The four semantics di�er in the separate DL and R

being used, and in the sort of syntactic objects being

processed. In the H semantics the syntactic objects are

ground atoms of the underlying F-Logic formalism; in

the F and the singleF semantics the syntactic objects

are ground descriptions; in the OF semantics the syntac-

tic objects are not necessarily ground descriptions, and

also rules of F-Logic (

[

4

]

). Hence, H is neither query sen-

sitive nor open, F and singleF are query sensitive but

not open, and OF is both query sensitive and open. The

expressivity relations between the four semantics are:

H � F = singleF � OF

with the reservations: 1)F = singleF holds only when

the R reasoner consults a set of de�nite positive rules,

without negation, and 2) The OF semantics is de�ned

only for an R reasoner that consults a set of de�nite pos-

itive rules. For detailed explanations and proofs consult

[

2

]

.

4 Inference and Future Work

The compositional semantics suggests bottom-up infer-

encing, where a \by-product" of the inference process,

is the derivation of mutiple conclusions, beyond the re-

quested goal. The Normalize-Compare methods, the as-

sertional reasoning of

[

11

]

, and magic-sets approach are

relevant. For a rules set with negation, bottom-up eval-

uation is close to computation of extensions in Reiter's

default logic (

[

9

]

). Relationship to non-monotonic rea-

soning in DLs (

[

1

]

), and to F-Logic's non-monotonic in-

heritance mechanism are relevant.

Acknowledgements

I am grateful to Veronique Royer and Michael

Kifer, who provided detailed comments on an

earlier draft of this paper. I would like to thank

also Mike Codish for introducing me to the non-

ground s-semantics approach, and for endless

fruitful discussions.

References

[

1

]

F. Baader and B. Hollunder. How to prefer more

speci�c defaults in terminological default logic. In

IJCAI-93, pages 669{674, 1993.

[

2

]

M. Balaban. The f(rames)-logic approach for de-

scription languages ii: A hybrid integrating of rules

and descriptions. Technical Report FC 94-10, De-

partment of Mathematics and Computer Science,

Ben-Gurion University, Beer Sheva, Israel, 1994. ftp

black.bgu.ac.il, cd ftp/pub/mira.

[

3

]

M. Balaban. The f-logic approach for description

languages. Annals of Mathematics and Arti�cial In-

telligence, 1995. To appear.

[

4

]

A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli.

The s-semantics approach: Theory and applica-

tions. J. of Logic Programming, 12, 1993.

42

DFL = KB semantics

D

. " &

DL = DL semantics j R = R semantics

& j .

DL [R

Figure 2: Structure of the compositional semantics

[

5

]

F. Donini, M. Lenzerini, D. Nardi, A. Schaerf, and

W. Nutt. Adding epistemic operators to concept

languages. In KR-92, pages 342{353, 1992.

[

6

]

P. Hanschke and . Hinkelmann. Combining termino-

logical and rule-based reasoning for abstraction pro-

cesses. In German Conference on AI-92, Springer

LNCS 671, pages 0{0, 1992.

[

7

]

T. Hoppe, C. Kindermann, J. Quantz,

A. Schmiedel, and M. Fischer. Back v5: Tutotial

and manual. Technical Report KIT { report 100,

Technische Universitat Berlin, March 1993.

[

8

]

M. Kifer, G. Lausen, and J. Wu. Logical founda-

tions of object-oriented and frame-based languages.

JACM, 1995. To appear.

[

9

]

R. Reiter. A logic for default reasoning. J. of Arti-

�cial Intelligence, 13(1{2):81{132, 1980.

[

10

]

L. Resnick, A. Borgida, R. Brachman, D. McGuin-

ness, and P. Patel-Schneider. Classic description

and reference manual for common lisp implemen-

tation. Technical Report Version 1.02, AT&T Bell

Labs, 1990.

[

11

]

V. Royer and J. Quantz. On intuitionistic query

answering in description bases. In CADE, 1994.

43

carin: A Representation Language Combining Horn rules and Description

Logics

Alon Y. Levy

�

AT&T Bell Laboratories

AI Principles Research Dept.

600 Mountain Ave., Room 2C-406

Murray Hill, NJ, 07974

levy@research.att.com

Marie-Christine Rousset

L.R.I. U.R.A C.N.R.S

University of Paris-Sud

Building 490, 91405,

Orsay Cedex, France

mcr@lri.lri.fr

1 Introduction

Horn rule languages have formed the basis for many

AI expert system applications. Though Horn rules

are natural for representing many application domains,

one of their signi�cant limitations is that they are

not expressive enough to model domains with a rich

hierarchical structure. In contrast, description logics

have been designed especially to model such domains,

and have considered in detail the problem of reasoning

about relationships between classes of objects in a do-

main. Naturally, many applications would signi�cantly

bene�t from having the expressive power of both for-

malisms. This has been the driving force behind previ-

ous work on designing hybrid representation languages

(e.g.,

[

Brachman et al.,1985; Donini et al.,1991; Han-

schke and Hinkelman,1992; Forster and Novotny,1994;

Abecker and Wache,1994

]

). Two prime examples of

such applications are information gathering from multi-

ple sources

[

Levy et al.,1995b; Knoblock and Levy,1995

]

,

where we require the expressive power of both for-

malisms in order to model meta-data about information

sources, and the problem of modeling of complex phys-

ical devices

[

Rousset,1994; Fikes et al.,1991

]

, in which

we need to model both the structural aspects of a de-

vice (which are best modeled by a description logic),

and its behavior aspects (which are naturally modeled

using Horn rules). Furthermore, constraint databases

and query languages with constraints have recently re-

ceived signi�cant attention in database research

[

Kanel-

lakis et al.,1990; Brodsky et al.,1993; Levy et al.,1994;

Levy and Sagiv,1995; Kanellakis,1995

]

. Since descrip-

tion logics can be viewed as a rich language for describing

constraints, integrating them with Horn rules can result

in a useful language for constraint databases.

In this paper we describe carin, a novel family of

representation languages, that cleanly integrate Horn

rules and description logics. carin combines the two

formalisms by allowing knowledge bases to have, in ad-

dition to a terminological component, a set of extended

Horn rules. Extended Horn rules are rules in which con-

cept and role literals de�ned in the terminological com-

�

Part of this work was done while the author was visiting

Universit�e de Paris-Sud.

ponent may appear in their antecedents. The semantics

of carin are derived naturally from the semantics of

its component languages, which are both subsets of �rst

order logic with equality. We address the key problem

in carin, which is the development of sound and com-

plete inference procedures for the language. As we show,

(and has been observed in

[

Donini et al.,1991

]

), applying

standard Horn rule inference procedures (e.g., SLD res-

olution) to a set of extended rules is a sound procedure,

but not complete.

A core problem in reasoning in carin knowledge

bases is the existential entailment problem. Informally,

this problem is to decide whether an arbitrary conjunc-

tive query over concepts and roles de�ned in a descrip-

tion logic entails a union of such conjunctive queries.

The main result of this paper is an existential entail-

ment algorithm for queries over the ALCNR description

logic

[

Buchheit et al.,1993

]

, which is a fairly expressive

logic. This algorithm entails several important results:

1. It provides a sound and complete inference proce-

dure for non-recursive carin knowledge bases in

which the description logic used is ALCNR, or any

of its subsets.

2. It can be used in conjunction with constrained log-

ics

[

B�urckert,1994

]

to provide a backward chaining

algorithm for arbitrary carin rules (though this

procedure will not be complete).

3. It provides the �rst algorithm for subsumption of

arbitrary conjunctive queries over ALCNR and its

subsets. In particular, it can be used for optimizing

queries by rewriting them to use precomputed views,

extending the results of

[

Levy et al.,1995a

]

.

4. We propose an approach for reasoning in a hybrid

language such as carin, based on computing a set

of enhanced rules that precompiles inferences made

by the terminological component. The key advan-

tage of this approach is that it enables us to use the

known e�cient algorithms for reasoning with Horn

rules at run-time. Existential entailment plays a

central role in proving the existence of the set of

enhanced rules, and our algorithm can be used to

compute such a set.

44

In the following sections we describe the carin lan-

guages, the problems arising in making inferences in

carin, the existential entailment algorithmand its corol-

laries.

2 The carin Languages

The motivation behind the design of carin is to ob-

tain a language that has the expressive powers of both

Horn rules and description logics, and integrates the two

formalisms by enabling the Horn rules to exploit unary

and binary predicates whose properties are de�ned in the

description logic. Therefore, a carin knowledge base

contains three parts: the terminology, rules and ground

facts:

Terminology T : A terminological component, de�ned

in a description logic L. In this paper we consider carin

languages in which the terminological component is the

language ALCNR or one of its subsets. Complex con-

cepts and roles in ALCNR can be de�ned using the

following syntax (A denotes a primitive concept, P

i

's

denote primitive roles, C and D represent arbitrary con-

cepts and R denotes an arbitrary role):

C;D! A j (primitive concept)

> j ? j (top, bottom)

C uD j C tD j (conjunction, disjunction)

:C j (complement)

8R:C j (universal quanti�cation)

9R:C j (existential quanti�cation)

(� nR) j (� nR) (number restrictions)

R! P

1

u : : : u P

m

(role conjunction)

An ALCNR terminology contains a set of inclusions

of the form C v D. Intuitively, an inclusion states that

every instance of of C must be an instance of D. The

terminological component is also used to de�ne a set of

named complex concepts. Such a de�nition can be given

by two inclusions, C v D and D v C, (abbreviated

C := D), where C is the name and D is an arbitrary de-

scription. Note that ALCNR allows for terminological

cycles.

Rule base R: a set of extended Horn rules, R, i.e., log-

ical sentences of the form: (8

�

X) p

1

(

�

X

1

)^: : :^p

n

(

�

X

n

))

q(

�

Y), where

�

X includes all the variables in the rule, and

�

Y �

�

X . The predicates appearing in the antecedent of

the rule may be either ordinary predicates or concepts

and roles de�ned in T .

Ground facts A: a set of ground facts for the concepts,

roles and predicates appearing in T and R.

Semantics

The semantics of a carin knowledge base are derived

in a natural way from the semantics of its components.

An interpretation I contains a non-empty domain O

I

.

It assigns an element a

I

in O

I

to every constant a in the

KB, and relation p

I

over O

I

of arity n to every predicate

p of arity n in the KB. In particular, it assigns a unary

relation over O

I

to every concept in T , and a binary

relation over O

I

�O

I

to every role in T .

An interpretation I is a model of a carin knowledge

base (T ,A,R) if it is a model of each of it components,

de�ned as follows.

An interpretation I is a model of T if C

I

� D

I

for

every inclusion C v D in the terminology, and the ex-

tensions of the complex concepts satisfy the following

equations (]fg denotes the cardinality of a set):

>

I

= O

I

, ?

I

= ;, (C uD)

I

= C

I

\D

I

,

(C tD)

I

= C

I

[D

I

, (:C)

I

= O

I

n C

I

,

(8R:C)

I

= fd 2 O

I

j 8e : (d; e) 2 R

I

! e 2 C

I

g

(9R:C)

I

= fd 2 O

I

j 9e : (d; e) 2 R

I

^ e 2 C

I

g

(� nR)

I

= fd 2 O

I

j]fe j (d; e) 2 R

I

g � ng

(� nR)

I

= fd 2 O

I

j]fe j (d; e) 2 R

I

g � ng

(P

1

u : : : u P

m

)

I

= P

I

1

\ : : : \ P

I

m

I is a model of a rule r if whenever � is a mapping from

the variables of r to the domainO

I

, such that �(

�

X

i

) 2 p

I

i

for every atom of the antecedent of r, then �(

�

Y) 2 q

I

,

where q(

�

Y) is the consequent of r. Finally, I is a model

of a ground fact p(�a) if �a

I

2 p

I

.

It should be noted that carin does not allow concept

and role atoms to appear in the consequents of the Horn

rules because of the underlying assumption that the ter-

minological component completely describes the hierar-

chical structure of classes in the domain, and therefore,

the rules should not allow to make new inferences about

that structure.

Reasoning in carin

The key issue that needs to be addressed in order to

build systems based on carin is to develop algorithms

for making sound and complete inferences from carin

knowledge bases. As the following examples will show,

combining Horn rules and description logics enables us

to make more inferences than can be made from either of

them alone. However, they will also show that using the

known techniques for reasoning with Horn rules (or slight

modi�cations of them) will not be complete. Consider

the following terminology, T

1

:

eur-ass-company :=

company u 9ASSOCIATE.european-company

am-ass-company :=

company u 9ASSOCIATE.american-company

fellow-company :=

company u 8ASSOCIATE.american-company

no-fellow-company :=

company u 8ASSOCIATE.: american-company

foreign-associate-company :=

eur-ass-company t am-ass-company

the rules R

1

:

r

1

: made-by(X,Y)^no-fellow-company(Y))

price(X,usa,high)

r

2

: made-by(X,Y)^company(Y)^associate(Y,Z)^

american-company(Z)^ monopoly(Y,X,usa))

price(X,usa,high)

and the ground facts

A

1

: f made-by(a,b), monopoly(b,a,usa),

am-ass-company(b) g

45

A

2

: f made-by(a,b),monopoly(b,a,usa),

foreign-associate-company(b)g

First, note that T

1

;A

1

;R

1

j= price(a; usa; high).

The fact am-ass-company(b) and T

1

entail that b has

some associate that is an american-company. There-

fore, even though no rule of R

1

can be totally instanti-

ated on A

1

, the missing conjuncts of r

2

are entailed by

the KB.

Second, note that T

1

;A

2

;R

1

j= price(a; usa; high).

Here T

1

[A

2

does not entail the antecedent of any

single rule in R

1

. However, we can make the infer-

ence by reasoning by cases. If b has no American as-

sociates, then no-fellow-company(b) will be entailed,

and price(a,usa,high) will follow from r

1

. If b has at

least one American associate, then price(a,usa,high)

will follow because the antecedent of rule r

2

will be en-

tailed, as explained above.

To summarize, there are two aspects of traditional

Horn rule reasoning inference mechanisms that make

them inadequate for carin rules. The �rst is that they

proceed by considering each rule in isolation, and the

second is that for each rule they try to instantiate the

antecedent in order to derive the consequent. The ex-

amples above show that both of these aspects will lead

to incompleteness when applied to carin rules. The

example with A

1

showed that a KB may entail the an-

tecedent of a single rule without being able to instantiate

the antecedent in the KB. The example with A

2

showed

that a KB may entail the union of the antecedents of

two rules without entailing either of them. It should

be noted that these problems have been observed also

in

[

Donini et al.,1991

]

, where the rules considered were

more restricted in that they did not allow role predicates

to appear.

3 An Existential Entailment Algorithm

In this section we describe an algorithm for existential

entailment over ALCNR terminologies. Formally, the

existential entailment problem for a description logic L is

the following. Let �;Q

1

; : : : ; Q

n

be existential sentences

of the form

(9

�

Y) p

1

(

�

Y

1

) ^ : : :^ p

m

(

�

Y

m

):

The predicates in Q

i

and � may be de�ned in a termi-

nology T , in the language L. The existential entailment

problem is to decide whether

� [T j= Q

1

_ : : :_Q

n

:

The existential entailment problem is important be-

cause it forms the core of several algorithms for making

inferences from carin knowledge bases. Whatever con-

trol strategy we use for making inferences, the basic op-

eration of checking whether an antecedent of a rule can

be instantiated needs to be replaced by a more general

procedure in which we check whether a set of ground

facts A

0

and the terminology T entail the union of the

antecedents of a set of rules. Since the conjunction of set

of ground facts A

0

can be viewed as the sentence �, an

existential entailment algorithm is appropriate for this

purpose. Since the terminology alone cannot sanction

any inferences about literals involving predicates that

are not concepts or roles, the entailment of ordinary lit-

erals fromA[T is straightforward and involves matching

them with ordinary facts of A. Therefore, the general

existential entailment problem can be restricted to the

existential entailment problem where predicates appear-

ing in the existential sentences are only role and concept

predicates.

In particular, the existential entailment algorithm we

describe for ALCNR entails the following results:

1. It provides a sound and complete inference proce-

dure for carin knowledge bases with non-recursive

rules. When the rules are non-recursive, they can be

unfolded, and therefore deriving a fact of the form

p(�a) amounts to checking whether A[T entails the

union of the rules in R (after unfolding) resulting

from unifying their heads with p(�a).

1

2. The existential entailment

algorithm can be combined with constrained SLD-

resolution

[

B�urckert,1994

]

to provide a goal directed

backward chaining algorithm on carin rules.

2

In-

formally, at every step of the backward chaining, the

existential entailment algorithm is used to check if

the residual constraints from the rules are entailed

by the knowledge base. Note however that this pro-

cedure will not be complete on recursive rules. This

procedure has the advantage of being goal-directed,

and therefore likely to yield better performance in

many cases, compared to forward reasoning.

3. The existential entailment algorithm provides the

�rst algorithm for deciding subsumption of arbitrary

conjunctive queries over ALCNR, including arbi-

trary inclusions. Previous work has only considered

restricted forms of conjunctive queries. In partic-

ular, it provides a method for deciding query con-

tainment (analogous to

[

Sagiv,1988

]

), which is an

important tool in optimizing rule bases. Recently,

it was shown in

[

Levy et al.,1995a

]

that contain-

ment is the core to solving the problem of rewriting

queries using materialized views. Therefore, our ex-

istential entailment algorithm can be used to extend

this result to queries over description logics.

4. The algorithm provides the core of an inference

method based on computing a set of enhanced rules,

described in the Section 3.2.

1

It should also be noted that sound and complete infer-

ences can be made from non-recursive carin knowledge bases

without unfolding all the rules ahead of time. Informally, a

ground fact p(�a) is entailed from a carin knowledge base if it

is entailed from every canonical interpretation we construct

in the existential entailment algorithm.

2

This observation is due to Hans-J�urgen B�urckert.

46

3.1 Existential Entailment Algorithm for

ALCNR

Our algorithm is based on extending the technique of

constraint systems used in

[

Buchheit et al.,1993

]

for a

satis�ability checking algorithm for ALCNR knowledge

bases. Informally, the satis�ability checking algorithm

begins with an initial constraint system, constructed

from a given knowledge base, which is a �nite repre-

sentation of all its models. It then applies to the system

a set of propagation rules that generate a set of comple-

tions. Each completion is a re�nement of the initial con-

straint system, in which some implicit constraints have

been made explicit, and some non-deterministic choices

were made (as a result of disjunction in the KB). Each

completion represents a subset of the models of the KB.

Some completions contain explicit clashes, (e.g., they

state that an object belongs both to a class and to its

complement). Such completions are clearly unsatis�able,

and therefore do not represent any model of the KB. The

key property shown in

[

Buchheit et al.,1993

]

is that if a

completion is clash-free then it is satis�able, and there-

fore, if one clash-free completion is found, the KB is

satis�able. They show that a completion is satis�able

by exhibiting a canonical interpretation of the comple-

tion. The key to guaranteeing this property is the condi-

tion used to terminate the application of the propagation

rules.

Our algorithm begins in a similar fashion, by con-

structing a constraint system for the KB containing the

terminology T and the sentence �. It then generates the

set of all clash-free completions, and for each comple-

tion S it checks whether Q is satis�ed in the canonical

interpretation of S. Since we are using canonical inter-

pretations to test entailment and not satis�ability, we

need to be sure that if Q is satis�ed in the canonical in-

terpretation of a completion S, then it will be satis�ed in

all models of S. This stronger property is guaranteed by

modifying the condition for terminating the application

of the propagation rules. In what follows, we explain

constraint systems in detail, the propagation rules and

the novel termination condition.

Constraint Systems

In our discussion, we denote the set of variables and con-

stants that appear in Q or � by V. From this point on,

we refer to elements of V as individuals.

3

In describing

constraint systems, we introduce an alphabet of variable

symbolsW, with a well-founded total ordering �

W

. The

alphabet W is disjoint from V. We denote elements of

W by the letters u; v; w; x; y; z. The term object refers to

elements of V [W (i.e., either variables or individuals).

Objects are denoted by the letters s; t. Elements in V

are denoted by the letters a; b.

A constraint system is a non-empty set of constraints

of the form

s : C; sP t; 8x:x : C; s 6

:

= t;

3

Note that V may contain constants used in the KB.

where C is a concept and P is a role name.

Suppose S is a constraint system and R = P

1

u: : :uP

k

(k � 1) is a role. We say that an object t is an R-

successor of an object s if sP

1

t; : : : ; sP

k

t 2 S. We say

that t is a direct successor of s if it is the R-successor

for some role R. The successor relationship denotes the

transitive closure of the direct-successor relation. The

direct-predecessor and the predecessor relations are the

inverses of direct-successor and successor, respectively.

We say that s and t are separated in S if s 6

:

= t 2 S.

Finally, we denote by S[x=s] the constraint system ob-

tained from S by replacing each occurrence of the vari-

able x by the object s.

For a variable s in a constraint system S, we de�ne

the function �(S; s) := fC j s : C 2 Sg. Two variables

in s; t 2 S are said to be concept-equivalent if �(S; s) =

�(S; t). Intuitively, two variables are concept-equivalent

in S if, as far as the constraints in S are concerned, they

have the same properties. The function � will be used

for the termination condition.

An interpretation I satis�es the constraint x : C if

�

I

(x) 2 C

I

, the constraint xRy if (�

I

(x); �

I

(y)) 2 R

I

,

the constraint x 6

:

= y if�

I

(x) 6= �

I

(y), and the constraint

8x:x : C if C

I

= �

I

. An interpretation is a model of a

constraint system S if it satis�es every constraint in S.

Given a terminology and a sentence �, the initial con-

straint system S

�

is constructed as follows. If p

i

(

�

Y

i

) is of

the formC(a), we put a : C in S

�

. If p

i

(

�

Y

i

) is of the form

R(a; b) we put aP

1

b; : : : ; aP

n

b in S

�

, if R = P

1

u : : :uP

n

.

If C v D is an inclusion in the terminology, we add

8x:x : :C t D to S

�

. If a and b are two individuals

in � that are not existentially quanti�ed, then we add

a 6

:

= b to S

�

. It is easy to see that the models of S

�

are

precisely the models of �.

Completions are obtained by applying the propaga-

tion rules below. We apply the rules according to the

following strategy:

� we do not apply a rule to a variable x if we can

apply a rule to an individual or to a variable for

which y �

W

x,

� we apply rules that generate new variables (i.e.,

rules 4 or 5) only if no other rules are applicable.

Because of rules 4 and 5, the propagation may not termi-

nate. Therefore, these rules use the notion of a blocked

variable to guarantee termination. We will elaborate on

this notion shortly.

1. S !

u

fs : C

1

; s : C

2

g [S

if 1. s : C

1

uC

2

is in S,

2. s : C

1

and s : C

2

are not both in S.

2. S !

t

fs : Dg [S

if 1. s : C

1

tC

2

is in S,

2. neither s : C

1

nor s : C

2

are in S,

3. D = C

1

or D = C

2

.

3. S !

8

ft : Cg [S

if 1. s : 8R:C is in S,

2. t is an R-successor of s,

3. t : C is not in S.

4. S !

9

fsP

1

y; : : : ; sP

k

y; y : Cg [S

1. s : 9R:C is in S,

47

2. R = P

1

u : : : u P

k

,

3. y is a new variable,

4. there is no t such that t is an R-successor of

s in S and t : C is in S,

5. if s is not blocked.

5. S !

�

fsP

1

y

i

; : : : ; sP

k

y

i

j i 2 1::ng[

fy

i

6

:

= y

j

j i; j 2 1::n; i 6= jg [S

if 1. s : (� nR) is in S,

2. R = P

1

u : : : u P

k

;

3. y

1

; : : : ; y

n

are new variables,

4. there do not exist n pairwise separated

R-successors of s in S,

5. if s is not blocked.

6. S !

�

S[y=t]

if 1. s : (� nR) is in S,

2. s has more than n R-successors in S,

3. y; t are two R-successors of s which are not

separated

7. S !

8x

fs : Cg [S

if 1. 8x:x : C is in S,

2. s appears in S,

3. s : C is not in S.

A constraint system is said to be a completion when

no propagation rule applies to it. It contains a clash,

and is therefore unsatis�able, if it contains

� fs :?g, or

� fs : A; s : :Ag, or

� fs : (� nR)g [fsP

1

t

i

; : : : ; sP

k

t

i

j 1::n+ 1g [ft

i

6

:

=

t

j

j i; j 2 1::n+ 1; i 6= jg where R = P

1

u : : :u P

k

.

Propagation Termination and Canonical

Interpretations

In

[

Buchheit et al.,1993

]

, a variable v was said to be

blocked if there exists another variable w, such that

w �

W

v, and �(S; v) = �(S;w). The variable w was

said to be the witness of v. Given this termination con-

dition, the canonical interpretation I

S

of a completion S

was de�ned as follows. Its domain is the set of objects

in S, and each individual in S is mapped to itself (i.e.,

�

I

S

(s) = s). The extensions of concepts and roles are

de�ned as follows:

� s 2 C

I

S

if and only if s : C 2 S.

� (s; t) 2 R

I

S

if and only if

1. sRt 2 S, or

2. s is blocked, w is its witness, and wRt is in S.

Unfortunately, this termination condition will not suf-

�ce in our context. Consider the terminology consist-

ing of the single inclusion C v 9R:C, and � = C(a).

Beginning with the constraint a : C, the propagation

rules would generate the constraints a : 9R:C, aRv

1

,

v

1

: C. The same would be repeated for v

1

, i.e., the

constraints v

1

: 9R:C, v

1

Rv

2

, v

2

: C would be gener-

ated. The variable v

2

is blocked (because of the wit-

ness v

1

), and therefore the propagation would termi-

nate. In the canonical interpretation of the comple-

tion, the extension of C would be fa; v

1

; v

2

g, and of R

would be f(a; v

1

), (v

1

; v

2

), (v

2

; v

2

)g. As a consequence,

the canonical interpretation would satisfy the sentence

9X

1

; X

2

R(X

1

; X

2

) ^ R(X

2

; X

2

) which is clearly not en-

tailed by the completion.

Intuitively, the problem is that in the process of cre-

ating the canonical interpretations, we are forced to as-

sign successors to the blocked variables (in our example

(v

2

; v

2

) 2 R

I

S

). Introducing these successors may cause

the canonical interpretation to contain connectivity pat-

terns among variables that do not exist in every model

of the completion. We now describe our revised ter-

mination condition that guarantees that such spurious

patterns are not introduced. Our condition will re�ne

the previous one by considering the � values not only of

a variable, but also of its neighbors.

The n-tree of a variable v is the tree that includes

the variable v and its successors, whose distance from

v is at most n direct-successor arcs. We denote the set

of variables in the n-tree of v by V

n

(v). Two variables

v; w 2 S are said to be n-tree equivalent in S if there

is an isomorphism : V

n

(v) ! V

n

(w), that conserves

the direct-successor relation, and such that for every s 2

V

n

(v), �(S; (s)) = �(S; s). Intuitively, two variables

are n-tree equivalent if the trees of depth n of which

they are roots are isomorphic. We denote by D

Q

the

number of literals in Q. A variable v will now be said to

be blocked if the following holds:

1. v is the leaf of a D

Q

-tree rooted in a variable v

1

,

2. there exists a predecessor v

2

of v

1

such that v

1

and

v

2

are D

Q

-tree equivalent, and v

1

is not a node in

the D

Q

-tree of v

2

.

In constructing canonical interpretations of our com-

pletions, the witness of the variable v is now (v), where

 is the isomorphism between the n-trees of v

1

and v

2

.

To ensure that we can correctly detect blocked variables,

we apply the propagation rules in a breadth �rst fashion.

That is, we only apply a rule to a variable whose distance

from an individual in S is n direct-successor arcs, if no

rule is applicable to a variable with distance less than n.

The following theorem establishes the main property

of our termination condition:

Theorem 3.1: Let S be a completion of S

�

, and let I

S

be its canonical interpretation. If I

S

j= Q, then S j= Q.

Proof sketch: The proof of the theorem is based on

showing that if � is a mapping from the variables of Q

to the domain of I

S

, that shows that Q is satis�ed in I

S

,

then there exists a mapping �

0

, that shows that Q is sat-

is�ed, such that �

0

does not use any arc emanating from

a blocked variable in I

S

. Since �

0

uses only constraints

that are explicit in S, these constraints will be satis�ed

in every model of S. 2

In our example, the propagation rules would also gen-

erate the variables v

3

; : : : ; v

6

similar to v

1

and v

2

. The

variable v

6

would be deemed blocked, because it is the

leaf of a 2-tree rooted in v

4

, and the 2-trees rooted in v

1

and v

4

are isomorphic. The witness of v

6

would be v

3

,

and therefore, the canonical interpretation of the com-

pletion would have (v

6

; v

4

) in R

I

S

. Now, the sentence

48

9X

1

; X

2

R(X

1

; X

2

) ^ R(X

2

; X

2

) is not satis�ed in the

canonical interpretation.

The following theorem establishes the correctness of

our algorithm.

Theorem 3.2:

� Applying the propagation rules to S

�

will terminate.

� The entailment T [� j= Q holds if and only if Q

is satis�ed in the canonical interpretation of every

clash-free completion of S

�

.

Proof sketch: The �rst part follows from the fact that

there are only a �nite number of possible n-trees. For

the second part, the only if direction follows from show-

ing that the canonical interpretation of a completion of

S

�

is a model of T [�. The if direction follows from

Theorem 3.1 and showing that every model of T [� is

a model of some clash-free completion of S

�

. 2

Following the analysis of

[

Buchheit et al.,1993

]

, it can

be shown that the number of completions is at most

doubly exponential in the size of T ,� and Q. Therefore,

since checking satis�ability of Q in each completion can

be done in exponential time, the time complexity of our

algorithm is doubly exponential. It should be noted that

the complement of our problem (i.e., non-entailment) is

a generalization of the satis�ability problem considered

in

[

Buchheit et al.,1993

]

, and which was given a non-

deterministic exponential time algorithm there.

3.2 Reasoning Based on Rule Rewriting

In the full version of the paper we propose a novel ap-

proach to the problem of reasoning in a hybrid language

such as carin that is aimed to exploit existing algo-

rithms for optimizing reasoning on Horn rules. Our ap-

proach is to �nd a new set of enhanced rules R

e

such

that applying a conventional Horn-rule inference engines

to R

e

will yield a complete inference procedure.

Formally, given a terminology T and a set of rules R

4

,

our goal is to �nd a set of rules R

e

, that will satisfy the

following two conditions:

� Soundness: R [T j= R

e

,

� Completeness: for any set of ground facts A, if p is

a not a concept or a role, and �a is a tuple of objects,

then

R[T [A j= p(�a) =) R

e

[A j= p(�a):

Intuitively, the set of enhanced rules precompiles the

inferences sanctioned by the terminology. The assump-

tion is that the precompilation is done o� line, and there-

fore, it can be a more expensive operation. In our exam-

ple, we would add the following rules to R

1

:

r

3

: made-by(X,Y)^am-ass-company(Y)^

monopoly(Y,X,usa)) price(X,usa,high)

r

4

: made-by(x,y)^monopoly(y,x,usa)^

foreign-associate-company(b)) price(x,usa,high)

4

Note that we are looking for R

e

which are independent

of the ground facts in the KB.

In the full version we de�ne the terminology bound-

edness condition

5

, and show that if a description logic

satis�es it then the existential entailment algorithm can

be used to prove the existence of a �nite set of enhanced

rules. We also show that the language consisting of

u; 8 R:C and (� nR); (� nR) (but no terminological

cycles) satis�es this condition.

4 Discussion

We presented carin, a family of languages that cleanly

integrate two formalisms,Horn rules and description log-

ics, both of which have been useful in practical applica-

tions. We addressed the key issue of designing sound

and complete inference procedures for carin knowl-

edge bases. Our main result is an existential entail-

ment algorithm for ALCNR terminologies, which en-

tails a sound and complete inference procedure for non-

recursive carin knowledge bases, using ALCNR as the

terminological component. A corollary of our work is

the algorithm for subsumption of arbitrary conjunctive

queries over ALCNR and its subsets, which is important

for designing query languages for description logics, and

for optimizing rule bases.

Several works considered the integration of Horn rules

and description logics. Some works (e.g., (AL-log

[

Donini et al.,1991

]

, TaxLog

[

Abecker and Wache,1994

]

)

had the goal of using a description logic as a rich typing

language on the variables already appearing in the rules

(which could also be recursive). In those works, only

unary predicates from the description logics are allowed

in the rules. Other works (e.g.,

[

Brachman et al.,1985;

Hanschke and Hinkelman,1992

]

) considered a more tight

integration of the two formalisms, which is more in the

spirit of carin. In particular, role predicates were al-

lowed in the rules. For example, KRYPTON

[

Brachman

et al.,1985

]

combined a rule language (more expressive

than Horn rules) with a much less expressive description

logic than ALCNR. In these works, the reasoning en-

gine was modi�ed by either adding resolution steps to

consider the inferences sanctioned by the terminological

component, or by modifying the uni�cation operation

underlying the resolution engine. These approaches are

either incomplete or guarantee only refutation complete-

ness, relying on a full �rst-order logic theorem prover.

A di�erent approach to integrating rules and descrip-

tion logics is to add rules as an additional constructor in

description logics (e.g., (classic

[

Brachman et al.,1991

]

,

back

[

Petalson,1991

]

, loom

[

MacGregor,1988

]

). These

works allowed only rules of a restricted form: C(x))

D(x), where C and D are concepts. Furthermore, the

rules are generally not integrated in subsumption infer-

ences but they are just used to derive additional knowl-

edge about concept instances. The work of Forster and

Novotny

[

Forster and Novotny,1994

]

is in the same spirit.

5

This condition guarantees that the entailment of a fact

p(a) depends on a number of objects in the KB that is

bounded by a constant which depends only on the termi-

nology T .

49

Though full Horn rules were considered, the inferences

drawn from the terminological part had priority over

inferences drawn from the rule component. MacGre-

gor

[

MacGregor,1994

]

and Yen

[

Yen,1990

]

describe al-

gorithms for determining rule-speci�city and classi�ca-

tion of arbitrary predicates in LOOM, which are an in-

stance of the existential entailment problem described

here. However, since subsumption in LOOM is undecid-

able, their algorithms are not complete either.

Our work is the �rst step in studying the inference

problem for carin knowledge bases. We are exploring

several directions of research. First, we are interested

in �nding more e�cient inference algorithms for carin

knowledge bases that contain terminologies in languages

more restricted than ALCNR. Second, we are extending

our methods to deal with recursive rules. An important

direction we are pursuing is �nding additional languages

for which a set of enhanced rules can be computed. In

particular, we are considering conditions that are less

restrictive than the terminology boundedness condition

but still guarantee the existence of enhanced rules.

References

[

Abecker and Wache, 1994

]

Andreas Abecker and Hol-

ger Wache. A layer architecture for the integration of

rules, inheritance, and constraints. In Proceedings of

ICLP 94 post conference workshop on the Integration

of Declarative Paradigms, 1994.

[

Brachman et al., 1985

]

Ronald J. Brachman, Victo-

ria P. Gilbert, and Hector J. Levesque. An essential

hybrid reasoning system: Knowledge and symbol level

accounts of krypton. In Proceedings IJCAI-85.

[

Brachman et al., 1991

]

R. J. Brachman, A. Borgida,

D. L. McGuinness, P. F. Patel-Schneider, and L. A.

Resnick. Living with classic: When and how to use

a kl-one-like language. In John Sowa, editor, Prin-

ciples of Semantic Networks.

[

Brodsky et al., 1993

]

Alexander Brodsky, Joxan Ja�ar,

and Michael J. Maher. Toward practical constraint

databases. In Proceedings of VLDB-93.

[

Buchheit et al., 1993

]

Martin Buchheit, Francesco M.

Donini, and Andrea Schaerf. Decidable reasoning

in terminological knowledge representation systems.

Journal of Arti�cial Intelligence Research, 1993.

[

B�urckert, 1994

]

Hans-J�urgen B�urckert. A resolution

principle for constrained logics. Arti�cial Intelligence,

66:235{271, 1994.

[

Donini et al., 1991

]

Francesco Donini, M. Lenzerini,

D. Nardi, and A. Schaerf. A hybrid system integrat-

ing datalog and concept languages. In Working notes

of the AAAI Fall Symposium on Principles of Hybrid

Reasoning, 1991.

[

Fikes et al., 1991

]

Richard Fikes, Thomas Gruber,

Yumi Iwasaki, Alon Levy, and Pandurang Nayak. How

things work project overview. Knowledge Systems

Laboratory, Stanford University, technical report No.

KSL 91-70, 1991.

[

Forster and Novotny, 1994

]

Peter Forster and Bernd

Novotny. Integration of rule inferences into a ter-

minological component. In Proceedings of the Eighth

International Symposium on Methodologies for Intelli-

gent Systems, pages 31{42, Charlotte, North Carolina,

USA, October 1994. Oak Ridge National Laboratory.

[

Hanschke and Hinkelman, 1992

]

Philipp Hanschke and

Knut Hinkelman. Combining terminological and rule-

based reasoning for abstraction processes. DFKI Re-

search Report, 1992.

[

Kanellakis et al., 1990

]

P.C. Kanellakis, G.M. Kuper,

and P.Z. Revesz. Constraint query languages. In

Proceedings of the 9th ACM Symp. on Principles of

Database Systems, pages 299{313, 1990.

[

Kanellakis, 1995

]

P.C. Kanellakis. Tutorial: Constraint

programming and query languages. In Proceedings of

PODS-95.

[

Knoblock and Levy, 1995

]

Craig A. Knoblock and

Alon Y. Levy, editors. Working Notes of the AAAI

Spring Symposium on Information Gathering from

Heterogeneous Distributed Environments. American

Association for Arti�cial Intelligence., 1995.

[

Levy and Sagiv, 1995

]

Alon Y. Levy and Yehoshua Sa-

giv. Semantic query optimization in datalog programs.

In Proceedings PODS-95.

[

Levy et al., 1994

]

Alon Y. Levy, Inderpal Singh Mu-

mick, and Yehoshua Sagiv. Query optimization by

predicate move-around. In Proceedings of VLDB-94.

[

Levy et al., 1995a

]

Alon Y. Levy, Alberto O. Mendel-

zon, Yehoshua Sagiv, and Divesh Srivastava. Answer-

ing queries using views, 1995. In Proceedings PODS-

95.

[

Levy et al., 1995b

]

Alon Y. Levy, Divesh Srivastava,

and Thomas Kirk. Data model and query evaluation

in global information systems. Journal of Intelligent

Information Systems, Special Issue on Networked In-

formation Discovery and Retrieval., 5 (2), September

1995.

[

MacGregor, 1988

]

R. M. MacGregor. A deductive pat-

tern matcher. In Proceedings of AAAI-88.

[

MacGregor, 1994

]

Robert M. MacGregor. A descrip-

tion classi�er for the predicate calculus. In Proceedings

of AAAI-94.

[

Petalson, 1991

]

C. Petalson. The BACK system : an

overview. In Proceedings of the SIGART bulletin, vol-

ume 2(3), pages 114{119, 1991.

[

Rousset, 1994

]

Marie-Christine Rousset. Knowledge

Formal Speci�cations for Formal Veri�cation: a Pro-

posal based on the Integration of Di�erent Logical For-

malisms. In Proceedings of ECAI-94.

50

[

Sagiv, 1988

]

Yehoshua Sagiv. Optimizing datalog pro-

grams. In Jack Minker, editor, Foundations of De-

ductive Databases and Logic Programming, pages 659{

698. Morgan Kaufmann, Los Altos, CA, 1988.

[

Yen, 1990

]

John Yen. A principled approach to reason-

ing about the speci�city of rules. In Proceedings of

AAAI-90.

51

Objects, Classes, Specialization and Subsumption

Amedeo Napoli

CRIN CNRS{INRIA Lorraine

B.P. 239, 54506 Vand�uvre-l�es-Nancy Cedex, France

(Email: napoli@loria.fr)

Position paper for the 1995 International Workshop on Description Logics,

Roma, June 1995.

1 Introduction

In this position paper, we are mainly concerned with a

family of object-based representation systems, in which

knowledge is organized in hierarchies of generic and spe-

ci�c objects representing real-world concepts and indi-

viduals. The characteristics of these systems rely on

the integration of characteristics associated with object-

oriented systems

[

Masini et al.,1991

]

and description

logics

[

Nebel,1990

]

, including specialization, inheritance,

subsumption and classi�cation. We formally de�ne a re-

lation, named object-based subsumption, that is used to

organize generic and speci�c objects, according to their

de�nitions. We then study the interrelations existing

between object-based subsumption and specialization.

In the last part of the position paper, we introduce a

discussion about teaching knowledge representation, tak-

ing as a basis object-based representation systems and

description logics. Lastly, we end this position paper

with a recapitulation of our past work in the �eld of

description logics.

2 Hierarchical Organizations of

Knowledge

2.1 Object-Based Representation Systems

and Description Logics

In object-based representation systems, real-world knowl-

edge is represented by generic and speci�c objects. A

generic object, or class, has an identity and is composed

of a set of properties describing the behavioral and static

characteristics of a real-world concept. Thus, a class

has a state and a behavior, and it can be used to gen-

erate a set of instances, often called objects, describing

real-world individuals (instances of real-world concepts).

Classes are organized in a hierarchyH = (C, �, !), where

C is a set of classes, � is a partial ordering and ! is the

root of the hierarchy H, i.e. a special class that is sup-

posed to be the greatest element of C for �. Moreover,

the hierarchical organization of classes involves knowl-

edge or property sharing , supported by the transitivity

of � and depending on the semantics of �. Knowledge

sharing can be monotonic or nonmonotonic. It is usu-

ally used to exhibit implicit knowledge for information

retrieval purposes and for default reasoning, i.e. to infer

the existence and the values of properties.

In object-based representation systems, the partial

ordering � usually is the specialization relation, de-

noted by �

Inh

. The specialization relation is used top-

down: new classes depend on existing (and more gen-

eral) classes, i.e. new properties are added and/or the

values of shared or inherited properties may be overrid-

den in new classes

[

Ducournau and Habib,1991

]

. More

precisely, if B �

Inh

A, then P

A

� P

B

, where P

A

denotes

the set of properties attached to the class A. Inheritance

is the mechanism managing property sharing and sup-

porting default reasoning: given a class C and a property

p, inheritance is used to �nd in H the value of p for C.

A hierarchy H = (C, �

Inh

, !) with an associated inher-

itance mechanism is called an inheritance hierarchy .

In description logics, concepts, roles and individuals

represent real-world concepts, their properties and their

instances. The subsumption relation is used to organize

concepts and roles in hierarchies: a concept C subsumes a

concept D if and only if C is necessarily more general than

D, i.e. the set of individuals denoted by D, or extension

of D, is necessarily included in the extension of C.

Below we give a list of the main di�erences existing be-

tween description logics and object-based representation

systems:

� In description logics, the de�nition of a new concept

is a monotonic operation, while the specialization of

a class can be nonmonotonic because of overridding.

Moreover, if concepts have a natural set-based inter-

pretation, this is useless to associate the same kind

of set-based semantics to classes. Only trivial infer-

ences can be drawn according to such a semantics:

i is in the extension of the class C if and only if i

has been de�ned as an instance of C.

� Roles can be viewed as necessary and su�cient con-

ditions for de�ned concepts {this is the basis of

classi�cation{ while class properties are only neces-

sary conditions, such as this is the case for primitive

concepts.

� In description logics, the classi�cation process has

an inductive character: the hierarchy is built up

from concepts and individuals, and inferences are a

52

consequence of the classi�er work. In object-based

systems, specialization is used top-down and the

emphasis is put on the fact that a class B inherits

the properties of a more general class A. Inheritance

is a deductive mechanism and it guides the special-

ization process.

Specialization and subsumption are both used to or-

ganize knowledge in hierarchies and to derive properties

and values from already de�ned properties. While in-

heritance is mainly a mechanism for knowledge sharing,

subsumption is used to derive complex inferences that

do not only rely on the transitivity of the relation. How-

ever, subsumption does not support the nonmonotonic

character of default reasoning.

Related works are the following: a comparison of

class-based formalisms

[

Calvanese et al.,1994

]

, a combi-

nation of classi�cation and default reasoning

[

Padgham

and Nebel,1993

]

, a study on the similarities and di�er-

ences between concept de�nitions and types in program-

ming language

[

Borgida,1992

]

, and an adaptation of de-

scription logics techniques to conceptual schema design

[

Bergamaschi and Sartori,1992

]

. In the next section, we

give a formal basis for combining specialization and sub-

sumption in the context of object-based representation

systems.

2.2 The Object-Based Subsumption

In this section, we �rst divide class properties into de�ni-

tional and functional properties, and then we introduce

the object-based subsumption relation, i.e. subsumption

for de�nitional properties.

A class C can be considered as a pair (N

C

, P

C

), where

N

C

denotes the name of the class and P

C

denotes the set

of properties associated with C. Usually, P

C

= (S

C

, A

C

,

M

C

), where S

C

is a set of system properties used for

system manipulation and recording information about

C, A

C

is a set of attributes and M

C

is a set of methods,

i.e. pieces of code that can be activated by means of

message sending to compute or to update values

[

Masini

et al.,1991

]

. Moreover, two di�erent properties in a class

have two di�erent names.

In the following, A

C

denotes the so-called de�nitional

properties or de�nitional attributes of the class C, and

we will only be interested in this set of properties.

De�nition 1 (De�nitional Properties)

A de�nitional attribute a in a class C, denoted by

a(C), de�nes a part of the state of C, Data can be as-

sociated with an attribute a: a value value(a(C)) and

speci�cations about that value. The speci�cations can be

a type declaration range(a(C)), type restrictions such as

a list of instances enumeration(a(C)) or a numerical

interval interval(a(C)), and a cardinality restriction

cardinality(a(C)).

We will suppose that our object-based context is com-

posed of a set of classes organized in an inheritance hier-

archy H = (C, �

Inh

, !), and of the set of the extensions

of these classes. The O-subsumption relation is de�ned

as follows:

De�nition 2 (Object-Based Subsumption)

A class C O-subsumes a class D, denoted by D �

Obj

C,

if and only if 8 a 2 A

C

, 9 a 2 A

D

: a(D) �

Att

a(C).

a(D) �

Att

a(C), if and only if the following state-

ments hold:

range(a(D)) �

Inh

range(a(C)): the type of a can be

a primitive type, e.g. Number or String, or a class in

H.

enumeration(a(D)) = fo

1

, .., o

m

g �

enumeration(a(C)) = fo

1

, .., o

n

g.

interval(a(D)) = [min(a(D)), max(a(D))] �

interval(a(C)) = [min(a(C)), max(a(C))], where

min and max are numbers.

cardinality(a(D)) = [cmin(a(D)), cmax(a(D))]

� cardinality(a(C)) = [cmin(a(C)), cmax(a(C))],

where cmin and cmax are integers.

value(a(D)) = value(a(C)) if value(a(C)) is an

atomic value, and value(a(C)) � value(a(D)) if

value(a(C)) is a list of atomic values.

The O-subsumption relation is based on inclusion of

sets of de�nitional attributes. As this is the case for

de�ned concepts in description logics, a set of de�nitional

attributes can be considered as a set of necessary and

su�cient conditions for a class D to be subsumed by a

class C.

Given a class C and the set A

C

of the de�nitional at-

tributes of C, it is possible to associate with C a set AP

C

of

attribute pairs fa

i

, a

j

g

i;j=1;::;n;ineqj

, where n is the car-

dinality of A

C

. Attributes in A

C

being non comparable

for�

Att

, the set AP

C

is an antichain

1

of the partial order-

ing �

Att

. Then, �

Obj

can be considered as a suborder of

the distributive lattice of antichains associated with �

Att

and denoted by 2

�

Att

[

Aigner,1979

]

. Therefore, �

Obj

is

a partial ordering that can be used to organize classes in

a hierarchy. Furthermore, meet (^) and join (_) oper-

ations can be de�ned on the de�nitional parts of classes

(and can be used for classi�cation if needed).

2.3 O-Subsumption and Specialization

The links between O-subsumption and specialization are

described in the two following propositions.

Proposition 1 (Monotonic Specialization ! O-

Subsumption)

If specialization �

Inh

is a monotonic operation in the

inheritance hierarchy H = (C, �

Inh

, !), i.e. only def-

initional attributes are considered and values cannot be

overridden, then �

Inh

is a O-subsumption relation on

the set A of de�nitional attributes associated with classes

in C.

Proposition 2 (O-Subsumption ! Inheritance

Hierarchy)

Given a set of classes C and the set A of de�nitional

attributes associated with classes in C, a O-subsumption

relation gives rise to an inheritance hierarchy: if D �

Inh

C, then A

C

� A

D

and D shares with C the value of every

de�nitional attribute in A

C

.

1

A subset of a partially ordered set is called an antichain

if every two elements of the subset are incomparable.

53

The two above propositions can be summarized as

follows: O-subsumption and monotonic specialization

have the same behavior on de�nitional attributes. How-

ever, if nonmonotonic specialization is allowed or func-

tional properties are considered, then these two behav-

iors are no more equivalent. New de�nitions of �

Att

and

�

Obj

taking into account nonmonotonic specialization

and functional properties must be given.

3 Concluding Remarks

3.1 Teaching Knowledge Representation

Description logics have become logical systems of main

interest and they are taking more and more importance

in the �eld of knowledge representation. Thus, they have

their place in a course on knowledge representation. Ex-

amples on the de�nitions, the capabilities and the use

of description logics can be found in

[

Nebel,1990

]

and

[

Brachman et al.,1991

]

for example. However, no e�ort

has been made until now to collect a set of introduc-

tory and more sophisticated examples that could be used

as a basis for lectures on description logics and objet-

based representation systems as well. Many subjects can

be covered, e.g. subsumption algorithms, classi�cation-

based reasoning, incompleteness results, strengths and

limitations of descriptions logics, etc. Then, it could be

interesting to discuss the possibility of sharing examples

and terminological knowledge bases during the 1995 In-

ternational Workshop on Description Logics, relying on

the fact that most of the researchers working on descrip-

tion logics will attend the workshop.

3.2 Past Works in the Field of Description

Logics

The past works of the author in the �eld of descrip-

tion logics are theoretical and practical works on the

use of classi�cation-based reasoning techniques (as de-

�ned in description logics) in the context of object-

oriented systems. The practical aspects of these works

are mainly concerned with the design of knowledge-based

systems for organic synthesis planning

[

Napoli,1991

]

[

Napoli,1992b

]

. The theoretical aspects are mainly con-

cerned with the duality programming { representation in

object-based contexts. The author has organized a work-

shop held at the ijcaiConference in Chamb�ery (1993) on

this topic

[

OBRS,1993

] [

Dekker and Napoli,1994

]

. The

integration of reasoning and representation techniques

in object-oriented contexts has been (brie
y) examined

in

[

Napoli,1994

]

, and the integration of structural part-

whole relations and procedural knowledge in description

logics is (brie
y) discussed in

[

Napoli,1992a

]

.

References

[

Aigner, 1979

]

M. Aigner. Combinatorial Theory. A Se-

ries of Comprehensive Studies in Mathematics 234.

Springer-Verlag, Berlin, 1979.

[

Bergamaschi and Sartori, 1992

]

S. Bergamaschi and

C. Sartori. On Taxonomic Reasoning in Concep-

tual Design. Acm Transactions on Database Systems,

17(3):385{422, 1992.

[

Borgida, 1992

]

A. Borgida. From Type Systems to

Knowledge Representation: Natural Semantics Speci-

�cations for Description Logics. International Journal

of Intelligent and Cooperative Information Systems,

1(1):93{126, 1992.

[

Brachman et al., 1991

]

R.J. Brachman, D.L. McGuin-

ness, P.F. Patel-Schneider, L.A. Resnick, and

A. Borgida. Living with CLASSIC: When and How to

Use a KL-ONE Language. In J. Sowa, editor, Princi-

ples of Semantic Networks: Explorations in the Repre-

sentation of Knowledge, pages 401{456.Morgan Kauf-

mann Publishers, Inc., San Mateo, California, 1991.

[

Calvanese et al., 1994

]

D. Calvanese, M. Lenzerini, and

D. Nardi. A Uni�ed Framework for Class-Based Rep-

resentation Formalisms. In Proceedings of the Fourth

International Conference on Principles of Knowledge

Representation and Reasoning (KR'94), Bonn, Ger-

many, pages 109{120, 1994.

[

Dekker and Napoli, 1994

]

L. Dekker and A. Napoli. Re-

port on the IJCAI-93 Workshop on \Object-Based

Representation Systems". SIGART Bulletin, 5(1):57{

59, 1994.

[

Ducournau and Habib, 1991

]

R. Ducournau and M. Habib. Masking and Con-

icts, or To Inherit is Not To Own! In M. Lenzerini,

D. Nardi, and M. Simi, editors, Inheritance Hierar-

chies in Knowledge Representation and Programming

Languages, pages 223{244. John Wiley & Sons Ltd,

Chichester, West Sussex, 1991.

[

Masini et al., 1991

]

G. Masini, A. Napoli, D. Colnet,

D. L�eonard, and K. Tombre. Object-Oriented Lan-

guages. Academic Press, London, 1991.

[

Napoli, 1991

]

A. Napoli. Subsumption

and Classi�cation-Based Reasoning in Object-Based

Representations. In C. Peltason, K. von Luck, and

C. Kindermann, editors, Terminological Logic Users

Workshop { Proceedings { KIT-REPORT 95, pages

124{133. Department of Computer Science, Technis-

che Universitaet Berlin, 1991.

[

Napoli, 1992a

]

A. Napoli. Representation of Partial Or-

der Relations and Procedures in Object-Based Repre-

sentation Systems. In AAAI Fall Symposium Series {

Issues in Description Logics: Users Meets Developers,

Cambridge, Massachusetts, pages 61{63, 1992.

[

Napoli, 1992b

]

A. Napoli.

Subsumption and Classi�cation-Based Reasoning in

Object-Based Representations. In Proceedings of the

10th ECAI, Vienna, pages 425{429, 1992.

[

Napoli, 1994

]

A. Napoli. Studies about the Integra-

tion of Classi�cation-Based Reasoning and Object-

Oriented Programming. In F. Baader, M. Lenzerini,

W. Nutt, and P.F. Patel-Schneider, editors, Working

Notes of the 1994 Description Logics Workshop, pages

60{62. DFKI Saarbruecken, 1994.

54

[

Nebel, 1990

]

B. Nebel. Reasoning and Revision in Hy-

brid Representation Systems. Lecture Notes in Com-

puter Science 422. Springer-Verlag, Berlin, 1990.

[

OBRS, 1993

]

Proceedings of the IJCAI Workshop on

Object-Based Representation Systems. Edited by A.

Napoli, Rapport de Recherche CRIN 93-R-156, Nancy,

France, 1993.

[

Padgham and Nebel, 1993

]

L. Padgham and B. Nebel.

Combining Classi�cation and Nonmonotonic Inheri-

tance Reasoning: A First Step. In J. Komorowski and

Z.W. Ra�s, editors, Methodologies for Intelligent Sys-

tems, Lecture Notes in Computer Science 689, pages

132{141. Springer-Verlag, Berlin, 1993.

55

Combining Description Logic Systems with Information Management

Systems

Lin Padgham

Department of Computer Science

RMIT

Melbourne 3001, Victoria, Australia

email: linpa@cs.rmit.edu.au

1 Introduction

Description logic systems are powerful tools for repre-

senting knowledge and making logical inferences. They

are extremely valuable as a part of many applications.

However there are many applications where the services

of a D.L. system would be very valuable, but are not

in themselves su�cient. An accepted view of D.L. sys-

tems is that they provide a particular functionality to

an application, but that they will be used in a larger

context. Despite this view there is little if any literature

on how to interface a D.L. system to another system

dealing with the same application information, and the

attendant problems of communication between the sys-

tems, consistency maintenance, etc.

We have done some preliminary work [KAL94,PLK95]

in interfacing CLASSIC to an object centred informa-

tion/database system, LINCKS [PL94,Pad88] which we

have been working on. Our belief is that such a com-

bination would provide valuable increased functionality

to many potential applications of both systems. We ex-

pect that there are also applications which could not be

served by either system alone, but where the combina-

tion of these two systems would provide an adequate

base.

In the following sections we describe the approach we

have taken to coupling the two systems, some advan-

tages of this coupling and some issues which have arisen.

We assume that readers are familiar with CLASSIC, but

give a short overview of LINCKS in order to provide the

context for the rest of the paper.

2 LINCKS

LINCKS is an object centred multi-user database sys-

tem developed for complex information system applica-

tions where editing and browsing of information in the

database is of paramount importance. The focus is on

sharing of small information chunks which combine to

make up complex information objects used by di�erent

users for di�erent purposes. The information chunks are

semi-structured containing a part which is well struc-

tured to facilitate addition of A.I. processing within the

system, and a part which is unstructured and suitable

for management by the user.

The system contains information regarding the history

of objects and actions within the system. Past versions

of objects can be accessed and reactivated.

LINCKS allows a system user or application developer

to interactively de�ne varying views on the underlying

database objects. This is particularly useful in appli-

cations where the same information is to be used for

di�erent purposes or by people in di�ering roles, thus

requiring a di�erent composition and display.

Although all objects are built up of small pieces, the

user interface presents an integrated and holistic view of

complex objects, allowing editing over the entire object

using an emacs like editor.

The LINCKS system is developed at the University of

Link�oping and is available on the Internet with a Gnu

license. It has currently been ftp'd by over 1400 sites.

Further information on LINCKS is available on the world

wide web (http://www.ida.liu.se/labs/iislab/).

3 Architectural Overview

The combined system is under the primary control of

LINCKS, where CLASSIC services are available via a

menu. Only a subset of CLASSIC is actually avail-

able from LINCKS in our initial prototype. LINCKS

communicates with CLASSIC by sending lisp commands

through an asynchronous Unix pipe, and recieving back

lists of commands that should be executed by LINCKS in

order to update the database with the knowledge which

has been derived by CLASSIC.

Hooks within CLASSIC are used to collect informa-

tion regarding updates to the CLASSIC knowledge base,

which are then propagated to the LINCKS information

base. It is not currently possible to make changes di-

rectly in the LINCKS knowledge base, and propagate

these to CLASSIC. Changes of information which is rel-

evant to CLASSIC can be made only by editing the lisp

expression which de�nes the information for CLASSIC

(and thus also for LINCKS). However it would be desir-

able to add this capability.

4 Advantages of Combination

There are a number of obvious advantages in combining a

description logic system with a more general information

56

commands to be parsed, interpreted and
executed by LINCKS.

lisp expressions

using CLASSIC hooks
information obtained

CLASSIC
LINCKS

Figure 1: Architecture of LINCKS-CLASSIC coupling

management system. These include:

� Ability to apply classi�cation to only a select por-

tion of an object, leaving other attributes outside of

the classi�cation process.

� Ability to apply classi�cation and associated infer-

ence only to certain individuals in the database.

� Control over when inferencing should occur, thus

avoiding the necessity for constant D.L. processing.

It becomes possible to run the D.L. as a background

process on demand.

� Increased functionality based on the associated sys-

tem. In our case this (potentially) includes:

{ access to previous versions of individuals and

types

{ multiple views of objects, using di�ering levels

of granularity

{ advanced editing support for composite objects

{ hypertext style interface allowing easy access

to related objects, and browsing of the concept

hierarchy

{ template style information regarding possi-

ble/necessary roles for an individual

5 Issues in the Combined System

In the prototype which we have currently developed, not

all of the above advantages are actually realised. The

editing capabilities of LINCKS are not able to be used as

there are no methods implemented for recognising when

editing of individuals is relevant to CLASSIC, and en-

suring that the changes are propagated to the CLASSIC

knowledge base.

A lack of exact match between the expressivity in

CLASSIC, and the language which LINCKS uses for

de�ning types (or views), results in an inability to ex-

actly match corresponding de�nitions. For example

CLASSIC has the ability to state that the number of

role �llers is in a given range, whereas LINCKS can only

state a �xed number or an in�nite number. LINCKS

has the ability to place an ordering on role �llers which

is not available in CLASSIC.

There are a number of di�culties involved in ensur-

ing consistency between the information in the two sys-

tems. A lack of ability to protect objects from editing in

LINCKS means that constraints in CLASSIC (e.g. that

concept de�nitions cannot be modi�ed) cannot easily be

propagated to LINCKS.

6 Conclusions

There are a number of gains available in coupling a D.L.

system to a more general information management sys-

tem in order to develop applications. However there is

a considerable amount of work to be done to make the

system models and expressivity compatible.

The hooks provided by CLASSIC for supplying infor-

mation to external systems were extremely valuable in

communicating to LINCKS the information necessary to

57

modify the LINCKS information in accord with CLAS-

SIC inferences. We will be modifying LINCKS in order

to improve the connection with CLASSIC, and expect

that we will in future be able to report in more detail

on advantages of this approach, and techniques used to

overcome di�culties.

References

Kal94 Kalmelid, S., Combining a Terminological Reasoner

with an Object-Centered Database, Final Under-

graduate Thesis, Department of Computer and In-

formation Science, Link�oping University, 1994.

Pad88 NODE : A Database for Use by Intelligent Sys-

tems, Proceedings of Third International Sym-

posium on Methodologies for Intelligent Systems,

North-Holland, 1988, pp. 190{199.

PLK95 Lin Padgham, Patrick Lambrix and Stefan

Kalmelid, Integrating a Description Logic System

and an Object-Centered Database System, Proceed-

ings of the International Symposium on Knowledge

Retrieval, Use and Storage for E�ciency, KRUSE

'95, August 1995.

PL94 Lin Padgham and Jonas L�owgren, A User Inter-

face Management Approach for Object Oriented

Database Applications, Journal of Systems and

Software, Vol. 27 No. 3, Dec., 1994; pages 183-205

58

A Semantics-Driven Query Optimizer for OODBs

Jean Paul Ballerini

�

, Domenico Beneventano

�

,

Sonia Bergamaschi

�

, Claudio Sartori

�

, Maurizio Vincini

�

1 DLs techniques for OODB query

optimization

Semantic query optimization uses problem-speci�c

knowledge (e.g. integrity constraints) for transforming

a query into an equivalent one (i.e., with the same an-

swer set) that may be answered more e�ciently. The

optimizer is applicable to the class conjunctive queries is

based on two fundamental ingredients. The �rst one is

the ODL description logics proposed as a common for-

malismto express: class descriptions, a relevant set of in-

tegrity constraints rules (IC rules), queries as ODL types.

The second one are DLs (Description Logics) inference

techniques exploited to evaluate the logical implications

expressed by IC rules and thus to produce the semantic

expansion of a given query. The optimizer tentatively

applies all the possible transformations and delays the

choice of bene�cial transformation till the end. Some

preliminar ideas on �ltering activities on the semanti-

cally expanded query are reported. A prototype semantic

query optimizer (ODB-QOptimizer) for object-oriented

database systems (OODBs) is described.

Let us brie
y explain the main ingredients of our ap-

proach for semantic query optimization, �rstly proposed

in

[

4; 3

]

.

� ODL description logics for generalized database

schema

ODL (Object Description Logics) was proposed in

[

5

]

and extends the expressiveness of implemented descrip-

tion logics languages in order to represent the seman-

tics of complex object data models (CODMs), recently

proposed in the areas of deductive databases

[

1

]

and ob-

ject oriented databases

[

6

]

. For instance, a distinction

�

Centro Interdipartimentale di Ricerca in Filoso�a del

Diritto e Informatica Giuridica, Universit�a di Bologna, Via

Galliera 3, I-40121 Bologna, Italy.

�

Dipartimento di Elettronica, Informatica e Sistemistica,

Universit�a di Bologna, Viale Risorgimento 2, I-40136

Bologna, Italy.

�

Dipartimento di Scienze dell'ingegneria, Universit�a di Mod-

ena, Via G. Campi 213/B, I-41100 Modena, Italy.

e mail: f jpballerini, dbeneventano, sbergamaschi,

csartorig@deis.unibo.it

between values and objects with identity and, thus, be-

tween value types and class types (brie
y called classes)

has been introduced (i.e. concepts are partitioned into

the ones representing objects sets and the one represent-

ing values sets); type constructors, such as tuple, set

and sequence often supported by CODMs are directly

expressible. Most importantly, the representation and

management of cyclic classes, i.e., classes which directly

or indirectly make reference to themselves, as CODMs

usually require, are supported.

The extension to ODL introduced in the present

work allows the declarative formulation of a relevant

set of database integrity constraints. Actual database

schemata are, in fact, given in terms of base classes

(i.e. primitive concepts) while further knowledge is ex-

pressed with integrity constraints, which should guaran-

tee data consistency. In general, constraints go beyond

DLs expressivity and are expressed in various fashions,

depending on the database data model: e.g. subsets of

�rst order logic, inclusion dependencies and predicates

on row values, procedural methods in OO environments.

In particular, we extend ODL by: quanti�ed path types

and integrity constraints rules. The former extension

has been introduced to deal easily and powerfully with

nested structures. Paths, which are essentially sequences

of attributes, represent the central ingredient of OODB

query languages to navigate through the aggregation hi-

erarchies of classes and types of a schema. In particu-

lar, we provide quanti�ed paths to navigate through set

types. The allowed quanti�cations are existential and

universal and they can appear more than once in the

same path. By means of path types (a path type is a

type associating a path to an ODL type) we can express

a relevant set of integrity constraints.

Viewing a database schema as a set of ODL inclusion

statements

[

7

]

allows the declarative formulation of an-

other relevant set of integrity constraints, expressing if

then rules whose antecedent and consequent are ODL

virtual types (i.e. de�ned concepts). For example, it is

possible to express correlations between structural prop-

erties of the same class or su�cient conditions for popu-

lating subclasses of a given class. A generalized database

schema can be thus de�ned as a set of inclusion state-

ments between general ODL types. Inclusion statements

59

constitute a generalization of the description logics per-

spective which perfectly �ts the usual database view-

point.

In order to illustrate our approach, let us introduce

the Company domain example which describes part of

the organizational structure of a company (see table 1

for its ODL description).

Classes descriptions are given with a syntax richer

than usual DLs (see type constructors and paths). As an

example, the class Storage of table 1 describes depart-

ments with a category property and stocking materials

all of quantity between 10 - 300. Let us brie
y describe

in words IC rules of table 1:

R

1

says that, having a risk greater equal to 10, is a suf-

�cient condition for a material to be an smaterial. Note

that it is di�erent from giving for smaterial the follow-

ing description: Materialu4[risk: 10�1], as this last

description expresses a necessary condition whereas R

2

expresses a su�cient condition). R

2

, R

3

and R

4

are rules

on storages: R

2

says that, stocking at least an smaterial

is a su�cient condition for a storage to be an sstorage;

R

3

says that, if a storage is managed by a manager with

a level from 6 to 12, it is of category \A2". R

4

constrains

storages of category \A2", stocking at least a material

having a risk greater equal to 15, to be managed by a

tmanager.

Let us give as an example on paths and of the relevance

of multiple quanti�cations to increase expressivity. The

type S = (4:stock:9:item:4 :feature:9: "F1") individ-

uates all the domain objects (objects are denoted by the

4 operator) such that at least one of the stocked mate-

rials has a feature "F1". On the other hand, the type

S

0

= (4:stock:8:item:4:feature:9: "F1") individuates

all the domains objects such that all the stocked mate-

rials has a feature "F1".

� Queries and DLs inference techniques

A relevant set of queries, corresponding to the so

called single-operand queries

[

8

]

, can be expressed as

virtual ODL types. Note that, this assumption is an

important restriction as it excludes operations com-

parable to relational joins. However, it is important

to realize that join is a crucial operation in relational

databases largely because of the limitation of the rela-

tional model of data. In OODB environment we have an

implicit join of the classes on a class-composition hier-

archy rooted at the target class of the query. Subsump-

tion computation, incoherence detection and canonical

form generation can be used to produce the seman-

tic expansion EXP (Q) of a query Q. It is a trans-

formed query which incorporates any possible restriction

which is not present in the original query but is logi-

cally implied by the query and by the overall schema

(classes + IC rules). Following the approach of

[

9;

10

]

for semantic query optimization, we perform the se-

mantic expansion of the types included at each nesting

level in the query description. Type expansion is based

on the iteration of this simple transformation: if a type

implies the antecedent of an IC rule then the consequent

of that rule can be added. Logical implications between

these types (the type to be expanded and the antecedent

of a rule) are evaluated by means of subsumption compu-

tation

[

5

]

. Following this approach, the semantic expan-

sion of a query coincides with the most specialized query

among all the semantically equivalent ones

[

4

]

. Moreover,

during the transformation, we compute and substitute

in the query, at each step, the most specialized gener-

alization classes satisfying the query. Let us give two

simple query optimization examples related to Company

schema.

Q: "Select storages storing at least a material having a

risk � 15"

Q = Storage

u(stock:9:item: Materialu (4:risk: 15�1))

The applicable rules are R

1

; R

2

, leading to the semantic

expansion of Q:

EXP (Q) = SStorage

u(stock:9:item: SMaterialu (4:risk: 15�1))

In this way, we can optimize the query by obtaining the

most specialized generalization of the classes involved in

the query SStorage and SMaterial.

2 Detection of eliminable factors

The above example show an e�ective query optimization,

independent from any speci�c cost model and due to the

substitution of the classes mentioned in the query with

their specializations. In fact, by substituting Storage

with SStorage and Material with SMaterial, we re-

duced the number of classes to be accessed to process

the query as we implicitely eliminate the need to access

the classes Material Storage.

A same general query optimization can be obtained if

we reduce the number of classes on a class-composition

hierarchy rooted at the query. In the literature

[

9;

10

]

this problem is generally addressed as constraint

removal, i.e., removal of implied restrictions from the

query.

Our approach is to detect the eliminable factors of a

query, that is, the factors logically implied by the query,

by exploiting subsumption. Furthermore, as we will

show in the following this activity must be performed

on the semantic expansion of a query to be conducted to

a maximum degree.

As an example, let us consider the query:

Q

1

: "Select storages of category "A2" managed by a

TManager":

Q

1

= Storageu (4:managed-by: TManager)

| {z }

S

1

u (4:category: "A2")

| {z }

S

2

By rule R

3

and by the description of TManager, we have,

with respect to the overall schema, S

2

subsumes S

1

and

thus, S

2

can be eliminated from Q

1

.

60

Classes :

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Manager v 4[name: String; salary: 40�1; level: 5�15]

Department v 4[name: String; managed-by: Manager]

TManager v Manageru4[level: 8�12]

Material v 4[name: String; risk: Int; feature:8fStringg]

SMaterial v Material

Storage v Departmentu4[category: String;

stock:8f[item: Material; qty: 10�300]g]

SStorage v Storage9:

IC rules :

8

>

>

<

>

>

:

R

1

: Materialu (4:risk: 10�1) v SMaterial

R

2

: Storageu (4:stock:9:item: SMaterial) v SStorage

R

3

: Storageu (4:managed-by:4 :level: 6�12) v (4:category: "A2")

R

4

: Storageu (4:category: "A2")

u(4:stock:9:item:4 :risk: 10�1)) v (4:managed-by: TManager)

Table 1: The Company domain schema

If we test the redundancy of a factor against the query,

we exploit only su�cient conditions to eliminate a fac-

tor. We can have necessary and su�cient conditions if

we test the redundancy of a factor against the semantic

expansion of the query. This is shown by the following

example:

Q

2

= Storageu (4:stock:9:item:4 :risk: 10�1)

| {z }

S

3

u (4:managed-by: TManager)

| {z }

S

4

In this case, S

4

does not subsume S

3

, thus, S

4

is not

redundant w.r.t. the query Q

2

. However, if we consider

the semantic expansion of the query Q

2

:

EXP (Q

2

) =
(4:managed-by: TManager)

	

S

4

u SStorageu (4:category: "A2")

u (4:stock:9:item: SMaterial

u (4:risk: 10�1))

)

S

5

S

4

is redundant w.r.t. EXP (Q

2

), as, S

4

subsumes S

5

.

The query Q

2

can thus be reduced to S

5

, avoiding the

access to the class TManager.

3 ODB-QOptimizer : a semantics

driven query optimizer

ODB-QOptimizer is composed of two modules: the

odl-designer prototype

[

2

]

and the ges prototype.

odl-designer was developed in Sicstus Prolog at

CIOC-CNR, Bologna, as part of the logidata

+

project

[

2

]

and implements DLs reasoning techniques for ad-

vanced database management systems handling complex

objects data models. It is an active tool which supports

automatic building of type taxonomies for complex ob-

ject database systems, preserving coherence and min-

imality with respect to inheritance. It implements the

theoretical framework of

[

5

]

. Due to the generality of the

odl formalism, this tool can be used as a kernel compo-

nent for schema acquisition for object-oriented database

system.

ges was developed at the Department of Engineering

Sciences of the University of Modena to produce the se-

mantic expansion of a query Q. It has been developed

in C, to achieve better performance.

The current version of ODB-QOptimizer is a quite

rudimentary quick prototype, including extensions to

odl-designer to support if then rules. Its main limits

include a keyboard-based user interface and a loose cou-

pling between the di�erent programming environments

Prolog and C.

As you can see in �gure 1, having a pre-existing ODL

database schema previously pre-processed (see below) by

odl-designer we can insert a query Q and begin its

expansion by activating ODB-QOptimizer �rst. odl-

designer is activated and applies DLs techniques to the

query Q (virtually added to the ODL schema) giving as

output the detection of the query Q as incoherent or, if

it is coherent, the list of the subsumers types (including

the rules antecedents) of all the types contained at each

nesting level in the query (i.e. the �le ges-in.txt). If

the query is coherent, ODB-QOptimizer activates the

ges component which receives ges-in.txt as input �le;

ges expands the query (EXP

i

(Q)) by adding all the

consequents of the applicable rules as conjunction fac-

tors and sends a message to ODB-QOptimizer about

its execution. Two cases are distinguished: at least one

rule was applied (the semantic expansion is probably not

completed) or no rule was applied (the semantic expan-

sion has been completed). In the former case, ODB-

QOptimizer activates odl-designer again sending to

it the ges ouput �le ges-out.pl which contains the per-

formed expansion EXP

i

(Q) as a new query, say Q

0

. In

the latter case the iteration stops, having obtained the

semantic expansion of the query EXP (Q).

Performance issues are very critical for the optimiza-

tion activity, since every query must be optimized at

run time before its execution. We found two solutions to

this problem (to be implemented in the odl-designer

C version):

� pre-processing of schema, in order to materialize the

transitive closure of the classes and types hierarchies

and to tag each rule with respect to the contents of

its antecedent

� fast access, via indexing, to the only rules which are

relevant to a given query.*

*

61

ODL-DESIGNER

^ �

pre-processed

Stored ODL

Schema

Query Q

User

interface

?

ODB-QOptimizer

F5

GES

(EXP

i

(Q))

6

yes

EXP

i+1

(Q) = EXP

i

(Q)

or

EXP

i

(Q) = ?

no

stop

Figure 1: ODB-QOptimizerFunctional Architecture

References

[

1

]

S. Abiteboul and P. Kanellakis. Object identity as a

query language primitive. In SIGMOD, pages 159{

173. ACM Press, 1989.

[

2

]

J. P. Ballerini, S. Bergamaschi, and C. Sartori. The

ODL-DESIGNER prototype. In P. Atzeni, editor,

LOGIDATA+: Deductive Databases with complex

objects. Springer-Verlag, 1993.

[

3

]

D. Beneventano, S. Bergamaschi and C. Sartori. Us-

ing Subsumption for Semantic query optimization

in OODB. International Workshop on Description

Logics, DFKI Technical Report D-94-10.

[

4

]

D. Beneventano, S. Bergamaschi, S. Lodi, and

C. Sartori. Using subsumption in semantic query

optimization. In A. Napoli, editor, IJCAI Workshop

on Object-Based Representation Systems, Cham-

bery - France, August 1993.

[

5

]

S. Bergamaschi and B. Nebel. Acquisition and

validation of complex object database schemata

supporting multiple inheritance. Applied Intelli-

gence: The International Journal of Arti�cial In-

telligence, Neural Networks and Complex Problem

Solving Technologies, 4,185-203 (1994).

[

6

]

C. L�ecluse and P. Richard. Modeling complex struc-

tures in object-oriented databases. In Proceedings of

the 8th ACM SIGACT-SIGMOD-SIGART Sympo-

sium on Principles of Database-Systems, pages 360{

367, Philadelphia, PA, 1989.

[

7

]

M. Buchheit, F.M. Donini, and A. Schaerf. Decid-

able reasoning in terminological knowledge repre-

sentation systems. 13th. Int. Joint Conf. on Arti�-

cial Intelligence, 1:704{709, 1993.

[

8

]

W. Kim. A model of queries for object-oriented

database systems. In Int. Conf. on Very Large

Databases. Amsterdam, Holland, August 1989.

[

9

]

S. Shenoy and M. Ozsoyoglu. Design and imple-

mentation of a semantic query optimizer. IEEE

Trans. Knowl. and Data Engineering, 1(3):344{361,

September 1989.

[

10

]

M. Siegel, E. Sciore, and S. Salveter. A method for

automatic rule derivation to support semantic query

optimization. ACM Transactions on Database Sys-

tems, 17(4):563{600, December 1992.

62

Metalevel for an e�cient query answering

Berm�udez J. and Illarramendi A. and Blanco J.M. and Go~ni A.

Facultad de Inform�atica, Universidad del Pa��s Vasco.

Apdo. 649, 20.080 San Sebasti�an. SPAIN

e-mail: jipbeanj@si.ehu.es

1 Introduction

The integration of heterogeneous and autonomous in-

formation sources is a requirement for the new type of

cooperative information systems. Heading to this goal

we have built a system which allows the integration of

heterogeneous and autonomous relational databases us-

ing a terminological system (

[

Illarramendi et al.,1991

]

,

[

Blanco et al.,1994b

]

,

[

Blanco et al.,1994a

]

).

The databases integration process begins with a trans-

lation step. A semantically rich terminological repre-

sentation of each relational schema to be integrated is

created. It is followed by a proper integration step.The

integrated schema is generated by �rst, de�ning corre-

spondences among data elements (concepts and roles)

of the terminologies that must be integrated and then,

applying some integration rules. Moreover, after trans-

lation and integration a mapping information that links

data elements of the integrated schema with the under-

lying databases is also generated.

Once an integrated schema has been obtained, it pro-

vides the users with an integrated and global view of the

data stored in pre-existing databases, that can be used

to formulate queries over. The goal of the query process-

ing step is that of �nding the answers to these queries

in an e�cient way. Four di�erent tasks are involved in

the query processing step: (1) parsing of the query, (2)

semantic optimization, that is, transforming the query

into another one with the same answer, but that can be

processed more e�ciently, and detection of inconsisten-

cies, (3) identi�cation of the cached parts of the query

and if possible looking for the answer in the cache mem-

ory, and in other cases (4) generation of an optimal plan

to obtain the non-cached parts of the query from the

underlying databases. This last task involves the trans-

lation of the query into relational queries over di�erent

databases. In this paper we present an alternative ap-

proach to the fourth task, based on the classi�cation

culture and trying to take advantage from well known

techniques in other areas of systems programming.

We propose a metalevel de�nition mechanism to clas-

sify metaconcepts that will represent relevant features

of concepts and roles from the plan generation point of

view. Each metaconcept will be associated with an ad

hoc generic plan. A proper instantiation of that plan will

e�ciently generate the answer to a query belonging to

that metaconcept. The relevant features of concepts and

roles that must be described are (1) the syntactic struc-

ture of its de�nition, and (2) the semantic interrelations

satis�ed by their components. The aim of this paper

is to present a description language developed for those

metaconcepts, and a subsumption notion associated to

it.

Other

works that deal with the integration task (

[

Spaccapietra

et al.,1992

]

,

[

Bergamaschi and Sartori,1992

]

,

[

Arens et

al.,1993

]

,

[

Brachman et al.,1993

]

,

[

Sheth et al.,1993

]

) do

not follow this approach. Moreover, as far as we know,

the only terminological system that supports a metalevel

notion is Omega(

[

Attardi and Simi,1984

]

,

[

Attardi and

Simi,1986

]

,

[

Hewitt et al.,1980

]

). However, it exceeds our

needs, and its powerful expressiveness makes subsump-

tion undecidable, which is inappropriate for our goal.

In the rest of this paper we present our proposal of a

description language for metaconcepts. We start de�n-

ing the basic units and a hierarchical organization among

them. Later, we introduce composite expressions of

metaconcepts and the notion of subsumption. Finally,

we discuss some application examples.

2 The Proposal

As said in the introduction, our work is guided by our

interest in introducing a classi�cation approach in the

task of plan generation for the query processing step.

The next subsections present the main features of the

metalevel description language according to the relevant

features of terms

1

stated above:(1) syntactic structure

and (2) semantic interrelations.

2.1 Basic patterns

Concerning the syntactic structure, patterns specify syn-

tactic categories -metaconcepts- to which the terms can

belong to. The basic patterns have been extracted from

the collections of term constructors of the terminolog-

ical language considered. For instance, the basic pat-

tern �r::ANYROLE,c::ANYCONCEPT.all(r,c) de�nes

1

Hereafter we will use the word terms to refer to concepts

and roles.

63

<basic pattern> ::=ANYCONCEPT

j ANYROLE

j NAMED-CONCEPT

j NAMED-ROLE

j prim <pattern name>

j �(var::<basic pattern>)

�

.<term pattern>

<term pattern> ::=<operator> (<arg>)

�

<operator> ::=<symbol>

<arg> ::= <var> j <value>

Figure 1: Basic Patterns

the syntactic category of the all concepts. � binds vari-

ables to form parameterized patterns in which the free

variables of the term-pattern are just those bounded by

�.

We also consider as basic some primitive patterns that

cannot be speci�ed by syntactic features alone. For ex-

ample, prim FUNCTIONAL-ROLE de�nes the syntac-

tic category of the roles that are restricted to be func-

tions. Moreover, there is a similitude between prim-

itive patterns and primitive concepts. In both cases,

its membership is usually asserted. For instance, prim

CACHED de�nes the syntactic category of concepts and

roles that have precalculated extensions. That is, those

terms for which we don't need to elaborate a plan to

discover their individuals because their extensions are

cached. Notice that this information is desirable in

a context of e�cient retrieval. Membership to prim

CACHED metaconcept must be asserted because this

information is non-de�nitional.

Figure 1 de�nes the basic pattern category. The con-

stants ANYCONCEPT and ANYROLE represent the

universal metaconcepts of concept and role terms respec-

tively. The NAMED-CONCEPT constant is a subclass

of ANYCONCEPT which includes the concepts that are

denoted by a name, in contrast with those denoted by

expressions. The same applies to NAMED-ROLE and

ANYROLE. Thus, all concepts of the integrated termi-

nology are in NAMED-CONCEPT because there is a

name associated to their de�nitions. Bounds of vari-

ables act as types. For basic patterns only constant and

primitive patterns are allowed as bounds.

Every operator of a parameterized pattern has an at-

tribute associated: the type attribute which tells us the

primitive or constant pattern of a term that matches

the parameterized pattern de�nition. For example type

(all)=ANYCONCEPT. The basic patterns are arranged

in a partial order hierarchy which is de�ned as the least

order relation � respecting the following:

� ANYCONCEPT and ANYROLE are maximal with re-

spect to �.

� NAMED-CONCEPT� ANYCONCEPT and NAMED-

ROLE � ANYROLE.

� For every parameterized pattern P with operator op: P

� type(op).

� When de�ning a primitive pattern P, at most one basic

pattern Q can be related as P � Q.

For example:

� �r::ANYROLE,c::ANYCONCEPT.all(r,c) �

ANYCONCEPT

� prim FUNCTIONAL-ROLE � ANYROLE

� prim CACHED (is maximal with respect to �)

Furthermore, we have de�ned a binary relation is incon-

sistent with between basic patterns. P is inconsistent

with Q if it is impossible for them to share an individ-

ual. This relation is antire
exive, symmetric and satis-

�es a sort of transitivity: P � Q and Q is inconsistent

with R implies that P is inconsistent with R. By de�ni-

tion, ANYCONCEPT is inconsistent with ANYROLE,

and every parameterized pattern is is inconsistent with

each other. We say that two basic patterns P, Q are

consistent if not P is inconsistent with Q.

2.2 Complex patterns

Basic patterns are the units to build up complex pat-

terns. Parameterized patterns properly connected can

be represented as trees: the operators are nodes and

variables are labels for the edges connecting their cor-

responding arguments (there is an edge for each vari-

able appearing in the introduction of the operator). The

leaves of these trees are the constant or primitive pat-

terns which serve as types for the variables, or the values

that instantiate the variables.

Patterns can be seen as formal language speci�cations.

Figure 2 shows the operations selected for these speci�-

cations. The [and \ operators describe the union and

intersection, respectively, of the corresponding language

speci�cations. �-expressions are generalized parameter-

ized patterns where the free variables of the body are just

those in the declaration part

2

. Those expressions are

fundamental for composing speci�cations whose mean-

ing is the composition of the meanings of the parts. Re-

striction on a �-expression either substitutes variables

for instance values or restricts the type of a variable to

a more speci�c pattern (a subsumee of the substituted

pattern). Constraint addition speci�es those terms of

the pattern expression part that satisfy the constraint

part. The allowed constraints are predicates that corre-

spond to the functionalities provided by the underlying

terminological system. We also admit de�nitions, includ-

ing recursive ones, that associate a name to a pattern.

Figure 3 shows some examples.

Considering the previous model, subsumption between

patterns becomes inclusion between languages. Pattern

Q subsumes pattern P (P v Q) if the language speci�ed

by P is a subset of that speci�ed by Q. Basic patterns

form the skeleton hierarchy upon which we build the sub-

sumption hierarchy. For basic patterns P, Q: P � Q im-

plies P v Q. The [and \ operators specify, respectively,

the least upper bound and greatest lower bound of their

operands with respect subsumption. ANYCONCEPT [

ANYROLE is the maximum of this hierarchy. Compo-

sition into �-expressions and restriction are monotonic,

2

Technical problems of variable name clashes are not

treated here.

64

<pattern> ::=<pattern name>

j <basic pattern>

j <pattern> [<pattern>

j <pattern> \ <pattern>

j <�-expression>

j <�-expression>(<substitution>)

j <pattern> + <constraint>

<�-expression>::= �(var::<pattern>)

�

. <pattern>

<substitution> ::=<var> <arg>

j <var>::<pattern>

<constraint> ::=terminological system services

Figure 2: Complex Patterns

ALL= � r::ANYROLE, c::ANYCONCEPT. all(r,c)

ATLEAST= � r::ANYROLE, n::NAT. atleast(n,r)

AND= � c1::ANYCONCEPT, c2::ANYCONCEPT.

and(c1,c2)

ALL-ATLEAST= ALL(c::ATLEAST)

ONE-ROLE-QUERY= � s::ANYROLE.

ALL(r s, c::ONE-ROLE-QUERY(s s))

[ATLEAST(r s)

[AND(c1:: ONE-ROLE-QUERY(s s),

c2:: ONE-ROLE-QUERY(s s))

DISJ-RANGE= ALL + [range

3

r disj c]

Figure 3: Pattern Examples

and constraint addition speci�es more speci�c patterns.

The binary relation is inconsistent with can be extended

straightforwardly to patterns adding the following rule:

if P v Q and Q is inconsistent with R then P is inconsis-

tent with R. The intersection of two inconsistent patterns

speci�es the empty language of terms.

3 Applications

The person responsible for the integration will be able to

de�ne patterns (metaconcepts), that will be classi�ed by

the system, and associate with it a plan if desired. In-

heritance provides for alternative plans associated with

its subsumers. Queries over the integrated terminologies

will be recognized as members of patterns. The pre-

ferred plan for the answer is the �rst associated plan en-

countered, moving upwards the subsumption hierarchy.

(Alternative plans will be available in case of multiple

inheritance).

This framework allows to tailor the plans, improving

the possibilities of semantic transformations or case anal-

ysis of queries.

Let us see the plans as SQL queries. Let X-table be the

relational table that supports the concept or role named

X. Let key be the key attribute for the tables supporting

concepts and fst and snd the attributes supporting the

tuples of roles.

Example 1: To the metaconcept ALL(r::ANYROLE,

c::ALL(r s,c d)) we associate a plan that avoids

nested queries (that would result from the compositional

3

Any role has two attributes: dom and range.

naive translation of the semantics of its concept mem-

bers).

SELECT ANYTHING-table.key

FROM ANYTHING-table

MINUS

SELECT r-table.fst

FROM r-table

WHERE r-table.snd=s-table.fst

AND s-table.snd NOT IN

SELECT d-table.key

FROM d-table

Example 2: During the integration process, a map-

ping information is created which allows us to estab-

lish that the role age is a function. Queries such as

atleast(5,age) will be recognized as belonging to the

syntactic category � r::FUNCTIONAL-ROLE, n::NAT.

atleast(n,r) + [n>1] and the plan associated should

be the one that informs about an empty set answer

query. Notice that we discover cases where the ter-

minological subsumption algorithm does not respond

atleast(5,age)v NOTHING.

Example 3: Suppose an integrated terminol-

ogy where A-ENDED v LETTER-ENDED, the

role social security identi�er is de�ned as soc-sec

:<domain(PERSON) and range(KEY-ID) and the

terminological system can deduce LETTER-ENDED

and KEY-ID v NOTHING. Moreover, the mapping in-

formation registers that the role soc-sec represents a non

null key attribute for persons (that is, soc-sec is total on

its domain).

A user who ignores the characteristics of the social se-

curity identi�er may ask for PERSON and all(soc-sec,

A-ENDED). Usual subsumption algorithms cannot dis-

cover that there is no person satisfying the description.

Nevertheless, the query can be recognized as an individ-

ual of the metaconcept

AND(c1::ANYCONCEPT,

c2::ALL(r::prim DOM-TOTAL,

c::ANYCONCEPT))

+ [dom r � c1, range r disj c]

Notice that, on the one side, the extension of any con-

cept satisfying this pattern are members of c1 whose

�llers for r fall in c. On the other, for those concepts, it

must be veri�ed:

1. dom r � c1 and r is total on its domain, so r has �llers

for any member of c1 and

2. range r disj c, so �llers for r are never in c.

Therefore we get a contradiction which implies that the

extension is the empty set. The plan associated is the

same as the one mentioned in the previous example.

References

[

Arens et al., 1993

]

Y. Arens, C.Y. Chee, C. Hsu, and

C.A. Knoblock. Retrieving and integrating data from

multiple information sources. International Journal

of Intelligent and Cooperative Information Systems,

2(2):127{158, 1993.

65

[

Attardi and Simi, 1984

]

G. Attardi and M. Simi. Met-

alanguage and reasoning across viewpoints. In Pro-

ceedings 6th European Conf. on Arti�cial Intelligence.

Pisa.Italy, 1984.

[

Attardi and Simi, 1986

]

G. Attardi and M. Simi. A

description-oriented logic for building knowledge

bases. In Proceedings of the IEEE, Vol. 74, No. 10,

October 1986.

[

Bergamaschi and Sartori, 1992

]

S. Bergamaschi and

C. Sartori. On Taxonomic Reasoning in Concep-

tual Design. ACM Transactions on Database Systems,

17(3):385{421, 1992.

[

Blanco et al., 1994a

]

J.M. Blanco, A. Illarramendi, and

A. Go~ni. Building a federated database system: an

approach using a knowledge based system. Interna-

tional Journal on Intelligent and Cooperative Infor-

mation Systems, 3(4), December 1994.

[

Blanco et al., 1994b

]

J.M. Blanco, A. Illarramendi,

A. Go~ni, and J. Berm�udez. Advantages of using a

terminological system for integrating databases. In

Proc. of the International Workshop on Description

Logics. Bonn, 1994.

[

Brachman et al., 1993

]

R.J. Brachman, P.G.. Selfridge,

L.G. Terveen, B. Altman, A. Borgida, F. Halper,

T. Kirk, A. Lazar, D.L. McGuinnes, and L.A. Resnick.

Integrated support for data archeology. International

Journal of Intelligent and Cooperative Information

Systems, 2(2):159{185, 1993.

[

Hewitt et al., 1980

]

C. Hewitt, G. Attardi, and M.

Simi. Knowledge embedding in the description system

omega. In Proceedings of First National Annual Con-

ference on Arti�cial Intelligence. Stanford University,

August 1980.

[

Illarramendi et al., 1991

]

A. Illarramendi, J.M. Blanco,

and A. Go~ni. A uniform approach to design a feder-

ated information base using BACK. In Proc. of the

Terminological Logic Users Workshop. Berlin, 1991.

[

Sheth et al., 1993

]

A.P. Sheth, S.K. Gala, and S.B. Na-

vathe. On automatic reasoning for schema integration.

International Journal of Intelligent and Cooperative

Information Systems, 2(1):23{50, 1993.

[

Spaccapietra et al., 1992

]

S. Spaccapietra, C. Parent,

and Y. Dupont. Model independent assertions for in-

tegration of heterogeneous schemas. The VLDB Jour-

nal, 1(1):81{126, 1992.

66

Caching in Multidatabase Systems based on DL

Alfredo Go~ni and Arantza Illarramendi and Jos�e Miguel Blanco

Facultad de Inform�atica, Universidad del Pa��s Vasco.

Apdo. 649, 20.080 San Sebasti�an. SPAIN

e-mail: jibgosaa@si.ehu.es

1 Introduction

MultiDataBase Systems (MDBS) have been proposed

as a solution to work with di�erent pre-existing au-

tonomous databases. There exist many di�erent ap-

proaches for building a MDBS, namely the Entity-

Relationship model approach

[

Larson et al.,1989; Spac-

capietra et al.,1992

]

, the Object-Oriented approach

[

Ahmed et al.,1991; Czejdo and Taylor,1991

]

, and the

Knowledge Representation Systems (KRS) approach

[

Collet et al.,1991; Sheth et al.,1993

]

. In our case we

have built a MDBS that integrates several heteroge-

neous relational databases

1

by using a KRS based on

Description Logics (DL system). In

[

Blanco et al.,1994b;

Blanco et al.,1994a

]

we show the advantages of using a

DL system for building a Relational Multidatabase Sys-

tem.

Three di�erent types of problems are involved when

building a MDBS: translation of the underlying database

schemata into schemata expressed in a canonical model,

integration of the translated schemata into an integrated

schema and query processing of the user-formulated

queries over the integrated schema by accessing the un-

derlying databases. Although there has been a lot of

research about the problems of translation and integra-

tion of schemata to obtain integrated ones the problem

of query processing against these integrated schemata

has not been treated so much. In our case, the inte-

grated schema is represented by a knowledge base built

upon the di�erent relational database schemata, and the

extension of the knowledge base (the instances of the

classes and attribute values) is in fact stored in the un-

derlying databases. When a query is formulated over

that knowledge base the answer must be obtained by

accessing the di�erent databases.

Client/Server architectures have been shown as appro-

priated for building and supporting Multidatabase sys-

tems. Using this type of architecture a Client application

can be de�ned that deals with the integrated schema and

several Server applications, one for each database that

participates in the Multidatabase system. In this con-

text, it is worth having some data cached in the real ex-

1

Although they all use the same data model, semantic

heterogeneity still can remain.

tension of the knowledge base in order to avoid accessing

the underlying databases each time a user formulates a

query. Communication cost involved in transferring in-

termediate results among the nodes and the �nal recon-

struction of the answer can be avoided.

Unfortunately, it is not possible to have all the data

cached for several reasons:

1. Due to the autonomy of the underlying relational

databases, their extensions can be updated very of-

ten and so the cached data in the real extension of

the knowledge base would become inconsistent with

the extension stored in the underlying databases.

2. The size of the cache memory would be obviously

huge because it would be the sum of the size of sev-

eral databases. This would produce space problems,

most of the times it is not possible to have such a

huge cache memory, and time response problems,

because frequently asked queries could be answered

slowly if some not so frequently asked queries were

cached.

There are some related works where a DL system is

used in connection to information sources but only a few

of them talk about query processing aspects. In partic-

ular, in

[

Devanbu,1993

]

Devanbu explains how transla-

tors from DL queries to database queries can be built.

Borgida and Brachman

[

Borgida and Brachman,1993

]

present an e�cient translator from DL queries to SQL

queries and also presents some problems when loading

data into the DL knowledge base. In the two previous

cases only one database is connected to the DL knowl-

edge base and the whole DL knowledge base is loaded at

the beginning of the session. Therefore, there is not a

caching problem, because everything is cached since the

beginning. In

[

Arens et al.,1993

]

Arens et al. show the

SIMS system, that integrates data from several infor-

mation sources (databases and Loom knowledge bases).

From the query processing point of view they select

the appropriate information sources, create plans to an-

swer the query and reformulate these plans by exploit-

ing knowledge about the domain and the information

sources. They also point in a recent paper

[

Arens and

Knoblock,1994

]

that the retrieved data can be cached

and give several principles that describe the interesting

67

data to cache but they do not propose concrete solutions

for the problems that appear.

The aim of this paper is to show how some features

of DL systems can be useful when including a caching

optimization mechanism for query processing in a Mul-

tidatabase system. To our knowledge, this work is the

�rst to address caching within the context of MDBSs.

In the rest of the paper we present the cache de�nition

and strategies, and then the cache optimization during

the query processing.

2 Cache de�nition and strategies

When de�ning a caching optimization mechanism there

are several aspects to be considered: �rst of all, the types

of objects to be cached must be selected and then, it is

necessary to decide the optimal set of objects that are

worth caching. As some explicitly cached objects may

implicitly cache other objects this has to be taken into

account in order to select that optimal set. And �nally,

the strategy for caching has to be de�ned.

2.1 What types of objects can be cached

When working with a DL system there are two di�erent

types of values associated with every instance: the object

identi�er (OID), that is the unique value that identi�es

it, and the particular values taken by its attributes. The

question now is which data should be cached: OIDs or

values? If only OIDs are cached, less space is needed

and probably fewer problems arise with the consistency

of the cache, but queries that refer to value instances,

the most common ones, will not be able to be answered

accessing only to the cache.

Therefore it is possible to cache the OIDs of the in-

stances of a class description (hereafter to cache a class

description to which a class name is given) and to cache

the attribute values for each instance of a class descrip-

tion (hereafter to cache an attribute for a class). Notice

that this is di�erent than working with object-oriented

database systems where only instances of entire classes

can be cached. Moreover, dealing with DL systems, to

cache class descriptions or attributes is the same as to

cache queries as it can be seen in �gure 1 where the

equivalence between objects and queries is shown.

object to cache corresponding query

class description getall class description

attribute of a [rf(attribute)] for

class description getall class description

Figure 1: Equivalence between objects and queries.

2.2 Optimal set of queries to cache

It is important to decide which queries are worth caching.

Candidate queries to cache are: 1) frequently asked

queries; 2) non-volatile, that means that are not fre-

quently updated; 3) with a high cost of retrieving from

the underlying databases; and 4) with a small size in

order to occupy less in the cache.

In

[

Go~ni et al.,1995

]

we show a method that calculates

the optimal set of queries to cache, that is, the queries

that provide the best bene�t for a limited size of cache.

It makes use of several parameters such as probability of

asking for each query, probability of updating the exten-

sion of a query, response time for a query in the under-

lying databases and in the cache and time for caching a

query. These parameters (or the process that works with

them) have to take into account that some queries are

included in others and that the explicit caching of some

queries can implicitly cache another ones.

Working with DL systems, a query q is implicitly

cached if the classes in the Most Immediate Super-

classes (MIS) of the class description of q are cached

and all the attributes that appear in the MIS and the

projected attributes in the query are cached. An attribute

A for a class C is implicitly cached if A is cached for a

super class of C and the class C is cached.

Implicitly cached queries are queries that can be an-

swered using other explicitly cached queries and do not

occupy extra space in the cache. When there are some

explicitly cached queries and a new one becomes explic-

itly cached then other queries can be implicitly cached.

For example: suppossing that there exists a knowl-

edge base with the classes course, person (with at-

tribute name), where person has two subclasses teacher

(with attributes teaches, teaches to and title) and stu-

dent (with attribute studies). And there are also four

de�ned classes (teaching assistant, super student, su-

per teaching assistant and lucky teacher). The knowl-

edge base de�nition is shown in �gure 2.

CLASSES

person :< anything

student :< person

teacher :< person

course :< anything

teaching assistant := teacher and student

super student := student and atleast(10,studies)

super teaching assistant := teacher and student

and atleast(10,studies)

lucky teacher := teacher and atmost(0,teaches to)

ATTRIBUTES

name :< domain(person) and range(string)

title :< domain(teacher) and range(string)

teaches :< domain(teacher) and range(course)

teaches to :< domain(teacher) and range(student)

studies :< domain(student) and range(course)

Figure 2: Knowledge base

� The caching of a class description may implicitly

cache another class.

For example, suppose that rf(studies) for getall stu-

dent is cached, when getall teaching assistant be-

68

comes cached then getall super teaching assistant

will be implicitly cached because any instance of su-

per teaching assistant is an instance of student and

an instance of teacher, that is, an instance of teach-

ing assistant, with at least ten values in the at-

tribute studies. Notice that teacher is not cached

but the MIS teaching assistant is.

� The caching of a class description may implicitly

cache an attribute.

If the attribute name is cached for the class person

(rf(name) for getall name), when the query getall

student becomes cached then name will also be im-

plicitly cached for student (rf(name) for getall stu-

dent).

� The caching of an attribute may implicitly cache a

class.

If the attribute studies is cached for the class stu-

dent, (rf(studies) for getall student) then the query

getall super student is implicitly cached because any

instance of super student is an instance of student

with at least ten values in the attribute studies.

� The caching of an attribute for a class may implic-

itly cache that attribute for another class.

If the queries getall person and getall student are

cached when the attribute name becomes cached

for the class person (rf(name) for getall person),

then name will also be implicitly cached for student

(rf(name) for getall student) because if the names

are known for all the persons and the students can

be identi�ed from those persons, then the names for

the students are also known.

Therefore we can conclude that

� when getall class description is explicitly cached

then queries that have class description as a su-

per class may become implicitly cached, and

queries rf(attribute) for getall class description

may become cached if rf(attribute) for getall su-

per class for class description is cached.

� when rf(attribute) for getall class description is ex-

plicitly cached then queries that have a restriction

for that attributemay become implicitly cached, and

queries rf(attribute) for getall sub class description

may become cached if getall sub class description is

cached.

2.3 Static and dynamic caching

The process that calculates the queries worth to be

cached has to take into account many parameters and

it cannot be executed each time a query is made. Fur-

thermore, it is possible that this process decides not to

cache the last made queries because their probabilities

of asking are not great or because they are very volatile.

However, the work with the knowledge base is made in

sessions where one loads it, queries something and ends

the session. It is quite possible that the most recently

query made is done again in the same session (although

in all sessions is not usually asked). To solve this prob-

lem, we use two di�erent replacement policies for the

cache: the static and the dynamic. The static strategy

consists on caching the set of optimal queries as said in

section 2.2 and the dynamic strategy consists on caching

the last formulated queries and deallocate, when space is

needed, the least recently used queries. The static strat-

egy is used between sessions (at the end of the session

or in o�-peak hours) and the dynamic strategy is used

during the query processing within a session.

3 Cache optimization during the query

processing

During the query processing task it is necessary to detect

if the query can be answered with the data stored in the

cache (in our case the real extension of the integrated

knowledge base), that is, if the query is contained in the

cache. As queries are descriptions of data, it has to be

proved that any data that veri�es the description is in

the cache. In general, to verify if a query is in the cache

it is not easy and it depends on the query language and

on the representation of the cached data.

3.1 Identi�cation of the cached parts of

the query

When working with a DL system, the classi�cation

mechanism of classes can be used to verify if queries

are cached. If a query class is subsumed by the cached

classes then it is true that the instances of the query class

are in the cache. However, that does not mean that they

can be identi�ed and that the query can be answered

directly from the cache.

For example, suppose that all the instances of the class

person are cached and that the next query is formulated:

obtain all the persons with at least �ve children (getall

person and atleast(5,children)). In fact, it is true that

all the instances of person and atleast(5,children) are in

the cache because all the instances of person are cached.

However, it is not possible to answer the query unless

the attribute children is also cached because it is not

possible to distinguish which persons have at least 5 chil-

dren if the children are not known (another possibility

would be that the class person and atleast(5,children)

were cached).

We can say that the query [rf(r

1

),: : :,rf(r

N

)] for getall

C

1

and : : : and C

M

is cached if all the class names that

appear in C

i

and all the attributes that appear in C

i

and r

1

,: : :,r

N

are cached. But this is a too strong re-

striction because although two classes were not cached,

the intersection of both could be cached and the same

query would be also cached. In fact, a query is cached

if the MIS of the class description of the query C

1

and

: : : and C

M

are cached and also the projected attributes

r

1

,: : :,r

N

.

69

3.2 Obtaining of a set of DL queries to be

retrieved

It is obvious that if the query is cached then it is an-

swered from the cache, but if the query is not completely

cached then it has to be answered by accessing the under-

lying databases. Therefore, in the query there are some

cached parts and some non-cached parts. The point here

is: which parts have to be retrieved from the underlying

databases and introduced in the knowledge base in order

to get the answer to the original query?

� not all the class names and attributes have to be

retrieved from the databases because parts of the

query may already be cached

� not only the non-cached parts of the query have to

be retrieved because it may be more costly. Retriev-

ing only the non-cached parts implies to bring more

data (because DL queries are conjunctive queries)

and also the �nal computation in the knowledge

base is more expensive. However, retrieving only

the non-cached parts can avoid accessing to more

than one database and can also be useful to answer

future queries.

Therefore, there is a trade-o� here between retrieving

only the non-cached parts with a greater communication

cost and more computation in the knowledge base or re-

trieving the non-cached and some cached parts that pro-

duce less communication cost, less computation in the

knowledge base but more computation in the databases

(above all if more databases have to be accessed).

We will show with an example the di�erent possibili-

ties of DL queries to cache in order to answer the original

query. Suppose that the next query is made:

[rf(name)] for getall student and teacher and

atleast(10,studies) and atmost(1,teaches)

In the �gure 3 the classes, attributes and attribute

restrictions needed to answer the query can be seen as a

tree. In the �rst level of the tree, the nodes are the MIS

for the query and the projected attributes. Every node

that corresponds to a de�ned class is expanded with its

MIS and so on. The underlined classes and attributes

are cached.

Query

class: teaching assistant

class: student

class: teacher

class: super student

class: student

cardinality restriction: atleast(10,studies)

cardinality restriction: atmost(1,teaches)

attribute to project: name

Figure 3: Tree corresponding to the example query

For the previous query the di�erent possibilities of

DL queries to retrieve and cache from the underlying

databases are:

1. to cache the query, equivalent to the initial one,

formed by the conjunction of the MIS;

[rf(name)] for getall teaching assistant and su-

per student and atmost(1,teaches)

2. to cache the conjunction of only the non-cached

parts of the query;

getall student and atleast(10,studies) and at-

most(1,teaches)

3. to cache the values for the attributes of the restric-

tions;

[rf(studies),rf(teaches)] for getall student

The next two queries can also be retrieved because

they can be executed in parallel in both databases:

[rf(studies)] for getall student

[rf(teaches)] for getall teacher

But as teaching assistant has a support in both

databases, the queries to be retrieve can be:

[rf(studies)] for getall teaching assistant

[rf(teaches)] for getall teaching assistant

The strategy used to get the set of DL queries to cache

consists on two phases:

� To transform the query formed by the MIS and the

projections of attributes into another one

1. MIS and projected attributes that are already

cached are removed from the query. However,

some cached MIS are kept in the query in order

to reduce the size of the answer, if it is too big,

or if there are other non-cached parts in the

same database node where the cached part is.

2. De�ned MIS with

alternative mapping information

2

are kept in

the query.

3. De�ned MIS with no alternative mapping in-

formations are substituted by their correspond-

ing non-redundant MIS. To these new MISs the

steps 1,2, 3 are applied.

4. De�nedMIS with alternative mapping informa-

tions may be substituted by their correspond-

ing non-redundant MIS (and applying 1,2, 3),

above all if some of them are already cached,

and there are possibilities of asking for some of

them and space in the cache.

5. Attribute restrictions may be substituted by

the projection of the corresponding attributes

if there are possibilities of asking for these at-

tribute values and space in the cache.

� To split it into queries to be executed in parallel if

it is possible.

2

When dealing with FDBS it is necessary to de�ne a link-

ing information between the integrated schema and the un-

derlying databases. We call mapping information to this link-

ing information.

70

1. The query can be split in subqueries such that

each one of the subqueries are in the same

database. In this case, the split subqueries can

be executed in parallel.

2. If there are possibilities of asking for part of

the query, this part can be separated from the

query.

Some of the previous transformations imply to bring

and cache more data than the requested in the query.

This follows the dynamic strategy, because it tries to

cache the queries made in the session. It supposes that

there are more possibilities of asking for these data.

Anyway, it is possible to cooperate with the user and

ask him if he is interested in other related data to the

query. For example if the user queries getall teacher and

atleast(3,teaches) then the system can ask the user:

Do you want to know the values of attribute

teaches?

If the answer is yes then the query [rf(teaches)] for

getall teacher is split and cached.

References

[

Ahmed et al., 1991

]

R. Ahmed, P. Smedt, W. Du,

W. Kent, M. Ketabchi, and W.A. Litwin. The Pega-

sus heterogeneous multidatabase system. IEEE Com-

puter, 24, December 1991.

[

Arens and Knoblock, 1994

]

Y. Arens and

C. A. Knoblock. Intelligent caching: Selecting, rep-

resenting, and reusing data in an information server.

In Proceedings of the Third International Conference

on Information and Knowledge Management CIKM,

1994.

[

Arens et al., 1993

]

Y. Arens, C.Y. Chee, C. Hsu, and

C.A. Knoblock. Retrieving and integrating data from

multiple information sources. International Journal

of Intelligent and Cooperative Information Systems,

2(2):127{158, 1993.

[

Blanco et al., 1994a

]

J.M. Blanco, A. Illarramendi, and

A. Go~ni. Building a federated database system: an

approach using a knowledge based system. Interna-

tional Journal on Intelligent and Cooperative Infor-

mation Systems, 3(4), December 1994.

[

Blanco et al., 1994b

]

J.M. Blanco, A. Illarramendi,

A. Go~ni, and J. Berm�udez. Advantages of using a

terminological system for integrating databases. In

Proc. of the International Workshop on Description

Logics. Bonn. Germany, 1994.

[

Borgida and Brachman, 1993

]

A. Borgida and R. J.

Brachman. Loading data into description reasoners. In

Proceedings of the ACM SIGMOD Conference, 1993.

[

Collet et al., 1991

]

C. Collet, M. N. Huhns, and

W. Shen. Resource integration using a large knowl-

edge base in CARNOT. IEEE Computer, December

1991.

[

Czejdo and Taylor, 1991

]

B. Czejdo and M. Taylor. In-

tegration of database systems using an object-oriented

approach. In First International Workshop on Inter-

operability in Multidatabase Systems, April 1991.

[

Devanbu, 1993

]

P.T. Devanbu. Translating description

logics to information server queries. In Proceedings of

the ISMM International Conference on Information

and Knowledge Management CIKM, 1993.

[

Go~ni et al., 1995

]

A. Go~ni, A. Illarramendi, and

E. Mena. Semantic query optimization and data

caching for a multidatabase system. In Proceedings

of the Basque International Workshop on Information

Technology. IEEE Computer Society Press, July 1995.

To celebrate in San Sebastian, Spain.

[

Larson et al., 1989

]

J. A. Larson, S. B. Navathe, and

R. Elmasri. A theory of attribute equivalence in

databases with application to schema integration.

IEEE TOSE, SE-15(4), April 1989.

[

Sheth et al., 1993

]

A.P. Sheth, S.K. Gala, and S.B. Na-

vathe. On automatic reasoning for schema integration.

International Journal of Intelligent and Cooperative

Information Systems, 2(1):23{50, 1993.

[

Spaccapietra et al., 1992

]

S. Spaccapietra, C. Parent,

and Y. Dupont. Model independent assertions for in-

tegration of heterogeneous schemas. VLDB, 1:81{126,

1992.

71

Cooperative Recognition of Interdatabase Dependencies

M. Klusch

Institut f�ur Informatik und Praktische Mathematik

Christian-Albrechts-Universit�at Kiel, Olshausenstr. 40, 24118 Kiel, Germany

E-Mail: mkl@informatik.uni-kiel.d400.de

(Extended Abstract)

Abstract

A novel approach towards the recognition of

interdatabase dependencies (IDD) using a fed-

erative agent system FCSI is presented. The

architecture of the FCSI is designed as a set of

coalition-based cooperative, intelligent agents

each of them uniquely assigned to one au-

tonomous local database system. The FCSI

aims for a cooperative solution for the problem

of searching for semantically related informa-

tion while strictly respecting the autonomy re-

quirements of each individual database system.

For this purpose �rst a terminologically repre-

sented local domain information model on top

of the local conceptual database schema is built

at each agent by processing scripts speci�ed

by user's intention on externally available se-

mantic aspects or views of some local schema

objects. These objects are then appropiately

linked into the local information ontology by

the local FCSI agent. Remote terminologi-

cal classi�cation then serves as a basis for the

recognition of intentional IDDs between objects

of di�erent schemas with respect to some or all

of their sofar intentionally related semantic as-

pects. Projections on respective associated as-

pect valuations at schema and state level then

determine agent-directed, context-based data

sharing and result in restricted proposals for

interdatabase schema assertions. Methods for

utilitarian coalition building among the rational

agents of the FCSI are used in order to coopera-

tively search for semantically related data. The

decentralized calculation of each agent's utility

bases on their local productions resulting from

the execution of own and received tasks to �nd

such dependencies between local terminologi-

cal information models. There is no prior need

and even no possibility to browse through non-

local schema structures in order to �nd some

possibly relevant data. In this paper the cur-

rent status of ongoing research on the FCSI is

reported.

1 Introduction

The approach of the FCSI is motivated by the idea of

following the recently introduced paradigm of intelligent

cooperative information systems ICIS

[

20

]

for solving

one essential problem in the research area of interop-

erability of database systems: a context-based recogni-

tion of interdatabase dependencies (IDD) between het-

erogeneous, autonomous database systems. An IDD de-

scribes the relationship between related data of di�erent

database schemas by an integrity constraint

[

8

]

. Any

approach of declarative or functional speci�cation of

IDDs like in

[

25

]

,

[

7

]

,

[

8

]

presumes somehow gained knowl-

edge about where to �nd which kind of semantically re-

lated data. The related problem of tackling semantic

heterogeneity

[

23

]

is aggravated by the need to respect

in particular the association autonomy

[

24

]

of all respec-

tive database systems. In other words, the problem is

how to �nd in a completely decentralized environment

some semantically related non-local schema data hav-

ing no prior possibility to browse through all respec-

tively exportable schema structures. Criticism

[

5

]

on fed-

erated database systems FDBS

[

24

]

state in particular

their lack of support with respect to this object discovery

problem

[

10

]

and thus the recognition and maintenance

of IDDs

[

20

]

. The FCSI is the �rst approach towards

a federative system

[

18

]

which aims for such an intelli-

gent support of a context-based recognition of interre-

lated data in autonomous databases. For this purpose

the FCSI uses in particular methods from the di�erent

research areas of terminological knowledge representa-

tion and reasoning

[

19

]

as well as distributed arti�cial

intelligence (DAI)

[

18

]

.

Local construction of a terminological informationmodel

on top of the local database schema and appropiate link-

ing of some externally available schema objects into the

local ontology enables the agent to �nd semantically re-

lated data already at information type, i.e. terminolog-

ical level. This is done by sending some aspect terms

each describing one semantic aspect of a schema object

terminologically and their formal classi�cation into the

local terminological information models by the receiv-

ing agents. Proposed interschema assertions are com-

positions of locally attached state constraints on related

schema objects with respect to the type of detected ter-

72

minological relation between both schema objects. Such

recognition of some interdatabase dependencies and re-

spective data sharing is done without any e�orts in par-

tial or global schema integration. In order to organize a

cooperative search for semantically related data methods

for utilitarian coalition building among the autonomous

agents of the FCSI are currently investigated. Thus, no

global information agent

[

3

]

or central mediator agent

[

4

]

exists. For implementation of FCSI agents we currently

develop an interactive development environment for the

speci�cation and simulation of agent systems IDEAS-1

on a set of networked SUN-workstations.

The remainder of this paper is organized as follows. In

section 2 a short overview on the functionality and ar-

chitecture of each FCSI agent is given. Section 3 brie
y

concludes and gives a outlook on future research on the

FCSI.

2 FCSI : Functionality and Architecture

As already reported in

[

17

]

,

[

15

]

according to a set of

user-speci�ed intentional scripts on some exportable own

schema object structures a local domain information ter-

minology DIT and its actually instantiated schema aspect

worldW on top of the conceptual database schema is in-

crementally built at each agent. For this purpose an

information terminological formalism ITF as well as a

schema aspect assertional formalism SAF as its conser-

vative extension

[

19

]

is used. This KL-ONE based termi-

nological description language provides most usual term-

forming operators like conjunction, number restriction

and value restriction as well as atomic concept negation

1

. For reasons of space limitation for a comprehensive

introduction to hybrid terminological knowledge repre-

sentation and reasoning we refer the reader to

[

19

]

. The

main steps for the construction of a local informtaion

model DIT/W are as follows.

1

We currently use the terminological language NTF/AF

proposed in

[

19

]

as ITF/SAF. Several alternatives for this

choice like e.g. ALC

[

27

][

11

]

or ALCF(D)

[

1

]

are cur-

rently under consideration wrt. some e�cient implementa-

tion of respective algorithms for hybrid terminological rea-

soning within each agent. Term subsumption is decid-

able for NTF/AF

[

19

]

as well as for ALC and its several

derivatives

[

27

]

. As in most practical terminological systems

for reasons of e�ciency actually used subsumption algorithm

is polynomial but incomplete. A formal description of the re-

spective linking of schema objects into the terminological in-

formation model can be found in

[

14

]

. It enables in particular

a
exible modeling of distinct semantic aspects of a schema

object the user has in mind for external representation. The

expressivity of ITF/SAF restricts the more natural-language

based description of semantic aspects of schema objects the

user intends to represent. Besides, it depends on the user

how close he models the DIT/W wrt. the given schema

by the use of same names or pure data structure copy

[

2

]

.

In order to achieve homogeneous interschema assertions we

currently presume an EER data model

[

12

]

as canonical data

model for each local schema

[

24

]

, although this assumption is

not necessary for the �rst phase of �nding related data at

terminological information level.

� by user:

for each semantic aspect i

x

of available schema object

o

k

2 SObj specify one so-called intentional aspect script

with two following kinds of entries

1. terminological aspect description:

- term introductions of relevant information

reference concepts c (initial)

- set of appropiate, consistent assertions about

object o

k

considered as an instance of c;

2

2. aspect valuation over database schema �:

- (part of) relevant schema object structure: CP

i

x

- at database state level (DML): JC

i

x

3

� by FCSI Agent: Construction of Local Information

Model and Schema Object Linking

1. Read all given aspect scripts;

2. Build or extend the local terminology DIT:

- Collect all term introductions of concepts

and roles

3. Determine directed, acyclic information concept

hierarchy:

- Compute Term subsumption hierarchy;

4. Build actual aspect world W of reference objects

intob 2 RObj:

- Create for each schema aspect (o

k

; i

x

) one

reference object intob

k;i

x

- Collect all assertions, substitute occurrences

of o

k

by intob

k;i

x

5. Check consistency of assertions in W wrt.

the terminology DIT;

6. Store one computed Aspect Term for each

Schema Aspect (o

k

; i

x

):

- build conjunction of expanded terms by constraint

propagation on all given assertions for unique

reference object intob

k;i

x

in W,

i.e. terminological abstraction of the reference

object wrt. DIT/W.

Linking one schema object o

k

into the agent's local

terminological knowledge base

[

4

]

is then formally done

by interpreting the respective reference objects as one

aspect of o

k

.

DIT c

1

:

= c

1

� term c

m

:

= c

m

� term

j j

W (c

1

intob

k;i

1

) (c

m

intob

k;i

n

) (c

l

intob

f

)

l l

(o

k

; i

1

) (o

k

; i

n

)

-%

� o

k

.&

< CP

i

1

; JC

i

1

> < CP

i

n

; JC

i

n

>

Example 1: see Appendix A.1.

2

Terms of named information concepts are formulated in

ITF, consistent term restrictions for asserted instances in

SAF.

3

The justi�cation constraint JC

i

x

is a state constraint,

function or self denotation actually speci�ed by user with re-

spect to an aspect i

x

of o

k

he has in mind. Detailed examples

are in

[

14

]

.

73

Similar to the classical view de�nitions this allows to

attach the same schema object to several information

concepts where each of them is relevant for a termino-

logical description of one of the object's particular se-

mantic aspect. Roughly speaking, this enables to negoti-

ate about each other's conceptual schema at information

type level

[

5

]

without actually having the need as well

as the possibility to access the respective, �xed schema

data structures itself. It is possible for each agent user to

change the actual terminological representation of some

aspect of an schema object without the need to change

the valuation at schema or state level and vice versa.

It is now possible for the agents to automatically de-

tect a set of terminological relations between two objects

o

1

,o

2

in di�erent schemas with respect to some or all of

their aspects, the so-called intentional interdatabase de-

pendencies i-IDD.

Let tsub(t

2

; t

1

) compute term-subsumption t

2

� t

1

,

intabst(o

1

; i

x

) denotes the computed aspect term of (o

1

; i

x

)

and intset

1

set of aspect identi�er of schema object o

1

, then

:

p � intsub(o

1

; o

2

;M;N) :,

(8i

x

2M � intset

1

9i

y

2 N � intset

2

:

tsub(intabst(o

2

; i

y

); intabst(o

1

; i

x

)))^

(8i

y

2 N 9i

x

2M :

tsub(intabst(o

2

; i

y

); intabst(o

1

; i

x

)))

c � intsub(o

1

;o

2

;M;N) :, p-intsub with M =intset

1

inteq(o

1

;o

2

) :, c� inteq(o

1

; o

2

; intset

1

; intset

2

)

intdis(o

1

;o

2

) :, c� intdis(o

1

; o

2

; intset

1

; intset

2

)

intsub(o

1

;o

2

) :, c� intsub(o

1

; o

2

; intset

1

; intset

2

)

For example, p� intsub(o

1

;o

2

;M;N) means that

schema object o

1

is partially, intensionally subsumed by

o

2

exactly wrt. the (sub-)sets M, N of their semantic

aspects. The complete set of these terminological rela-

tions can be found in

[

14

]

. In accordance with

[

21

]

, to

enable mutual understanding of received foreign terms a

set cpc

i;j

of corresponding local primitive components is

used between communicating agents a

i

; a

j

to avoid lin-

guistic ambiguity at the lowest level.

The recognition process of terminological dependencies i-

IDDs executed at each agent locally bases then on classi-

fying a received aspect term into the local terminological

informationmodel, �nding relevant reference objects and

then projecting down to the attached local schema data

[

17

]

.

Example 2: see Appendix A.2.

Agent's ability to propose some interdatabase schema

assertion IDSA is then realized by using integration

rules for composing the state constraints JC on attached

schema objects with respect to the terminological rela-

tion:

if p� inteq(o

k

; o

j

; fi

x

g; fi

y

g) then

propose [JC

i

x

, JC

i

y

];

if p� intsub(o

k

; o

j

; fi

x

g; fi

y

g) then

propose[JC

i

x

) JC

i

y

]; a.o.

Example for a composition by propose:

Let p� intsub(o

k

; o

j

; fi

x

g; fi

y

g) be recognized with

o

k

= E

1

2 E

�

1

; o

j

= E

2

2 E

�

2

of EER� Schemas�

1

; �

2

;

CP

i

x

� attr(E

1

); CP

i

y

� attr(E

2

);

JC

i

x

:= 8e1

E

1

: < ic

1

� qual

e

1

>;

JC

i

y

:= 8e2

E

2

: < ic

2

� qual

e

2

>

propose: 8e1

E

1

; e2

E

2

: (e1:key(E

1

) = e2:key(E

2

)))

(< ic

1

� qual

e

1

>) < ic

2

� qual

e

2

>)

Each set of IDSA proposals gives hints for possible

object domain mappings and can be extended as agent's

dependency knowledge grows. Rules for IDSA proposals

are further investigated in a more detail in

[

14

]

.

Example 3: see Appendix A.3

Context-based data sharing is now possible by any re-

quest of the agent a

j

on a remote schema object o

2

to

a

i

yet known to be related wrt. some aspects. The re-

ceiver of an agent's data query like request-for struc-

ture part from schema object wrt aspect will �rst check

the respective aspect identi�er, select the corresponding

state constraint and then compile the contextual query

into a local database query.

Example 4: see Appendix A.4

The purpose of each FCSI agent is to support the user

in discovering the available information space with re-

spect to its own local domain of interest DIT. This can

be followed up by the agent through detecting some i-

IDDs in cooperation with other agents for satisfying the

respective local find-tasks. Execution of request-for-

tasks, i.e. agent data queries, is possible only after some

terminological relations are found and only permitted

between �xed coalition members.

The modular structure of a FCSI agent is given in Fig.

1.

 Inter-
 database
dependencies
 i-IDDs
 IDSAs

information
 ontology :
 DIT / W

 User-specified
intentional scripts

FIND-/ Request-for-
 Tasks

Local Blackboard
Nucleus

Local Database Agent Query Management

Local Database System

 Local DB
EER-schema

Figure 1: Modular structure of a FCSI agent

The Agent User Interface AUI enables the local user

for task speci�cation as well as to access all internal mod-

ules of an agent. A central nucleus NM is responsible for

internal task management, coalition negotiation and ac-

tion scheduling with respect to the execution of some

task received from local user or other agents. All user-

speci�ed intentional scripts on schema object aspects are

74

maintained by the Script Manager SM. The terminolog-

ical knowledge DIT/W on the local schema is then con-

structed and maintained by the TKM module. A Recog-

nition module RM infers i-IDDs by joining the TKM and

projecting on respective valuations stored at the SM. It

is also responsible for maintaining these detected i-IDD

in its belief base which includes in particular all logically

deducted i-IDD facts (PROLOG facts). Any request on

some particular or the existence of any i-IDD with other

agents are handled by the RM (using PROLOG). IDSA

proposals are reported by a RM submodule. Coopera-

tion dialogue can be modeled by using a set of coopera-

tion primitives, objects and constraints

[

18

]

in compliance

with KQML

[

9

]

. The coalition module CoalM is responsi-

ble for determining the agent's interest in participation

in some coalition with other FCSI agents.

FCSI coalitions are group of agents which are mutually

committed to execute some of their tasks for a limited pe-

riod of time under certain negotiated constraints: Each

agent tries to �nd and to coalesce with other agents

which are able to satisfy the posed task to �nd related

data with respect to his own terminological local infor-

mation model. Members of a �xed coalition are com-

mitted to maintain any of the respectively known inter-

database dependency just within a coalition by provid-

ing in particular immediate noti�cation on any relevant

local modi�cation of domain aspect representation and

executing local database queries generated from received

REQUEST-FOR-tasks.

Each possible coalition obtains a certain utility, its coali-

tion value, which is then fairly shared among its mem-

bers regarding their marginal contribution to this coali-

tion. In the FCSI it is currently assumed that the agents

have common knowledge of this coalition value function

of the respective coalition game and agree on the util-

ity division method. Since each agent is individual self-

motivated, thus rational, it decides by itself about the

kind of joining such a coalition considering its own ex-

pected share of the respectively divided coalition utility,

i.e. the computed agent's Shapley-value

[

13

][

22

]

(see Ap-

pendix A.5).

The decentralized calculation of each agent's utility

bases on their local productions resulting from the execu-

tion of own and received tasks to �nd some speci�c de-

pendencies. One such agent utility function is de�ned by

the amount of task interactions constituted by detected

terminological object relations i-IDD satisfying received

as well as local own FIND-task goals. Thus, for this task

interaction coalition type each rational FCSI agent tries

to locate and then get into coalition with other FCSI

agents which would maximize its own utility in satisfy-

ing its FIND-tasks as much as possible.

Example 5: see Appendix A.6

We currently investigate several di�erent types of

FCSI agent utility functions and the relationships be-

tween the induced types of FCSI coalitions. Research

on the FCSI mainly aims for the description of such

coalition-based cooperation for this application.

3 Conclusion

The proposed approach of the FCSI enables the user

to discover some intentional relevant data without the

need to browse through all available schema structures

�rst without any help. In particular it is even not possi-

ble to get acces to the local schema or state level before

any utilitarian coalition commitment with other rational

agents is �xed. Context-based recognition is exclusively

done by the FCSI agents at information type level, i.e.

by formal terminological classi�cation of some consid-

ered aspect term independent from its actually attached

and sofar protected data structures. This is similar to

the idea of incrementally building and using some shared

ontology for contextual interchange

[

4

]

respecting asso-

ciation autonomy

[

24

]

. Thus, possible data sharing as

well as proposing IDSAs is determined by the necessar-

ily prior success and kind of such terminological aspect

classi�cation and restricted on the respective aspect val-

uations speci�ed by user. The agent provides the user

with all locally deducted i-IDDs and reports respective

possible IDSAs. These can be used for �nal decisions in

speci�cation of IDDs by human

[

25

]

b.

There has been only little related research on using for-

mal terminological classi�cation for the object discovery

problem like in

[

6

]

. Recent works on system approaches

which have in
uenced the FCSI approach are in particu-

lar

[

5

]

,

[

4

]

and

[

10

]

. Partially related works are

[

6

]

,

[

2

]

and

[

3

]

4

.

Ongoing research on the FCSI includes the following

main topics:

- formal FCSI agent description

[

28

]

and possible imple-

mentation with IDEAS-1

- further investigations on applying utilitarian coalition

building for cooperation within the FCSI

[

13

]

Acknowledgements: I would like to thank Prof. D.

Klusch and Prof. P. Kandzia for supporting this work

and giving many helpfully hints and advices.

References

[

1

]

Baader,F., Hanschke,P., 1992,"Extensions of concept lan-

guages for a mechanical engineering application", in:

LNAI 671

[

2

]

Beck, H.W., et al., 1989,"Classi�cation as a query pro-

cessing technique in the CANDIDE SDM",IEEE Com-

puter

[

3

]

Barbuceanu,M., Fox,M.S., 1994,"The information agent:

an infrastructure for collaboration in the integrated enter-

prise", Proc. CKBS-94, Keele(UK)

[

4

]

Behrendt,W., et al., 1993,"Using an intelligent agent

to mediate multibase information access",Proc. CKBS-93,

Keele(UK)

[

5

]

Bouguettaya,A., 1992,"A dynamic framework for inter-

operability in large MDB", Ph.D. thesis

4

For reasons of space limitation for a detailed discussion

of related works cf.

[

14

]

.

75

[

6

]

Catarci,T., Lenzerini,M.,"Interschema knowledge in co-

operative IS", Proc. ICIS-93, Rotterdam

[

7

]

Ceri, S., Widom, J., 1992,"Managing semantic hetero-

geneity with production rules and persistent queues", Po-

litecnico Milano TR 92-078

[

8

]

Elmagarmid, E., Zhang, A., 1992,"Enforceable inter-

database constraints in combining multiple autonomous

databases", Purdue Tech. Rep. CSD-TR-92-008

[

9

]

Genesereth,M. et al.,"Speci�cation of the KQML Agent-

Communication Language", Draft Spec. Rep. 6/1993,

DARPA Knowledge Sharing Initiative EIWG

[

10

]

Hammer,J., et al., 1993,"Object discovery and uni�ca-

tion in FDBS", in Proc. RIDE-93, Wien

[

11

]

Hollunder,B., Nutt,W., 1990,"Subsumption algorithms

for concept languages", DFKI-Res.Rep. RR-90-04

[

12

]

Kandzia,P., Klein,H.-J., 1993,"Theoretische Grundlagen

relationaler Datenbanken", BI

[

13

]

Ketchpel, S., 1993,"Coalition formation among au-

tonomous agents", Proc. MAAMAW-93

[

14

]

Klusch, M., "Ein f�oderatives Agentensystem FCSI

zur Erkennung von Interdatenbankabh�angigkeiten", Ph.D.

thesis, (in preparation)

[

15

]

Klusch, M., 1994,"Towards a Federative System FCSI

for a context-based recognition of plausible Interdatabase

Dependencies", Proc. 6. GI-Workshop on 'Foundations of

Databases', Bad Helmstedt

[

16

]

Klusch, M., 1994,"Using a cooperative agent system for

a context-based recognition of interdatabase dependen-

cies", Proc. CIKM-94 Workshop on 'Intelligent Informa-

tion Agents', Gaithersburg (USA)

[

17

]

Klusch, M., 1995,"Towards a Federative System FCSI

for a context-based discovery of Interdatabase Dependen-

cies", Proc. ETCE-95, 'Knowledge-based Systems in Engi-

neering Applications', ASME PD-Vol. 67, Houston (USA)

[

18

]

Mueller, J. (Hrsg.), 1993, "Verteilte K�unstliche Intelli-

genz", BI

[

19

]

Nebel, B., 1990, "Reasoning and revision in hybrid rep-

resentation systems", LNAI 422, Springer

[

20

]

Papazoglou,M.P. et al.,1992,"An organizational frame-

work for intelligent cooperative IS", IJICIS 1(1)

[

21

]

Sabah, G., 1993, "Knowledge Representation and Nat-

ural Language Understanding", AICOM 6(3/4)

[

22

]

Shechory, O., Kraus, S., 1994, "Coalition formation

among autonomous agents (preliminary report)"

[

23

]

Sheth,A., Kashyap,V., 1992,"So far schematically yet so

near semantically", Proc. IFIP TC2/WG2.6

[

24

]

Sheth,A., Larson,J.A., 1990,"Federated database sys-

tems for managing distributed, heterogeneous and au-

tonomous DBS", ACM CS 22(3)

[

25

]

Sheth, A., et al., 1991,"Specifying interdatabase depen-

dencies in a MDB environment",

IEEE Computer (see also Bellcore TM-STS-018609/1)

[

26

]

Sheth, A., et al., 1991,"On applying classi�cation to

schema integration", Proc. IEEE 1.Wshp Interop. MDBS,

Kyoto(Japan)

[

27

]

Smolka,G., Schmidt-Schau�,M., 1991,"Attributive con-

cept description with complements", AI 48

[

28

]

Woolridge, M., 1993, "MYWORLD: an agent-oriented

testbed for DAI", Proc. CKBS-93, Keele(UK)

76

Appendix

A Simple Examples

A.1: Example 1:

Parts of a simple local information models for two FCSI

agents are shown below. In reasons of space limitation the

presentation of the comprehensive local DITs is omitted.

> FCSI agent a

1

:

DIT

1

Man

:

= (and Human Man

p

) ... Woman

:

= (and Human (not Man)

(atleast has-child 1) (all has-child Child))

W

1

(Man intob

1;i

1

) (Woman intob

1;i

2

), (has-child intob

1;i

2

atmost 3)

#

�

1

(Student; i

1

) (Student; i

2

)

-%

j o

1

= Student j

.&

< fSexg; 8s

Student

: s:Sex =

0

male

0

> ... < fSexg;8s

Student

: s:Sex =

0

fem

0

>

Part of respective (�nite) interpretation domain for the local

information model:

intob

1;i

1

2 RObj

1

7! (Student; i

1

) 2 SObj

1

�

Int

1

; intob

1;i

2

2 RObj

1

7! (Student; i

2

) 2 SObj

1

� Int

1

etc.

Then, e.g. the aspect term for 'female students' is

(and Human

p

Woman

p

(not Man

p

)(all has� child

p

Child

p

) (atleast has� child

p

1)(atmost has� child

p

3))

> FCSI agent a

2

:

DIT

2

Mann

:

= (and Mensch Mann

p

) ... Frau

:

= (and Mensch (not Mann) Frau

p

)

W

2

(Mann intob

2;i

3

) (Frau intob

2;i

4

),

#

�

2

(Person; i

3

) (Person; i

4

)

-%

j o

2

= Person j

.&

< fWMg; 8p

Person

: p:WM =

0

M

0

> ... < fWMg; 8p

Person

: p:WM =

0

W

0

>

The aspect term for 'female persons' is here

(and Mensch

p

Frau

p

(not Mann

p

)). 2

77

A.2: Example 2:

Assume FCSI agent a

2

receives the aspect term

intabst(Student; fi

2

g) from FCSI agent a

1

Let the relevant

subset of corresponding primitive components in CPC

1;2

for

both agents be as follows :

for primitive concept components:

(Human

p

; Mensch

p

); (Man

p

; Mann

p

); (Woman

p

; Frau

p

); (Child

p

; Kind

p

)

for primitive role components:

(has� child

p

; hat� Kind

p

); etc:

Then, for example one of the following three cases can be

detected by agent a

2

:

fi

2

g � intset

1

; fi

4

g � intset

2

:

p� intsub(Student; Person; fi

2

g; fi

4

g), or

fi

2

g = intset

1

: c� intsub(Student; Person; fi

2

g; fi

4

g),

or

fi

2

g = intset

1

; fi

4

g = intset

2

:

intsub(Student; Person). 2

A.3: Example 3:

Suppose that agent a

2

has detected the terminological

IDD p� intsub(Student; Person; fi

2

g; fi

4

g) (cf. A.2).

Then, the corresponding IDSA proposal is :

8s

Student

; p

Person

: (s:key(Student) = p:key(Person)))

(s:Sex =

0

female

0

) p:WM =

0

W

0

) 2

A.4: Example 4:

> FCSI-Agent a

2

:

(o

j

; i

y

) in relation to (o

k

; i

x

) owned by a

1

;

o

k

= E

1

2 E

�

1

; A 2 avail(E

1

; i

x

; a

2

):

request-for A from E

1

wrt i

x

> FCSI-Agent a

1

:

(E

1

; i

x

) valuation includes JC

i

x

= 8e1

E

1

: < ic�qual

e1

>

retrieve e1:A from E

1

where < ic � qual

e1

>;

(EER-DML)

Now, summarizing the continued simple example for both

FCSI agents wrt. contextual data requests:

FCSI Agent a

1

: FCSI Agent a

2

:

FIND-Task on (Student; i

2

) FIND-Task on (Person; i

4

)

process tasks: produce terminological object relation i-IDD

coalition formation: determine production utility and coalition offer, bilateral negotiation

coalition commitment: coalition information availability and maintenance

avail(Person;i

4

; a

2

): incl. Name 2 attr(Person)

REQUEST-FOR-Task (context-based agent query): 'Names of Persons related to female Students' (i

2

: i

4

)

request-for Name from Person wrt i

4

- check (Person; i

4

): get JC

i

4

= (p:WM =

0

W

0

) ;

- compile into local EER-DML query:

retrieve p:Name from Person where p:WM =

0

W

0

78

A.5: De�nitions for Example 5:

Let A set of n FCSI agents, a

i

2 A, C � A

Agent Utility Function U

type

agent

id

(p(t

a

k

tid

x

;a

j

)), with production p(t

a

k

tid

x

;a

j

)

Coalition Value v(C): P(A) 7! R

+

, v(C) :=

P

a

k

2C; p2Prod

a

k

U

k

(p)

Self-Value of Agent a

i

v(fa

i

g)

Marginal Contribution of Agent a

i

to Coalition C

i

; a

i

=2 C

i

v(C

i

[fa

i

g) � v(C

i

)

Shapley-Value of agent a

i

sv

C

(a

i

) :=

1

n!

P

�

(v(C

�

i

[fa

i

g) � v(C

�

i

))

Restriction on pairs of agent entities for coalition formation: sv

fa

i

;a

j

g

(a

i

) =

1

2

v(fa

i

g +

1

2

(v(fa

j

; a

i

g) � v(fa

i

g))

Individual Rationality sv

C

(a

i

) � v(fa

i

g)

find-task interaction t

a

i

tid

1

;a

j

<intrel>(o

k

;o

j

;M;N)

t

a

i

tid

2

:,

i-IDD < intrel > satis�es the Task-Goal Part tg of both find-Tasks

C

ti

-utility function U

ti

k

U

ti

k

(p(t

a

k

tid

x

;a

j

)) :=j ft

a

k

tid

x

;a

j

<ir>(o

k

;o

j

;M;N)

t

a

k

tid

y

g j2 N

0

C

ti

-coalition value v

ti

(C) =

P

a

k

2C;p2P

a

k

U

ti

k

(p)

A.6: Example 5:

Consider now the FCSI agents fa

1

; a

2

g = A as

in the examples above, and suppose both aspect terms

intabst(Student; i

2

), intabst(Person; i

4

) as task terms of mu-

tually exchanged and thus respectively received find-tasks

t

a

1

y;a

2

, t

a

2

x;a

1

.

Then, according to their respective local knowledge about

each other, both agents are able to determine find-task in-

teractions, e.g. t

a

1

y;a

2

p�intsub(Student;Person;fi

2

g;fi

4

g)

t

a

1

x

by

agent a

1

.

Concerning the decentralized coalition value calculations,

assume that v

ti

(fa

1

g) = 0 and v

ti

(fa

2

g) = 3, i.e.

only agent a

2

can satisfy 3 of its own find-tasks ex-

clusively by itself through considering all re
exive task-

interactions induced by dependencies relating local ob-

jects. This yields v

ti

(fa

1

; a

2

g) = v

ti

(fa

1

g) + v

ti

(fa

2

g) +

U

ti

1

(fp � intsub(Student; Person; fi

2

g; fi

4

g)g) + U

ti

2

(fp �

intsub(Student; Person; fi

2

g; fi

4

g)g) = 0 + 3 + 1 + 1 = 5,

thus for the marginal contribution of a

1

to fa

2

g : 5 � 3 = 2

and in turn for a

2

: 5 - 0 = 5, which leads to the agents'

Shapley-values sv

fa

1

;a

2

g

(a

1

) = 1, sv

fa

1

;a

2

g

(a

2

) = 4. Since

their individual rationality is ful�lled and since no better of-

fer from other agents exists, both agents try to coalesce with

each other. They are then mutually committed to get ac-

cess to all respective schema aspect valuations by some now

executable request-for tasks. 2

79

Logical and Computational Properties of the Description Logic Mirtl

P. Buongarzoni, C. Meghini, R. Salis, F. Sebastiani and U. Straccia

Istituto di Elaborazione dell'Informazione

Consiglio Nazionale delle Ricerche

Via S. Maria, 46 - 56126 Pisa (Italy)

E-mail: flastnameg@iei.pi.cnr.it

1 Introduction

In recent years a number of positive (i.e. tractabil-

ity and decidability) results have been found concern-

ing the computational complexity of Description Log-

ics (DLs)

[

Buchheit et al.,1993; Donini et al.,1991;

Donini et al.,1992a; Donini et al.,1992b; Schmidt-Schau�

and Smolka,1991; Sebastiani and Straccia,1991

]

. Unfor-

tunately, also negative results have appeared, e.g. show-

ing that some DLs (e.g. NIKL

[

Patel-Schneider,1989

]

and

KL-ONE

[

Schmidt-Schau�,1989

]

) are undecidable. This

work contributes to this latter literature by showing a

negative result for another DL (calledMirtl) which had

not been previously studied from the standpoint of com-

putational complexity, and which is not directly related

to the ones already shown undecidable; in more stan-

dard DL terminology, Mirtl is the ALEN logic plus

the I operator for inverse roles and the O

1

operator for

singleton concepts

1

.

We have recently been investigating the use of

Mirtl for modelling multimedia information retrieval

(see

[

Meghini et al.,1993; Sebastiani,1994

]

). Given the

requirements imposed by this application domain, and

given the well-known negative results on the compu-

tational complexity of more powerful DLs, we had

deemed Mirtl the best compromise between expres-

sivity and tractability for our purposes. Somehow en-

couraged by the fact that the standard reasoning prob-

lems in the related logics ALCNR

[

Buchheit et al.,1993

]

,

ALCO

[

Schaerf,1994

]

and ALNI (also known as PL

1

)

[

Donini et al.,1991

]

are all decidable, and considering

that the well-known algorithms based on constraint

propagation for reasoning on them tend to be easily cus-

tomizable to a chosen set of operators, we had thought

that developing a sound and complete algorithm for

Mirtl could be reasonably straightforward.

Unfortunately, while trying to develop such an algo-

rithm, we discovered thatMirtl does not have the �nite

model property: i.e. there are satis�able Mirtl concepts

(and assertions, and KBs) which are satis�able only in

1

This latter operator is a restricted form of the O operator

(also known as one-of); the extension of a singleton concept

fag is just the singleton containing the individual denoted by

a.

interpretations of in�nite cardinality. Although this re-

sult is not one of full-blown undecidability

2

, it however

casts a shadow on the possibility of making practical use

of such a logic. In fact, since the constraint propagation

algorithms by now standard in the �eld of DLs prove

the satis�ability of a concept by building a �nite model

of the concept, these algorithms are not applicable to

Mirtl unless one renounces to guaranteed termination,

or unless one builds some non-trivial loop-detecting con-

trol structure into them.

Once we abandon the idea of checking the satis�abil-

ity of a concept by building a �nite model for it, the

problem arises whether an alternative method exists or

not. We have thus tried to �nd an upper bound to

the complement of the satis�ability problem, i.e. to �nd

a threshold under which possible inconsistencies should

necessarily show up and above which no new inconsis-

tency could emerge any more. This work reports on some

negative results we have obtained in this direction, and

which might constitute a prelude to a true undecidability

result

3

.

2 Mirtl admits in�nitary concepts

The language ofMirtl includes primitive concepts (A),

negation of primitive concepts (:A), concept conjunc-

tion (C u D), universal quanti�cation (8R:C), quali-

�ed existential quanti�cation (9R:C), number restric-

tions ((� n R) and (� n R)), inversion of roles (R

�1

) and

singleton concepts (fag). We will also use the notation

(= n R) in place of (� n R)u (� n R), and the notation

f(R):C in place of (= 1 R) u (8R:C). Finally, Mirtl

allows assertions C[a] and R[a; b], where C is a concept,

R is a role and a; b are individual constants; C[a] states

that a is an instance of C, whereas R[a; b] states that

2

There are in fact decidable logics that do not have the

�nite model property; see e.g.

[

Hughes and Cresswell,1984,

page 154

]

or

[

Vardi and Wolper,1986

]

.

3

Until recently we actually thought we had an undecid-

ability proof for Mirtl, based on a reduction of the halting

problem for a model of computation equivalent to Turing

Machines; the proof was then shown to contain a mistake by

Diego Calvanese, a mistake that we have not been able to �x

yet.

80

ha; bi is an instance of R. The semantics of these expres-

sions is standard (see e.g.

[

Donini et al.,1992a

]

), so it will

be omitted here.

Consider now the followingMirtl concept:

fzg u (� 0 S

�1

) u

f(S):(f(G

�1

):fzg) u(1)

8G:(f(S):((= 1 S

�1

) u f(G

�1

):fzg)

The e�ect of concept (1) is to state some properties of

the natural number zero (z); for instance, it states that z

has no predecessor (S

�1

) and a unique successor (S), and

that all the numbers greater than z have a unique suc-

cessor, which in turn is greater than z and has a unique

predecessor.

Theorem 2.1 Concept (1) admits only in�nite models.

Concept (1) is satis�able, as it admits the following in-

�nite model:

D = f0; 1; 2; 3; : : :g

z

I

= f0g

S

I

= fh0; 1i; h1; 2i; h2;3i; : : :g

G

I

= fh0; 1i; h0; 2i; h0;3i; : : :g

It can also be shown that if an interpretation I is a model

of concept (1), then I must be de�ned on an in�nite

domain fz

I

; d

1

; : : : ; d

n

; : : :g such that the extension of G

contains fhz

I

; d

1

i;: : : ;hz

I

; d

n

i;: : :g and the extension of

S contains fhz

I

; d

1

i;hd

1

; d

2

i;: : : ; hd

n�1

; d

n

i;: : :g.

This shows the existence of Mirtl concepts which

are satis�ed only in interpretations with in�nite do-

main; we will call them in�nitary concepts. Similar

concepts had already been shown to exist for other

DLs, albeit substantially more expressive

[

Schild,1991;

Calvanese et al.,1994

]

.

The presence of in�nitary concepts has the prac-

tical consequence that the standard methods based

on constraint propagation (e.g. the methods discussed

in

[

Schmidt-Schau� and Smolka,1991; Buchheit et

al.,1993

]

) do not work properly; since these methods at-

tempt to build a model of the concept they want to prove

consistent, once applied to in�nitary concepts they loop

forever, unless they are endowed with a control struc-

ture able to detect the construction of an in�nitely self-

replicating structure (which every Mirtl in�nitary con-

cept, from what our experiments have shown, seems to

contain).

The existence ofMirtl in�nitary concepts has a com-

putational counterpart in what might be called self-

reactivating constraints: as a consequence of the inter-

action among Mirtl propagation rules (in particular,

the rules for universal quanti�cation, role inversion and

singleton), some constraints may be such that the rules

that process them generate the same activating condi-

tions that obtained before the application of the rule

(thus inducing an in�nite loop).

After having noticed this, in our search for a decidabil-

ity result for Mirtl, we had hoped to �nd, nonetheless,

z

G

R

G

U

G

W

G

-

y

1

S

?

y

2

S

?

y

3

S

.

.

.

S

?

y

n

S

?

.

.

.

Figure 1: (Partial) graphical representation of the con-

straints generated by Concept (1).

an upper bound on the number of steps necessary to �nd

a clash deriving from an inconsistent Mirtl concept. If

we had found such an upper bound, say k, decidability

would have been established, as a Mirtl concept could

be declared satis�able after the k-th step had failed to

produce a clash. Unfortunately, this strategy proved in-

e�ective: for every f(n) (where n is the size of the con-

cept) that we had, in repeated attempts, conjectured

to be such an upper bound, we were able to discovered

an unsatis�able Mirtl concept which generated a clash

well after f(n) steps. As we will see in the next section,

this has happened for functions f of increasing order of

magnitude.

3 Looking for an upper bound

Once we abandon the idea of checking the satis�ability of

a concept by building a model for it, the problem arises

whether an alternative method exists or not. To this end,

we have studied the computational behaviour of vari-

ous categories of in�nitary concepts. For instance, if we

graphically represent a constraint system as a directed

graph, in which nodes represent objects (individual con-

stants or variables) and the set of concepts constrain-

ing them, and edges represent binary assertions between

them (the edge is oriented from the �rst element of the

assertion to the second), concept (1) generates a graph

that contains an in�nite subgraph like the one shown in

Figure 1).

By analyzing the structure of the constraint sets that

in�nitary concepts generate, we have noticed that the

generated graph has the following structural property:

it is composed by a \kernel" subgraph, in which all the

constants appearing in the concept and some variables

occur, to which other subgraphs are connected that re-

peat ad in�nitum portions of the kernel subgraph. This

shows that the constraint propagation process, after a

81

�nite number of de-activations of the same 8-constraint,

completes the construction of the kernel subgraph and

starts building an in�nite number of replicas of portions

of it.

After observing this, we have tried to individuate the

step of the constraint propagation process at which the

building of the kernel subgraph is completed and the

building of the replicas start. In fact, once this step

were individuated, the problem would be solved: in fact,

it would su�ce to check if the kernel subgraph (plus a

small number of replicas) contained an inconsistency, as,

if this were not the case, also the replicas would not con-

tain any inconsistency, and the concept could be deemed

satis�able without any further rule application.

In other words, what we have been looking for is an up-

per bound to the complement of the satis�ability prob-

lem (co-CS), i.e. a threshold under which possible in-

consistencies should necessarily emerge and above which

no new inconsistency could possibly emerge. We have

tried to �nd such an upper bound as an upper bound

on the number of de-activations of the same constraint,

expressed in terms of the size d of the initial concept.

In fact, as we have already argued, the cause of non-

termination of the computation is the re-activation of a

constraint. Hence, we have made the hypothesis that, by

limiting this number, one could limit the generation ad

in�nitum of replicas of portions of the kernel subgraph.

We then started an empirical study in order to identify

the maximum number of activations of the same con-

straint beyond which the procedure diverges and builds

an in�nite model.

3.1 Concepts denoting natural numbers

(or: the d limit)

In Section 2 we have seen that the procedure of con-

straint propagation diverges when applied to concept

1. By examining the constraint system generated after

h < d de-activations of the self-reactivating constraint

(8G:(f(S):((= 1 S

�1

) u f(G

�1

):fzg)))[z]

one can verify that no clash occurs in it. Within d activa-

tions, inconsistencies due to arbitrarily nested concepts

like the following, are discovered:

((8 R:((9 P:(9 R

�1

:fig)) u

(8 P

�1

:(8 P

�1

:(8 P

�1

:(8 P

�1

:C

0

)))))) u(2)

(9 R) u fig)

The peculiarity of this case comes from the depth of the

syntactic tree of concept 2; the subconcept C

0

is to be

found at depth level 7. In order for C

0

to constrain an

individual, it is necessary that the longest branch of the

syntactic tree is completely explored. At this point, C

0

constrains the individual constant i, and from the devel-

opment of C

0

[i] a clash may arise (e.g. if C

0

= (� 0 R)),

or the in�nite generation of variables may be blocked

(C

0

= (� n R)), or still other things may happen.

3.2 Concepts denoting the multiples of a

natural number (or: the d

2

limit)

The d limit has resisted numerous empirical tests, until

we have been able to �nd aMirtl concept denoting the

set of the multiples of a natural number. For instance,

the set of multiples of 2 may be represented by the fol-

lowingMirtl concept:

(0) C

3

= (fzg u

(1) (� 0 E

�1

) u

(2) (� 0 O

�1

) u

(3) (� 0 E) u

(4) (= 1 O) u

(5) (9 M:ftg) u

(6) (9 G:(9 O

�1

:fzg)) u

(7)(7') (8 G:((8 O

�1

:(8 O:((= 1 O

�1

) u

(� 0 O) u

(� 0 E

�1

) u

(= 1 E) u

(8 E:((9 G

�1

:fzg) u

(9 M:ftg)))))) u

(7") (8 E

�1

:(8 E:((= 1 E

�1

) u

(� 0 E) u

(� 0 O

�1

) u

(= 1 O) u

(8 O:(9 G

�1

:fzg))))))))

If we interpret the roles O, E,M e G as the \odd succes-

sor", \even successor", \multiple-of" and \bound above

by", one may see that C

3

denotes the set of even num-

bers; in fact, starting from the individual constant z and

generating variables y

1

, y

2

, : : : , only variables with an

even subscript are put in relation with the the individual

constant t. In fact, the �rst sub-concepts state that the

natural number 0 (subconcept 0) is neither the even suc-

cessor of a number (1), nor its odd successor (2); also, 0

does not have any even successor (3), has exactly an odd

successor (4), is a multiple of 2 (6). Subconcept (7) (i.e.

the one which generates the self-reactivating constraint)

states that the odd successors of their predecessor have

an even successor which is both a multiple of two and a

positive number, while the even successors of their pre-

decessors have an odd successor which is positive. In this

way, a set of constraints is generated which is partially

represented in Figure 2.

Each relation of type M is generated after two acti-

vations of the constraint (8 G : : :). In a similar way, it

would be possible to describe the multiples of 3, 4, etc..

Note that in the self-reactivating constraint (7) the

disjunction of two concepts is simulated by means of two

occurrences of the 8 operator; in fact, of the two sub-

concepts:

(7') (8 O

�1

:(8 O:(: : :)))

(7") (8 E

�1

:(8 E:(: : :)))))

only one is activated when they are applied to the same

variable. The activation depends on the subscript of

the variable: variables with even subscript k represent

the even successor of the k � 1 variable; variables with

82

z

-

G

R

U

N

G

y

1

?

E

y

2

�

?

O

y

3

?

E

y

4

M

�

t

Figure 2: Graphical representation of the set of con-

straints denoting the multiples of 2.

odd subscript k represent the odd successor of the same

variable.

In order to describe the multiples of the numbers

greater than 2 it is su�cient to modify concept C

3

by changing roles E and O into S

0

and S

1

, and

adding as many roles S

j

and as many subconcepts

(8 S

�1

j

:(8 S

j

: : : :))) as the number whose successors we

want to represent (S

j

stands for \successor modulo j").

This concept, which is in itself satis�able, can be used

in order to write unsatis�able concepts whose �rst clash

occurs after d activations of a constraint. In fact, if the

individual constant t were constrained by concept (�

k M

�1

), for some k, the clash would be generated only

after n(k + 1) � 1 de-activations of the self-reactivating

constraint, where n is the number of subconcepts of type

(8 S

�1

j

:(8 S

j

: : : :))) of the self-reactivating constraint. As

the numbers n and k have the same order of magnitude

of the dimension d of the original concept, the �rst clash

will appear in the constraint system before O(d

2

) steps

but after O(d) steps.

3.3 Concepts denoting the �rst n powers

of a number (or: the d

d

limit)

If we substitute, within concept 1 the self-reactivating

subconcept:

(8G:(f(S):((= 1 S

�1

) u f(G

�1

):fzg)

by

(8 G:f(S):((= 1 S

�1

) u

f(G

�1

):fzg u

(9 R

1

:((� n R

�1

1

) u

(9 R

2

:((� n R

�1

2

) u

(9 R

3

:((� n R

�1

3

) u

ftg))))))))

we obtain an unsatis�able concept, whose �rst clash ap-

pears within the constraint system after d

2

activations of

the self-reactivating constraint. In fact, during the ap-

plication of the propagation rules, the subconcept (9 R

1

: : :) generates within the graph of Figure 3 a path of

length 3 ending with the individual constant t. When a

h = 3

n

h

z

�

?

�

?

�

?

�

?-

?R

?U

?N

?W

S

?

.

.

.

R

1

q

R

1

1

R

1

q

R

1

1

R

1

q

R

1

1

R

1

q

R

1

1

R

2

j

R

2

*

R

2

j

R

2

*

R

3

R

R

3

�

t

Figure 3: Graphical representation of the constraints de-

noting the �rst power of 2.

path for every variable y

j

is generated, a tree is created

with root t and depth 3. As the individual constant t is

constrained by concept (� n R

�1

3

), when variable y

n

3

+1

is generated (at the n

3

+1-th disactivation of the (8 G : : :)

constraint, the �rst clash appears within the constraint

system. Adding a role to path R

1

, R

2

, : : :corresponds

to incrementing by one the depth of the tree, and con-

sequentially incrementing by one the value h of the ex-

ponent; instead, modifying the value n of the number

restrictions corresponds to modify the width of the tree,

and consequentially modifying the base n. Obviously,

both h and n are strictly smaller than d, but still remain

of the same order of magnitude; hence, the number of

de-activations of a constraint remains exponential in the

dimension d of the original concept C.

It is also possible to combine these two latter sources

of complexity (multiples of a number (d

2

) and powers of

a number (d

d

)), by generating the role R

1

only for the

multiples of a number; this brings the maximumnumber

of activations to d � d

d

.

4 Conclusions

In this work we have shown that Mirtl does not en-

joy the �nite model property, and have discussed some

consequences of this fact. In particular, we have argued

that, even if Mirtl should be proven decidable (which

is still, to the best of our knowledge, an open problem),

reasoning on it by means of constraint propagation al-

gorithms is probably going to be computationally oner-

ous, as Mirtl concepts may be written which generate

clashes only after a computationally unfeasible number

of steps.

83

Acknowledgements

We are grateful to Diego Calvanese for his detailed com-

ments to an earlier draft (see Footnote 3), and for giving

us interesting pointers to the literature.

References

[

Buchheit et al., 1993

]

Martin Buchheit, Francesco M.

Donini, and Andrea Schaerf. Decidable reasoning

in terminological knowledge representation systems.

Journal of Arti�cial Intelligence Research, 1:109{138,

1993.

[

Calvanese et al., 1994

]

Diego Calvanese, Maur-

izio Lenzerini, and Daniele Nardi. A uni�ed frame-

work for class-based representation formalisms. In

Proceedings of KR-94, 5th International Conference

on Principles of Knowledge Representation and Rea-

soning, pages 109{120, Bonn, FRG, 1994.

[

Donini et al., 1991

]

Francesco M. Donini, Maurizio

Lenzerini, Daniele Nardi, and Werner Nutt. Tractable

concept languages. In Proceedings of IJCAI-91, 12th

International Joint Conference on Arti�cial Intelli-

gence, pages 458{463, Sidney, Australia, 1991.

[

Donini et al., 1992a

]

Francesco M. Donini, Maurizio

Lenzerini, Daniele Nardi, Werner Nutt, and Andrea

Schaerf. Adding epistemic operators to concept lan-

guages. In Proceedings of KR-92, 3nd International

Conference on Principles of Knowledge Representa-

tion and Reasoning, pages 342{353, Cambridge, MA,

1992.

[

Donini et al., 1992b

]

Francesco M. Donini, Maurizio

Lenzerini, Daniele Nardi, and Andrea Schaerf. From

subsumption to instance checking. Technical Report

15.92, Dipartimento di Informatica e Sistemistica,

Universit�a di Roma \La Sapienza", Roma, Italy, 1992.

[

Hughes and Cresswell, 1984

]

George E. Hughes and

Maxwell J. Cresswell. A companion to modal logic.

Methuen, London, UK, 1984.

[

Meghini et al., 1993

]

Carlo Meghini, Fabrizio Sebas-

tiani, Umberto Straccia, and Costantino Thanos. A

model of information retrieval based on a terminolog-

ical logic. In Proceedings of SIGIR-93, 16th ACM In-

ternational Conference on Research and Development

in Information Retrieval, pages 298{307, Pittsburgh,

PA, 1993.

[

Patel-Schneider, 1989

]

Peter F. Patel-Schneider. Unde-

cidability of subsumption in NIKL. Arti�cial Intelli-

gence, 39:263{272, 1989.

[

Schaerf, 1994

]

Andrea Schaerf. Reasoning with individ-

uals in concept languages. Data and Knowledge En-

gineering, 13:141{176, 1994.

[

Schild, 1991

]

Klaus Schild. A correspondence theory for

terminological logics: preliminary report. In Proceed-

ings of IJCAI-91, 12th International Joint Conference

on Arti�cial Intelligence, pages 466{471, Sidney, Aus-

tralia, 1991.

[

Schmidt-Schau� and Smolka, 1991

]

Manfred Schmidt-

Schau� and Gert Smolka. Attributive concept descrip-

tions with complements. Arti�cial Intelligence, 48:1{

26, 1991.

[

Schmidt-Schau�, 1989

]

Manfred Schmidt-Schau�. Sub-

sumption in KL-ONE is undecidable. In Proceedings of

KR-89, 1st International Conference on Principles of

Knowledge Representation and Reasoning, pages 421{

431, Toronto, Ontario, 1989.

[

Sebastiani and Straccia, 1991

]

Fabrizio Sebastiani and

Umberto Straccia. A computationally tractable termi-

nological logic. In Proceedings of SCAI-91, 3rd Scan-

dinavian Conference on Arti�cial Intelligence, pages

307{315, Roskilde, Denmark, 1991.

[

Sebastiani, 1994

]

Fabrizio Sebastiani. A probabilis-

tic terminological logic for modelling information re-

trieval. In Proceedings of SIGIR-94, 17th ACM In-

ternational Conference on Research and Development

in Information Retrieval, pages 122{130, Dublin, IRL,

1994.

[

Vardi and Wolper, 1986

]

Moshe Vardi and P. Wolper.

Automata-theoretic techniques for modal logics of

programs. Journal of Computer and Systems Science,

32:183{221, 1986.

84

Making CAT S out of kittens: description logics with aggregates

Giuseppe De Giacomo and Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica

Universit�a di Roma \La Sapienza"

Via Salaria 113, 00198 Roma, Italia

fdegiacomo,lenzerinig@assi.dis.uniroma1.it

Abstract

Based on the research done in the last decade,

attempts have been made to propose descrip-

tion logics as unifying formalisms for the var-

ious class-based representation languages used

in di�erent areas. These attempts have made

apparent that sound, complete, and decidable

description logics still su�er from several lim-

itations, regarding modeling classes of aggre-

gate objects, expressing general inclusion ax-

ioms, and the ability of navigating links be-

tween classes. In this paper, we propose a pow-

erful description logic overcoming the above

limitations and we show that its reasoning tasks

are decidable in worst case exponential time.

1 Introduction

Description logics are AI formalisms that allow one

to represent domain knowledge by focusing on classes

of objects

[

Brachman,1977

]

and their relationships

[

Woods,1975

]

, and o�ering specialized inferences on the

class structure.

The research developed in the last decade o�ers a

quite complete picture of several issues related to the

expressive power of the logics and the computational

complexity of the reasoning tasks (see

[

Woods and

Schmolze,1992

]

). Based on the outcome of this re-

search, attempts have been made to propose descrip-

tion logics as unifying formalisms for the various class-

based representation languages used in di�erent areas,

such as semantic networks, feature logics, conceptual

and object-oriented database models, type systems, and

other formalisms used in software engineering

[

Bergam-

aschi and Sartori,1992; Piza et al.,1992; Borgida,1992;

Calvanese et al.,1994; Schreiber et al.,1993

]

. However,

these attempts have made apparent that description log-

ics equipped with sound, complete, and terminating rea-

soning procedures still su�er from several limitations

that are not acceptable when representing complex do-

mains in the di�erent �elds mentioned above. Here is a

list of the most important limitations.

� The domain of interpretation is
at, in the sense

that the logics consider the world as constituted by ele-

mentary objects (grouped in concepts) and binary rela-

tions between them. One consequence of this property

is that N-ary relations are not supported (an exception

is the logic proposed in

[

Schmolze,1989

]

, for which no

complete decision procedure was proposed). In fact, N-

ary relations have been shown to be important in several

contexts (see

[

Catarci and Lenzerini,1993

]

), especially in

databases and natural language. For example, `exam' is

correctly modeled as a ternary relation over `student',

`professor' and `course'. Note that supporting N-ary re-

lations means that the logic o�ers suitable mechanisms

for their de�nition and characterization. For example,

one has to ensure that no pair of `exam' instances con-

nect the same triple of objects; also, one may want to

assert that students linked to graduate courses by the

relation exam are graduate students. These kinds of

properties cannot be represented by simply modeling the

N-ary relation in terms of N binary relations.

� Usually, general inclusion axioms are not supported.

Although inclusion axioms are essential when we want

to assert properties of classes and relations, as required

in complex domains, most of the research on descrip-

tion logics either deals with class descriptions only, or

impose severe restrictions, such as acyclicity, on axioms.

Exceptions are, for example,

[

Nebel,1991; Baader,1991;

Schild,1991; De Giacomo and Lenzerini,1994; Buchheit

et al.,1993

]

. An important outcome of this research

is that reasoning with axioms is computationally hard,

even for the simplest description logics (weaker than

FL

�

). All these works, however, limit their attention

to axioms on concepts, and do not consider the problem

of expressing inclusion axioms on relations.

� Relationships between classes are generally de-

scribed by means of poor representation mechanisms. In

fact, when trying to use description logics for capturing

representation formalisms used in di�erent �elds, one re-

alizes that at least three features are essential: the abil-

ity of navigating relationships (say of a semantic network

or an entity-relationship schema) in both directions; the

ability of stating cardinality constraints of general forms

on relationships; the possibility of conceiving relation-

ships as sets, thus applying set theoretic operators on

85

them (including the notorious role value map

[

Woods

and Schmolze,1992

]

).

The aim of the present work is to devise a description

logic, called CAT S, that �nally addresses the above

issues. The basic ingredients of CAT S are classes

and links. In contrast to traditional description logics,

classes are abstractions not only for a set of individu-

als (corresponding to the usual notion of concept, called

simple class here), but also for sets that have aggregates

as instances (called aggregate classes). There are two

types of aggregates: property aggregates and instance

aggregates. A property aggregate is an abstraction for

an object that is considered as an aggregation of other

objects, one for each attribute belonging to a speci�ed

set

[

Smith and Smith,1977

]

. A typical example of such

an aggregate is a date, which is seen as an aggregation of

three objects, one for the attribute day, one for the at-

tribute month, and one for the attribute year. Another

example of property aggregate is an exam, which again

is seen as an aggregation of three objects (one professor,

one student and one course). This makes clear that N-

ary relations can be modeled as classes whose instances

are aggregates. An instance aggregate is an abstraction

of a group of other objects belonging to a certain class

[

Brodie and Ridjanovic,1984

]

. A typical example of such

an aggregate is a team, which can be seen as a group of

players. Like any other description logics, CAT S allows

one to form complex classes by applying suitable con-

structors to both simple and aggregate classes. Notably,

CAT S includes a form of role value map, and the most

general form of number restrictions (called quali�ed).

Links are abstractions for atomic, basic, and complex

relationships between classes. An atomic link (denoted

simply by a name, and also called attribute) is the most

elementary mean for establishing a relationship between

classes. A basic link is formed by applying certain con-

structors (like inverse, union, intersection and di�erence)

to atomic links. A complex link is formed by applying

more complex constructors (like chaining, transitive clo-

sure, and identity) to basic links.

A knowledge base in CAT S is simply a set of inclu-

sion axioms. We point out that CAT S allows inclusion

assertions to be stated on classes of all kinds (simple, ag-

gregate and complex), and on basic links, with no limita-

tion (for example on cycles). A particular care is put in

devising CAT S so that its reasoning tasks remain decid-

able and even with the same computational complexity

as the simplest description logics where inclusion axioms

are allowed. Indeed, making use of the results in

[

De

Giacomo and Lenzerini,1994

]

, we have proved that com-

puting logical implication (and satis�ability) in CAT S,

is both EXPTIME-hard and decidable with exponential

time in the worst case.

2 The description logic CAT S

As we said above, the language of CAT S supports classes

and links. Classes are partitioned into simple classes

and aggregate classes, which are further distinguished in

property aggregate and instance aggregate classes. Links

are partitioned into atomic (also called attributes), basic,

and complex.

Let a nonempty �nite alphabet A of atomic classes

(classes denoted simply by a name, no matter if simple

or aggregate), and a nonempty �nite alphabet U of at-

tributes be available. We use A for a generic element

of A, U (possibly with subscript) for a generic element

of U , C (possibly with subscript) for a generic class, b

(possibly with subscript) for a generic basic link, and L

(possibly with subscript) for a generic complex link. The

language of CAT S has the following syntax (n; k � 1):

C ::= A j � (U

1

; : : : ; U

n

) j �(C;U

1

; : : : ; U

n

) j �(C) j

C

1

u C

2

j :C j 8L.C j (� k b.C) j (� k b

�

.C) j

(b

1

� b

2

) j (b

�

1

� b

�

2

)

b ::= U j3j b

1

[b

2

j b

1

n b

2

L ::= b j L

1

� L

2

j L

1

[L

2

j L

�

j L

�

j id(C)

We use a (possibly with subscript) for b and b

�

, and we

adopt the following abbreviations: >

:

= At:A, ?

:

= :>,

�

:

= � (U

1

) t � � � t � (U

m

) (where fU

1

; : : : ; U

m

g = U),

�

:

= �(>), C

1

t C

2

:

= :(:C

1

u :C

2

), 9L.C

:

= :8L.:C,

;

:

=3 n 3, (� k a.C)

:

= :(� k + 1 a.C), a

1

\ a

2

:

=

a

1

n (a

1

n a

2

), and (a

1

= a

2

)

:

= (a

1

� a

2

) u (a

2

� a

1

).

Parentheses are used to disambiguate expressions.

The semantics for the language of CAT S is based on

an interpretation I = (O

I

; �

I

), where O

I

is the universe

of the interpretation, and �

I

is the interpretation func-

tion over such a universe. Di�erently from the usual

notion of interpretation, O

I

is a nonempty set of poly-

morphic objects, which means that every object in O

I

has none, one, or both of the following two forms:

1. The form of tuple: when an object has this form, it

can be considered as a property aggregation, which

is formally de�ned as a partial function from U to

O

I

. We use the term tuple to denote an object in

O

I

that has the form of tuple, and we write hU

1

:

o

1

; : : : ; U

n

: o

n

i

1

to denote any tuple t such that,

for each i 2 f1; : : : ; ng, t(U

i

) is de�ned and equal

to o

i

(which is called the U

i

-component of t). Note

that the tuple t may have other components as well,

besides the U

i

-components.

2. The form of set: when an object o has this form, it

can be considered as an instance aggregate, which

is formally de�ned as a nonempty �nite collection of

objects in O

I

, with the following proviso: the view

of o as a set is unique, in the sense that there is

only one �nite collection of objects of which o can

be considered an aggregation, and no other object

o

0

is the aggregation of the same collection. We use

the term set to denote an object in O

I

that has the

form of set, and we write fjo

1

; : : : ; o

n

jg to denote the

collection whose members are exactly o

1

; : : : ; o

n

.

Objects having none of these forms are called elementary

objects - i.e., individuals with no structure.

1

This notation makes it clear that a tuple is indeed a

function assigning one element of O

I

to some of the elements

of U .

86

The interpretation function �

I

is de�ned as follows:

� It assigns to 3 a subset of O

I

� O

I

such

that for each fj: : : ; o; : : : jg2 O

I

, we have that

(fj: : : ; o; : : : jg; o) 2 3

I

.

� It assigns to every attribute U a subset of O

I

�

O

I

such that, for each h: : : ; U : o; : : :i 2 O

I

,

(h: : : ; U : o; : : :i; o) 2 U

I

, and there is no o

0

2 O

I

di�erent from o such that (h: : : ; U : o; : : :i; o

0

) 2 U

I

.

Note that this implies that every U in a tuple is

functional for the tuple.

� It assigns to every basic link a subset of O

I

� O

I

such that the following conditions are satis�ed:

(b

1

[b

2

)

I

= b

I

1

[b

I

2

(b

1

n b

2

)

I

= b

I

1

� b

I

2

(b

�

)

I

= f(o; o

0

) j (o

0

; o) 2 b

I

g:

� It assigns to every complex link a subset of O

I

�O

I

such that the usual conditions for �, [,

�

,

�

, and id

are satis�ed:

(L

1

[L

2

)

I

= L

I

1

[L

I

2

(L

1

� L

2

)

I

= L

I

1

� L

I

2

(L

�

)

I

= (L

I

)

�

(L

�

)

I

= f(o; o

0

) 2 O

I

� O

I

j (o

0

; o) 2 R

I

g

id(C)

I

= f(o; o) 2 O

I

�O

I

j o 2 C

I

g:

� It assigns to every class a subset of O

I

in such a

way that the following conditions are satis�ed (]fg

denotes the cardinality of a set): - A

I

� O

I

- � (U

1

; : : : ; U

n

)

I

= fhU

1

: o

1

; : : : ; U

n

: o

n

i 2 O

I

j

o

1

; : : : ; o

n

2 O

I

g

- �(C;U

1

; : : : ; U

n

)

I

= S � � (U

1

; : : : ; U

n

) \ C

I

and

no distinct s; s

0

2 S have the same U

1

; : : : ; U

n

-

components

- �(C)

I

= ffjo

1

; : : : ; o

n

jg2 O

I

j o

1

; : : : ; o

n

2 C

I

g

- (C

1

u C

2

)

I

= C

I

1

\ C

I

2

- (:C)

I

= O

I

�C

I

- (8L.C)

I

= fo 2 O

I

j 8o

0

:(o; o

0

) 2 R

I

� o

0

2 L

I

g

- (� k a.C)

I

= fo 2 O

I

j]f(o; o

0

) 2 a

I

^o

0

2 C

I

g �

kg

- (a

1

� a

2

)

I

= fo 2 O

I

j fo

0

j (o; o

0

) 2 a

I

1

g � fo

0

j

(o; o

0

) 2 a

I

2

gg.

A CAT S TBox K is a �nite set of inclusion assertions

of the form C

1

v C

2

, where C

1

and C

2

are classes in

CAT S (we write C

1

� C

2

for C

1

v C

2

; C

2

v C

1

). As

usual, an interpretation I is a model of C

1

v C

2

if C

I

1

�

C

I

2

, and K j= C

1

v C

2

(read as K logically implies C

1

v

C

2

), if each model of all assertions in K is also a model

of C

1

v C

2

. As mentioned, we have the following result.

Theorem 1 Logical implication in CAT S is

EXPTIME-complete.

3 Discussion

Let us discuss the most important modeling capabilities

of CAT S by means of one example.

>v (father\ mother � ;)u

(father\ children� ;)u

(children\ mother� ;)

>v 8father

�

[mother

�

[children

�

.Family

Date � �(Date; day; month; year)

9date

�

.> v Date

9day

�

.> v Day

9month

�

.>v Month

9year

�

.> v Year

9city

�

.> v City

Dayt Montht Year v :� u :�

Mayor � 9mayor

�

.>

9mayor.>v City

City v �(name; state; country; mayor)u

�(City; name; state; country) u �(City; mayor)

Familyv �(Person) u �(father; mother; date; city)u

�(Family; father; mother; date)u

(3= father[mother[children)

StillFamilyv Familyu �(StillFamily; father; mother)

PhdFamily� (� 3 3 .PhdPerson) u (� 1 3 .:PhdPerson)

Personv (9children

�

.>) u (� 1 children

�

.>)

ChildOfMayor� 9children

�

� father.Mayor

VeryPhd� 8(children

�

� (father[mother))

�

.PhdPerson

Figure 1: Families, persons, and cities

Figure 1 shows a TBox K modeling a world with per-

sons, families and cities. The following observations help

understanding the expressive power of CAT S.

� Objects are polymorphic. For example, every in-

stance of Family (representing families resulting

from a marriage) can be seen both as a set of per-

sons, and as a tuple with attributes father, mother,

date (of marriage) and city (of marriage). Note,

however, that assertions can be used to impose that

the instances of a certain class (Day, Month and Year

in our example) can only be seen as elementary ob-

jects.

� Inclusion assertions on classes are used with no lim-

itation. In particular, they can be stated for all

kinds of classes, and cycles are allowed in the TBox.

Notably, inclusion assertions can also be stated for

basic links: indeed, > v (b

1

� b

2

) forces b

1

to a

subset of b

2

in every model of K. Inclusion asser-

tions of this kind are used in the example to specify

the properties of the attributes father, mother and

children.

� N-ary relations are supported. Any instance of

Family can indeed be considered as a relation with

four arguments. The � constructor is used to de-

�ne keys for (N-ary) relations: for example, the

fact that every instance of Family is an instance

of �(Family; father; mother; date) implies that the

three attributes form a key for the class. On

the other hand, StillFamily, representing families

whose father and mother are still married, has a

more specialized key, constituted by the attributes

father and mother. Observe that several keys can

87

be de�ned for a class (see City).

� Quali�ed number restrictions and role value maps

on basic links can be used without any limitation.

Indeed, (3= father[mother[children) is a role

value map on basic links.

� Complex links can be used for modeling interest-

ing relationships. For example, the relationship

hasfather between a person and her/his father

is captured in K by children

�

� father (sim-

ilarly for hasmother). Also, ancestor is cap-

tured by (hasfather[hasmother) � (hasfather[

hasmother)

�

(see the de�nition of VeryPhd).

As an example of inference that can be draw from K,

observe that:

K j= 9children

�

.> v Personu 9 3

�

.9father.>:

Indeed, note that every instance of 9children

�

.> is

also an instance of 9father

�

[mother

�

[children

�

.>

and therefore is an instance of Family. This means

that K j= 9children

�

.> v 9children

�

.Family. Ob-

serve that K j= Family v (children �3), and, since

K j= Family v 8 3 .Person (because K j= Family v

�(Person)), we have that K j= 9children

�

.> v

9children

�

.(8children.Person), which implies that

K j= 9children

�

.> v Person. The fact that K j=

9children

�

.> v 9 3

�

.9father.> easily follows from

the fact that every Family is a tuple with attribute

father.

4 Conclusions

It is our opinion that the work described in this paper

makes description logics accomplish the necessary leap in

order to be well equipped for the new challenging appli-

cations they are faced with. Our �rst investigations show

that CAT S can indeed capture and extend most class-

based representation formalisms used in di�erent areas

as AI, databases, software engineering, etc.. One main

issue still remains to be addressed, namely, the possibil-

ity of adding to CAT S suitable constructs for express-

ing �niteness of nested aggregates, and, correspondingly,

suitable techniques for reasoning in �nite models (in the

style of

[

Calvanese et al.,1994

]

). This will be the subject

of further research.

References

[

Baader, 1991

]

F. Baader. Augmenting concept lan-

guages by transitive closure of roles: An alternative

to terminological cycles. In Proc. of IJCAI-91, Syd-

ney, Australia, 1991.

[

Bergamaschi and Sartori, 1992

]

S. Bergamaschi and C.

Sartori. On taxonomic reasoning in conceptual de-

sign. ACM Trans. on Database Systems, 17(3):385{

422, 1992.

[

Borgida, 1992

]

A. Borgida. From type systems to

knowledge representation: Natural semantics speci-

�cations for description logics. J. of Intelligent and

Cooperative Information Systems, 1(1):93{126, 1992.

[

Brachman, 1977

]

R. J. Brachman. What's in a concept:

Structural foundations for semantic networks. Inter-

national Journal of Man-Machine Studies, 9(2):127{

152, 1977.

[

Brodie and Ridjanovic, 1984

]

M. L. Brodie and D. Rid-

janovic. On the design and speci�cation of database

transactions. In On Conceptual Modelling, pages 277{

306. Springer-Verlag, 1984.

[

Buchheit et al., 1993

]

M. Buchheit, F. M. Donini, and

A. Schaerf. Decidable reasoning in terminological

knowledge representation systems. J. of Arti�cial In-

telligence Research, 1:109{138, 1993.

[

Calvanese et al., 1994

]

D. Calvanese, M. Lenzerini, and

D. Nardi. A uni�ed framework for class based repre-

sentation formalisms. In Proc. of KR-94, pages 109{

120, Bonn, 1994. Morgan Kaufmann, Los Altos.

[

Catarci and Lenzerini, 1993

]

T. Catarci and M. Lenz-

erini. Representing and using interschema knowledge

in cooperative information systems. J. of Intelligent

and Cooperative Information Systems, 2(4):375{398,

1993.

[

De Giacomo and Lenzerini, 1994

]

G. De Giacomo and

M. Lenzerini. Boosting the correspondence between

description logics and propositional dynamic logics. In

Proc. of AAAI-94, pages 205{212. AAAI Press/The

MIT Press, 1994.

[

Nebel, 1991

]

B. Nebel. Terminological cycles: Seman-

tics and computational properties. In Principles of Se-

mantic Networks, pages 331{361. Morgan Kaufmann,

Los Altos, 1991.

[

Piza et al., 1992

]

B. Piza, K.-D. Schewe, and J. W.

Schmidt. Term subsumption with type constructors.

In Proc. of CIKM-92, pages 449{456, Baltimore, 1992.

[

Schild, 1991

]

K. Schild. A correspondence theory for

terminological logics: Preliminary report. In Proc. of

IJCAI-91, pages 466{471, Sydney, 1991.

[

Schmolze, 1989

]

J. G. Schmolze. Terminological knowl-

edge representation systems supporting n-ary terms.

In Proc. of KR-89, pages 432{443.Morgan Kaufmann,

Los Altos, 1989.

[

Schreiber et al., 1993

]

G. Schreiber, B. Wielinga, and J.

Breuker. KADS: A principled approach to knowledge-

based system development. Academic Press, 1993.

[

Smith and Smith, 1977

]

J. M. Smith and D. C. P.

Smith. Database abstractions: Aggregation and gen-

eralization. ACM Transactions on Database Systems,

2(2):105{133, 1977.

[

Woods and Schmolze, 1992

]

W. A. Woods and J. G.

Schmolze. The KL-ONE family. In Semantic Net-

works in Arti�cial Intelligence, pages 133{178. Perga-

mon Press, 1992.

[

Woods, 1975

]

W. A. Woods. What's in a link: Foun-

dations for semantic networks. In Representation and

Understanding: Studies in Cognitive Science, pages

35{82. Academic Press, 1975.

88

Symbolic Arithmetical Reasoning with Quali�ed Number Restrictions

Hans J�urgen Ohlbach, Renate A. Schmidt and Ullrich Hustadt

Max-Planck-Institut f�ur Informatik

Im Stadtwald, 66123 Saarbr�ucken, Germany

Email: fohlbach, schmidt, hustadtg@mpi-sb.mpg.de

Abstract

Many inference systems used for concept de-

scription logics are constraint systems that em-

ploy tableaux methods. These have the dis-

advantage that for reasoning with quali�ed

number restrictions n new constant symbols

are generated for each concept of the form

(� n R C). In this paper we present an al-

ternative method that avoids the generation of

constants and uses a restricted form of sym-

bolic arithmetic considerably di�erent from the

tableaux method. The method we use is in-

troduced in Ohlbach, Schmidt and Hustadt

1995 for reasoning with graded modalities. We

exploit the exact correspondence between the

concept description language ALCN and the

multi-modal version of the graded modal logic

K and show how the method can be applied to

ALCN as well.

This paper is a condensed version of Ohlbach et

al. 1995. We omit proofs and much of the tech-

nical details, but we include some examples.

1 The description logic ALCN

+

The description logic ALCN de�ned in Hollunder and

Baader 1991 extends the logic ALC of Schmidt-Schau�

and Smolka 1991 with numerical quanti�er constructs.

The logic ALC can be viewed as a restricted form of a

multi-modal logic, called K

(m)

[

Schild,1991

]

. The lan-

guage of ALC includes the operations u (conjunction),

t (disjunction), : (negation), 9 (existential role quan-

ti�cation) and 8 (universal role quanti�cation), and it

includes two designated primitive concepts > (top) and

? (bottom). The Boolean operations correspond to the

propositional connectives in modal logic, and role quan-

ti�er expressions of the general form 9R :C and 8R :C

correspond to the modal formulae hRiC and [R]C, re-

spectively. The numerical quanti�er constructs in the

language of ALCN have the general form

(� n R C) and (� n R C)

(with n � 0) and have modal correspondents as well

[

van der Hoek and de Rijke,1992

]

. (� n R C) and

(� n R C) de�ne sets of elements which have, respec-

tively, at least n and at most n successors by R in C.

For example,

city = place u(1)

(� 100 001 inhabited-by people)

de�nes the concept city to be a place with more than

100 000 inhabitants.

The language we consider is slightly more expressive

than ALCN . Our version, referred to as ALCN

+

, has

no restrictions on the inclusion statements. On the left

hand side of inclusions arbitrary concepts may occur,

whereas in ALCN only atomic concepts can occur on

the left hand side. Also, terminological cycles are al-

lowed. ALCN

+

coincides with the language ALCNR

considered in Buchheit et al. 1993, except that role con-

junction is not provided for.

Formally, the syntax of ALCN

+

is de�ned as follows.

The signature of the terminological language of ALCN

+

consists of a set �

R

of role names and a disjoint set �

C

of concept names. From role names Q 2 �

R

and concept

names A 2 �

C

compound concept terms C are formed

according to the following rules:

C;D �! A j :C jC u D jC t D j

9R :C j 8R :C j

(� n R C) j (� n R C) j

C v D jC = D:

n is a non-negative integer. Most authors de�ne the

symbols v and = to be sentential symbols. We de�ne

them to be connectives just as u and t are. Note, we

consider terminological sentences of the form C v D and

C = D to be concept terms. In ALCN terminological

sentences are constrained to be of the form A v C and

A = C, where A are concept names. A T-Box is de�ned

as a set of concept terms.

The semantics of ALCN

+

is speci�ed by an interpre-

tation I = (U; V) with U a non-empty set U (the do-

main of interpretation) and a signature assignment V .

The signature assignment maps role names to binary re-

lations on U and it maps concept names to subsets of U .

The interpretation of concept terms C and D speci�ed

89

by:

C

I

= V (C) if C is a concept name

(C v D)

I

= (U nC

I

) [D

I

(C = D)

I

= (U n (C

I

[D

I

)) [(C

I

\ D

I

))

and as usual for the remaining operations. Atomic con-

cept names in a T-Box T are interpreted as the entire

domain and are all equivalent to the top concept >. >

is the largest element in the subsumption ordering. The

complement of > is ? and represents the empty set.

An interpretation I = (U; V) with C

I

= U for all con-

cept terms C in the T-Box T is a model of T . A concept

term C is universal i� C

I

= U for all interpretations

I. C is empty or incoherent i� C

I

= ; for all interpre-

tations I. The entailment relation j= between concept

terms is de�ned by: C j= D i� D

I

= U for every inter-

pretation I of C. Then C j= D i� C v D is universal i�

C u :D is empty.

We treat sets fC

1

; : : : ; C

n

g of concept terms in the

same way as the conjunction C

1

u : : : u C

n

. Thus, a

given T-Box T will be treated as the conjunction of its

elements.

In contrast to other terminological languages the lan-

guage ALCN

+

includes no role-forming operators. Roles

that occur are all atomic. To simplify our presentation,

without loss of generality we assume there is one atomic

role R.

2 The graded modal logic K

The corresponding modal logic of ALCN

+

is the multi-

modal version of the graded modal logic K (de�ned for

example in van der Hoek 1992). Graded modalities are

modal operators indexed with cardinal numbers which

�x the number of worlds in which a formula is true. The

formula 3

n

' (with n a non-negative integer) is true in a

world i� there are more than n accessible worlds in which

the formula ' is also true. The dual formula 2

n

', given

by :3

n

:', is then true in a world i� there are at most

n accessible worlds in which :' is true. Another form of

graded modal formula is 3!

n

'. 3!

0

' abbreviates 2

0

:'

and 3!

n

' abbreviates 3

n�1

' ^ :3

n

' for n > 0. 3!

n

' is

true in a word i� ' is true in exactly n accessible worlds.

More formally, the semantics of the graded modal oper-

ators is de�ned in terms of one accessibility relation, say

R, by:

M; x j=

K

3

n

'

i� jfy jR(x; y) &M; y j=

K

'gj > n

M; x j=

K

2

n

'

i� jfy jR(x; y) &M; y j=

K

:'gj � n

M; x j=

K

3!

n

'

i� jfy jR(x; y) &M; y j=

K

'gj = n:

M denotes a model and x, y denote possible worlds. For

any set X, jXj denotes the cardinality of X. The modal

version of (� n R C) is 3

n�1

C and the modal version of

(� n R C) is 2

n

:C. We think of the diamond and box

operators being associated with the accessibility relation

that de�nes the role R.

The logic K has a Hilbert-style presentation �

K

that

is sound and complete with respect to its natural pos-

sible worlds semantics

[

Fine,1972; de Caro,1988

]

. �

K

is

de�ned by the following axioms

A1 the axioms of propositional logic

A2 `

K

3

n+1

'!3

n

'

A3 `

K

2

0

('!)! (3

n

'!3

n

)

A4 `

K

2

0

:(' ^)!

((3!

n

' ^3!

m

)!3!

n+m

(' _))

together with the uniform substitution rule, Modus Po-

nens, and the necessitation rule for 2

0

:

US if ' is a theorem so is every substitution instance

of '

MP if `

K

' and `

K

'! then `

K

N if `

K

' then `

K

2

0

'.

Van der Hoek 1992 shows K is decidable.

3 ALCN

+

and K

We now show that ALCN

+

can be embedded in K. De-

�ne a mapping � from ALCN

+

to K by:

� (C) = C if C is an atomic concept

� (:C) = :� (C)

� (C u D) = � (C) ^ � (D)

� (C t D) = � (C) _ � (D)

� (C v D) = � (C)! � (D)

� (C = D) = � (C)$ � (D)

� (9R :C) = 3

0

� (C)

� (8R :C) = 2

0

� (C)

� (� n R C) = 3

n�1

� (C)

� (� n R C) = 2

n

:� (C)

Theorem 1 The translation � is sound and complete:

For any concept C, C is universal i� � (C) is a tautology,

i.e. j=

K

� (C).

Proof. Let I = (U; V) be any interpretation of a T-Box

of ALCN

+

. LetM be the modal model (U;R

I

; V). By

induction on the structure of C prove, for every x 2 U :

x 2 C

I

i�M; x j=

K

� (C). The proof is routine and we

omit the details. 2

SinceK is sound and complete, �

K

provides an axiom-

atization for ALCN

+

with one role (that is both sound

and complete). We have:

Theorem 2 For any concept C, C is universal i� its

translation � (C) is provable in �

K

.

A sound and complete axiomatisation for ALCN

+

with

arbitrarily many roles is given by the multi-modal ver-

sion of �

K

in which each modal operator is indexed with

an R.

90

4 Reasoning for ALCN

+

Tableaux systems like the constraint system described

in Hollunder and Baader 1991, for description logics

with numerical quanti�er constructs, are based on the

set-theoretic semantics and generate for each numerical

quanti�er � n (or 3

n�1

) n new constant symbols. For

large n as in the sample de�nition (1) this is infeasible.

On the other hand, the axiomatization of K is formu-

lated with arithmetical terms, and in principle, this al-

lows for invoking arithmetical computations, thus, avoid-

ing the manipulation of explicitly generated constants.

However, Hilbert systems have other disadvantages that

makes them unsuitable to form the basis for automated

reasoning.

Ohlbach et al. 1995 show that the axiomatization �

K

of K can be transformed into a �rst-order theory that

exactly captures K. The �rst-order theory is de�ned by

the set of clauses P1{P12 given in Figure 1 below.

Theorem 1 Any graded modal formula ' is provable in

K i� its �rst-order translation FO(') is a logical con-

sequence of the �rst-order theory i� :FO(') in clause

form is refutable from P1{P12.

P1{P12 are obtained in two reduction steps.

The �rst reduction embeds K in an intermediary

multi-modal logic, called K

E

, with a standard

Kripke semantics.

The second reduction uses an optimization of the

functional translation method of multi-modal log-

ics into sorted predicate logic

[

Ohlbach and

Schmidt,1995

]

.

The �rst reduction is necessary, because the functional

translation method is formulated for multi-modal logics

and K is not a multi-modal logic in the usual sense that

each modality is associated with a di�erent binary re-

lation (in K every modality 3

n

is associated with the

same relation R).

5 The logics K

E

and K

K

E

has two kinds of modalities:

(i) hni and [n], which are characterized in the Kripke

frames by in�nitely but countably many di�erent

relations R

n

(n 2 IN

0

), and

(ii) 3 and 2, which are characterized by a designated

relation E.

Ohlbach et al. translate formulae ofK to formulae ofK

E

according to the following rules (for modal operators):

�(3

n

') = hni2�(')

�(2

n

') = [n]3�('):

(2)

The intuitive idea underlying the translation of 3

n

' is

this: If ' is true in a set Y of worlds with more than n

elements then we introduce an accessibility relation R

n

that connects the actual world and a world w

Y

which

we can think of as being a representative for the set Y .

This de�nes the hni operator. 2' and its associated

accessibility relation E expresses that ' is true in all the

worlds of the set Y . E can be thought of as the reverse

membership relation. Thus, hni2' encodes `there is a

set with more than n elements (encoded by hni) and ' is

true for all the elements of this set (encoded by 2)'. For

example, consider the formula 3

3

'. According to the

semantic de�nition 3

3

' is true in a world x i� there are

at least 4 worlds to which x is R-related. This de�nition

is depicted in the �rst picture below. The second picture

depicts our new alternative view.

x

y

1

y

2

y

3

y

4

R

R

R

R

x Y

y

1

y

2

y

3

y

4

R

3

E

E

E

E

The relation R is replaced by the relational composition

of the two new relations R

3

and E. In the process we

have introduced a new world which we labelled Y as it

is meant to represent the set of worlds y

1

, y

2

, y

3

and y

4

.

K

E

has a Hilbert-style axiomatisation �

K

E

. The ax-

ioms and rules are:

N1 the axioms of propositional logic and Modus Ponens

N2 the K-axioms for [n] and 2:

`

K

E

[n]('!)! ([n]'! [n])

`

K

E

2('!)! (2'!2)

N3 the necessitation rules for [n] and 2:

if `

K

E

' then `

K

E

[n]'

if `

K

E

' then `

K

E

2'

N4 `

K

E

[0]3'! [n]2'

N5 `

K

E

hni2'!hni3'

N6 `

K

E

[n]'! [n+ 1]'

N7 `

K

E

hn +mi2(' _)! (hni2' _ hmi2)

N8 `

K

E

hni2' ^ hmi2 ^ [j]3:(' ^)

!hn+m+ 1� ji2(' _):

Here, N8 is in a more general form than that of Ohlbach

et al. 1995 without changing K

E

. The resulting set of

�rst-order clauses obtained by the reduction to come is

larger and better suited for our purposes, though.

Theorem 1 The transformation of K to K

E

is sound

and complete: for any graded modal formula ', ' is

provable from �

K

i� its translation � (de�ned in (2)

for modal formulae) is provable from �

K

E

.

6 K

E

and �rst-order logic

One of the axioms of K

E

is not �rst-order de�nable,

if we use, in the second reduction step, the standard

relational translation of multi-modal logics to �rst-order

logic. Using the functional translation we can avoid this

problem

[

Ohlbach and Schmidt,1995

]

. Furthermore, the

91

P1
de

n

(w

�

); [w

�

x

n

z] = [w

�

f

n

0

(w

�

; x

n

; z)y]

P2
AF

m

v AF

n

for all m > n

P3
:de

n

(w

�

); de

m

(w

�

)
for all m > n

P4
de

n+m

(w

�

); [w

�

x

n+m

h1

nm

(w

�

; x

n+m

; y)] = [w

�

h2

nm

n

(w

�

; x

n+m

; y; z)y]

P5
de

n+m

(w

�

); [w

�

x

n+m

h1

nm

(w

�

; x

n+m

; y)] = [w

�

h3

nm

n

(w

�

; x

n+m

; y)z]

P6 de

max(n;m)

(w

�

); :de

n+m+1

(w

�

); [w

�

x

n

k1

nm

(w

�

; x

n

; y

m

)] = [w

�

y

m

k2

nm

(w

�

; x

n

; y

m

)]

P7 de

max(n;m)

(w

�

); [w

�

x

n

k3

nm

(w

�

; x

n

; y

m

)] = [w

�

y

m

k4

nm

(w

�

; x

n

; y

m

)];

[w

�

x

n

k5

nm

(w

�

; x

n

; z)] = [w

�

k

nm

n+m+1

(w

�

; x

n

; y

m

)z];

[w

�

y

m

k6

nm

(w

�

; y

m

; z)] = [w

�

k

nm

n+m+1

(w

�

; x

n

; y

m

)z]:

P8 de

max(n;m)

(w

�

); :de

n+m+1�j

(w

�

); [w

�

f7

nmj

j

(w

�

; x

n

; x

m

)u] = [w

�

x

n

f5

nmj

(w

�

; x

n

; u)]

P9 de

max(n;m)

(w

�

); :de

n+m+1�j

(w

�

); [w

�

f7

nmj

j

(w

�

; x

n

; x

m

)u] = [w

�

x

m

f6

nmj

(w

�

; x

m

; u)]

P10 de

max(n;m)

(w

�

); :de

j

(w

�

); [w

�

f1

nmj

n+m+1�j

(w

�

; v; x

n

)v] = [w

�

x

n

f2

nmj

(w

�

; v; x

n

)];

[w

�

f3

nmj

n+m+1�j

(w

�

; v; x

m

)v] = [w

�

x

m

f4

nmj

(w

�

; v; x

m

)]

P11 de

max(n;m)

(w

�

); [w

�

f1

nmj

n+m+1�j

(w

�

; v; x

n

)v] = [w

�

x

n

f2

nmj

(w

�

; v; x

n

)];

[w

�

f3

nmj

n+m+1�j

(w

�

; v; x

m

)v] = [w

�

x

m

f4

nmj

(w

�

; v; x

m

)];

[w

�

f7

nmj

j

(w

�

; x

n

; x

m

)u] = [w

�

x

n

f5

nmj

(w

�

; x

n

; u)]

P12 de

max(n;m)

(w

�

); [w

�

f1

nmj

n+m+1�j

(w

�

; v; x

n

)v] = [w

�

x

n

f2

nmj

(w

�

; v; x

n

)];

[w

�

f3

nmj

n+m+1�j

(w

�

; v; x

m

)v] = [w

�

x

m

f4

nmj

(w

�

; v; x

m

)];

[w

�

f7

nmj

j

(w

�

; x

n

; x

m

)u] = [w

�

x

m

f6

nmj

(w

�

; x

m

; u)]

Figure 1: The �rst-order theory that captures K

E

, K and ALCN

+

with one role.

functional approach has computational advantages over

the standard relational translation method.

Recall, the relational translation of modal logics is

commonly denoted by ST and uses the Kripke seman-

tics de�nition, see e.g. van Benthem 1984. For (multi-)

modal operators, ST is de�ned by:

ST(hRi'; x) = 9y R(x; y) ^ ST('; y)

ST([R]'; x) = 8y R(x; y)!ST('; y)

The functional translation method

[

Ohlbach,1991

]

is

based on the fact that any binary relation R can be de-

�ned by a set AF

R

of partial functions, namely:

R(x; y) $ 9
 2 AF y =
(x):

The functional translation �

f

for (multi-) modal formu-

lae is:

�

f

(hRi'; x) = :de

R

(x) ^ 9
:AF

R

�

f

('; #(
; x))

�

f

([R]'; x) = :de

R

(x)!8
:AF

R

�

f

('; #(
; x)):

The term :de

R

(x) is meant to capture that x is not a

dead-end in the relation R, i.e.R is de�ned for x. # is the

`apply' function, so, we can think of the term #(
; x) as

representing
(x). Total (serial) relations can be de�ned

by a set of total functions and have a simpler functional

formulation not involving dead-end predicates. The re-

lation E in the semantics of K

E

is a total relation. For

modal operators, like 2 of K

E

, which are determined by

a total relation the functional translation �

f

is given by:

�

f

(hRi'; x) = 9
:AF

R

�

f

('; #(
; x))

�

f

([R]'; x) = 8
:AF

R

�

f

('; #(
; x)):

Take for example this concept

(� 1 R (� 1 R (� 4 R >))):

Its modal translation by � is 3

0

3

0

3

3

>. The �rst reduc-

tion by � (in (2)) yields itsK

E

-version: h0i2h0i2h3i2>.

According to the functional translation the second reduc-

tion yields, for a world w (in a simpli�ed form):

:de

0

(w)

^ 9�:AF

0

8
:AF

E

:de

0

([�
]w)

^ 9�:AF

0

8�:AF

E

:de

3

([�
��]w):

(3)

de

n

is an abbreviated notation for de

R

n

. Note, since

E is a total relation it is de�ned by a set AF

E

of total

functions, which implies the dead-end predicates de

E

are

super
uous.

Likewise the axioms �

K

E

ofK

E

can be systematically

translated into their functional representation. We omit

the details, but see Ohlbach et al. 1995. This transla-

tion does not yet give us P1{P12 of Figure 1. It yields

a set of second-order formulae. To compute the �rst-

order equivalents, we use the elimination algorithm of

92

second-order quanti�ers of Gabbay and Ohlbach 1992 to-

gether with an optimization step developed in Ohlbach

and Schmidt 1995. The resulting clauses are P1{P12.

(Again, we omit the details.)

Ohlbach and Schmidt 1995 prove:

Theorem 1 The functional translation is sound and

complete relative to the completeness of the relational

translation.

The theorem applies to extensions of the normal multi-

modal logic K

(m)

. Let � be the additional axioms that

de�ne the extension. The theorem says, more formally,

provided the second-order relational translation of the ex-

tension � is complete with respect to a �rst-order class

of frames, ' is provable in � i� �

f

(�)!�

f

(') is a

predicate logic theorem. (�

f

is the functional translation

mapping for axioms and rules that uses the translation

mapping �

f

for modal formulae.)

Ohlbach and Schmidt 1995 also prove a stronger the-

orem for the functional translation together with an op-

timization that allows for functional existential and uni-

versal quanti�ers to be swapped arbitrarily. This rule ex-

ploits that one relational frame in general corresponds to

many `functional frames', and there is always one which

is rich enough to allow for moving existential quanti�ers

over universal quanti�ers.

Theorem 2 The functional translation with the quanti-

�er exchange rule is sound and complete relative to the

completeness of the relational translation.

Combining Theorems 1 to 2 it is easy to see that the

sequence of translations which we described in Sections 5

and 6 is sound and complete. For any K-formula ', we

have ' is a K-theorem i� (P1{P12)!�(�

f

(')) is a

predicate logic theorem. This is the main theorem which

we stated earlier in Theorem 1. The operation FO of

Theorem 1 is the combination of theK toK

E

translation

� and the K

E

to predicate logic translation �

f

followed

by �, the optimized functional translation. � is the

operation that moves existential functional quanti�ers

inwards over universal quanti�ers. This operation is not

mandatory. It is useful for replacing in complete modal

logics, modal axioms that alone (without the interaction

with other axioms and rules) have no �rst-order (rela-

tional) correspondence property, by weaker (functional)

correspondence properties.

Note, the notation used in Figure 1 is very much ab-

breviated. It is known as the world path notation. Sub-

scripts indicate the sort of a symbol. For example, x

n

is a variable of sort AF

n

. f

n

0

is a Skolem function of

sort AF

0

. The absence of subscripts as for z and h1

nm

indicates being of sort AF

E

. The variable w

�

is of sort

AF

�

R

, which is the supersort of all sorts AF

n

.

P1 has the following reading: if w

�

is an arbitrary

(path to a) world from which a path leads to a set of

worlds with more than n worlds (de

n

(w

�

); : : :) then for

any path x

n

to a set X of worlds with jXj > n and any

world z in this set there exists a path f

n

0

(w

�

; x

n

; z) to a

non-empty set B and any y in this set is also in X. This

implies fzg � X.

7 Symbolic arithmetical reasoning for

ALCN

+

and graded modal logic

Evidently, because of the exact correspondence between

ALCN

+

and the graded modal logic K, Theorem 1 re-

mains true if we replace `graded modal formula' and '

by `concept' and C, respectively. Consequently we may

apply the inference method of Ohlbach et al. 1995 for

ALCN

+

too. The method uses theory resolution based

on P1{P12. This has the advantage that instead of

counting constants we use traditional resolution together

with symbolic arithmetical reasoning. We demonstrate

this by way of two examples.

Example 1 Consider the set of concepts

(� 1 R (� 1 R (� 4 R >)));

(� 1 R (� 1 R (� 3 R >)));

(� 1 R (� 1 R >));

(� 1 R >):

(4)

The corresponding set of K-formulae are

3

0

3

0

3

3

>; 3

0

3

0

2

3

?; 3

0

2

1

?; 2

1

?:(5)

The conjunction of (4) is incoherent (or unsatis�able).

This amounts to the same thing as saying, the set (5) is

inconsistent.

Above we derived the functional translation (3) for the

�rst concept in (4). The functional translation for the

remaining concepts is obtained analogously. The sets

reduce to the following set of clauses.

C

1

:de

0

([]) C

5

de

3

([c

0

x

0

d

0

y

0

])

C

2

:de

0

([a

0

x]) C

6

de

1

([e

0

x

00

])

C

3

:de

3

([a

0

xb

0

y]) C

7

de

1

([])

C

4

:de

0

([c

0

x

0

])

The clauses C

1

, C

2

and C

3

represent (3). The empty

path [] replaces the world variable w. a

0

and b

0

are the

Skolem constant associated with � and �. The variables

x and y are associated with
 and �.

Now, we demonstrate how we can use P1{P12 and

refutational theorem proving together with limited sym-

bolic arithmetic to verify the claim that the conjunction

of (4) is incoherent. For the refutation we use P1 with

n = 0 and P6 with n = 0 and m = 0. P1 can im-

mediately be simpli�ed with clause C

1

. The instances

are:

P1

0

[f

0

0

([]; x

0

; z)y] = [x

0

z]

P6

0

de

0

(w

�

); :de

1

(w

�

); [w

�

x

0

k1

00

(w

�

; x

0

; y

0

)]

= [w

�

y

0

k2

00

(w

�

; x

0

; y

0

)]:

The result of simultaneously resolving P6

0

, C

1

, and C

7

using the uni�er fw

�

7! []g is

C

8

[x

0

k1

00

([]; x

0

; y

0

)] = [y

0

k2

00

([]; x

0

; y

0

)]:

Paramodulating with C

8

and uni�er

fx

0

7! a

0

; x 7! k1

00

([]; a

0

; y

0

)g;

93

C

3

becomes (this means we do equality replacement with

uni�cation in C

3

using the equation C

8

)

C

9

:de

3

([y

0

k2

00

([]; a

0

; y

0

)b

0

y]):

This becomes

C

10

:de

3

([x

0

zb

0

y])

when paramodulating with P1

0

using the uni�er

fy

0

7! f

0

0

([]; x

0

; z); y 7! k2

00

([]; a

0

; y

0

)g:

We resolve P6

0

and C

4

using uni�er

fw

�

7! [c

0

x]; x

0

7! xg

to get

C

11

:de

1

([c

0

x]); [c

0

xx

0

0

k1

00

([c

0

x]; x

0

0

; y

0

0

)] =

[c

0

xy

0

0

k2

00

([c

0

x]; x

0

0

; y

0

0

)]:

Now, use the uni�er

fx

0

7! c

0

; x

0

7! z 7! x; x

0

0

7! d

0

;

y

0

0

7! b

0

; y

0

7! k1

00

([c

0

x]; d

0

; b

0

);

y 7! k2

00

([c

0

x]; d

0

; b

0

)g

and apply E-resolution to C

5

, C

10

and C

11

and get

C

12

:de

1

([c

0

x]):

(This means we resolve between C

5

and C

10

using an

equation in C

11

.) Resolving this with C

6

using E-

resolution with C

8

yields the empty clause. The uni�er

is

fx

0

7! e

0

; x

00

7! k1

00

([]; e

0

c

0

);

y

0

7! c

0

; x

00

7! k2

00

([]; e

0

c

0

)g:

Note, the computational e�ort does not depend on

the numbers we use. The proof of this example is not

signi�cantly di�erent for other (possibly large) values.

Example 2 Suppose the universe consists of at most

thirty horses. If there are at least twenty horses that

are white and there are at least twenty horses that are

black, then there are at least ten zebras. Let W denote

the set of white horses and B the set of black horses.

Then W \ B denotes the set of zebras.

A standard tableaux system for the number operators

would generate twenty witnesses forW , twenty witnesses

for B and then it would need to identify ten of them in

order not to exceed the limit of thirty. But there are

combinatorically many ways for identifying ten of them.

In our system we prove the conjecture by showing the

following set of ALCN

+

concepts is incoherent:

(� 20 R W); (� 20 R B);

(� 30 R ?); (� 9 R :(W u B)):

The corresponding set of K-formulae are:

3

19

W; 3

19

B; 2

30

?; 2

9

:(W ^B):

We could choose any other suitable combination of num-

bers. This would not change the structure of the proof

at all. The translation into �rst-order clause form is:

:de

19

([])^W ([a

19

x]); :de

19

([]) ^B([b

19

x]);

de

30

([]); de

9

([]) _ :W ([y

9

c]) _ :B([y

9

c]):

The corresponding set of clauses consists of:

C

1

:de

19

([])

C

2

W ([a

19

x])

C

3

B([b

19

y])

C

4

de

30

([])

C

5

de

9

([]); :W ([y

9

c]); :B([y

9

c])

Resolve C

5

with P3 and C

1

and eliminate the de

9

([])

literal from C

5

leaving:

C

0

5

:W ([y

9

c]); :B([y

9

c])

We resolve the instance of P9 with n = m = 19, j = 9,

namely

P9

0

de

19

([]); :de

30

([]);

[f7

1919 9

9

([]; x

19

; x

0

19

)u] =

[x

19

f6

19 19 9

([]; x

0

19

; u)];

with C

1

and C

4

and obtain

C

6

[f7

1919 9

9

([]; x

19

; x

0

19

)u]

= [x

0

19

f6

1919 9

([]; x

0

19

; u)]:

Applying the uni�er

fy

9

7! f7

1919 9

9

([]; x

19

; x

0

19

); u 7! cg;

we can use this in a paramodulation step with C

0

5

result-

ing in

C

7

:W ([x

0

19

f6

1919 9

([]; x

0

19

; c)]);

:B([f7

1919 9

9

([]; x

19

; x

0

19

)c])

Unify in C

2

and C

7

with

fx

0

19

7! a

19

; x 7! f6

19 19 9

([]; x

0

19

; c)g:

Resolving C

2

and C

7

yields

C

8

:B([f7

1919 9

9

([]; x

19

; a

19

)c]):

Now we use the following instance of P8:

P8

0

de

19

(w

�

); :de

30

(w

�

);

[w

�

f7

19 19 9

9

(w

�

; x

19

; x

0

19

)u] =

[w

�

x

19

f5

19 19 9

(w

�

; x

19

; u)]

This can be reduced with C

1

and C

4

to the equation

C

9

[f7

1919 9

9

([]; x

19

; x

0

19

)u] =

[x

19

f5

1919 9

([]; x

19

; u)];

which we can now use in a paramodulation step with C

8

.

We get

C

10

:B([x

19

f5

1919 9

([]; x

19

; c)]):

The empty clause is obtained if we resolve C

10

with C

3

using the appropriate uni�er.

94

8 Conclusion

In description logics with quali�ed number restrictions

it is possible to express properties of �nite sets. The

usual constraint inference algorithms similar to those

described in Schmidt-Schau� and Smolka 1991 and Hol-

lunder and Baader 1991 generate for all sets used in the

proof at least as many constants (witnesses) as the car-

dinality of each set. Even for moderate values a vast

number of witnesses are generated which are processed

by case distinctions in the proof. For weaker description

languages considered by Donini et al. 1994 and Calvanese

et al. 1994 reasoning with unquali�ed number restric-

tions by case distinction can be avoided.

In this paper we have considered an alternative

method for reasoning with both quali�ed and unquali-

�ed number restriction which does not have the overhead

of evaluating case distinctions. Instead the method uses

limited arithmetical reasoning. The method was devel-

oped for graded modal logics and can be readily applied

to all description languages that are included inALCN

+

.

We showed that there is a close correspondence between

ALCN and the graded modal logic K. In fact, there

is an exact correspondence between the terminological

operators and the modal operators.

We conclude with two remarks. (i) In the examples

only one role R was used. The approach can be ap-

plied to description logics with multiple roles (without

role de�nitions), too. (ii) We have restricted our atten-

tion to TBox reasoning. This corresponds directly to

that in modal logic. We haven't accounted for A-Box

reasoning about concrete instantiations of concepts/sets

and roles/relations. The functional translation applied

to A-Box terms generates many equations. It is not im-

mediate how these can be treated e�ciently. It remains

to be investigated how the method can be extended to

handle ABox reasoning as well.

References

[

Buchheit et al., 1993

]

M. Buchheit, F. M. Donini, and

A. Schaerf. Decidable reasoning in terminological

knowledge representation systems. J. Arti�cial Intel-

ligence Research, 1:109{138, 1993.

[

Calvanese et al., 1994

]

D. Calvanese, M. Lenzerini, and

D. Nardi. A uni�ed framework for class-based repre-

sentation formalisms. In Proc. of KR'94, pages 109{

120, 1994.

[

de Caro, 1988

]

F. de Caro. Graded modalities II. Studia

Logica, 47:1{10, 1988.

[

Donini et al., 1994

]

F. M. Donini, M. Lenzerini, D.

Nardi, and A. Schaerf. Deduction in concept lan-

guages: From subsumption to instance checking. J.

Logic Computat., 4(4):423{452, 1994.

[

Fine, 1972

]

K. Fine. In so many possible worlds. Notre

Dame Journal of Formal Logic, 13(4):516{520, 1972.

[

Gabbay and Ohlbach, 1992

]

D. M. Gabbay and H. J.

Ohlbach. Quanti�er elimination in second-order pred-

icate logic. South African Computer Journal, 7:35{43,

1992. Also in Proc. of KR`92, pp. 425{436.

[

Hollunder and Baader, 1991

]

B. Hollunder and F. Baa-

der. Qualifying number restrictions in concept lan-

guages. In Proc. of KR'91, pages 335{346, 1991.

[

Ohlbach and Schmidt, 1995

]

H. J. Ohlbach and R. A.

Schmidt. Functional translation and second-order

frame properties of modal logics. Tech. Rep. MPI-I-95-

2-002, MPI Informatik, Saarbr�ucken, January 1995.

[

Ohlbach et al., 1995

]

H. J. Ohlbach, R. A. Schmidt,

and U. Hustadt. Translating graded modalities

into predicate logic. Manuscript, MPI Informatik,

Saarbr�ucken. Forthcoming in H. Wansing (ed), Proof

Theory for Modal Logic., January 1995.

[

Ohlbach, 1991

]

H. J. Ohlbach. Semantics based trans-

lation methods for modal logics. J. Logic Computat.,

1(5):691{746, 1991.

[

Schild, 1991

]

K. Schild. A correspondence theory for

terminological logics: Preliminary report. In Proc. of

IJCAI'91, pages 466{471, 1991.

[

Schmidt-Schau� and Smolka, 1991

]

M. Schmidt-Schau� and G. Smolka. Attributive con-

cept description with complements. Arti�cial Intelli-

gence, 48:1{26, 1991.

[

van Benthem, 1984

]

J. van Benthem. Correspondence

theory. In D. Gabbay and F. Guenther, editors, Hand-

book of Philosophical Logic, volume II, pages 167{247.

Reidel, Dordrecht, 1984.

[

van der Hoek and de Rijke, 1992

]

W. van der Hoek and

M. de Rijke. Counting objects in generalized quan-

ti�er theory, modal logic, and knowledge representa-

tion. Tech. Rep. IR-307, Vrije Univ. Amsterdam, 1992.

[

van der Hoek, 1992

]

W. van der Hoek. On the seman-

tics of graded modalities. J. Applied Non-Classical

Logics, 2(1):81{123, 1992.

95

Research and Applications in Description-Logic-Based Knowledge

Representation

Peter F. Patel-Schneider, Deborah L. McGuinness

Merryll Kim Herman, Lori Alperin Resnick

Elia S. Weixelbaum

AT&T Bell Laboratories

Murray Hill, New Jersey

Since the fall of 1994, we have been working on a

new version of Classic

[

Resnick et al.,1993; Brachman

et al.,1991

]

, called NeoClassic. We feel that build-

ing a new version of Classic is a vital step in our

continuing research on description logics, and in the

use of description-logic-based systems in applications

at AT&T, such as the Prose con�gurator

[

Wright et

al.,1993

]

, even though we have made our research version

of Classic quite e�cient

[

Patel-Schneider et al.,1991;

Heinsohn et al.,1992

]

, and already have a separate deve-

lopment version of Classic

[

Weixelbaum,1991

]

.

Our reimplementation continues the road from theo-

retical work in description logics to practical description-

logic-based knowledge representation systems that has

been described by Brachman

[

1992

]

. We strongly feel

that if description logic is to be a successful know-

ledge representation technology, it has to be used in

more applications. Further, many of the interesting re-

cent developments in Classic (e. g., increased expres-

sive power, explanation

[

McGuinness and Borgida,1995

]

,

meta-information, rule extensions) have been a�ected by

the use of Classic in applications, so applications have

a vital role to play in the further theoretical work on

description logics.

The main reason for our reimplementation is to en-

courage greater interaction between knowledge represen-

tation research in description logics and application work

using description-logic-based knowledge representation

systems. Until now, we have fostered this interaction by

having two versions of Classic, a research version writ-

ten in Lisp

[

Resnick et al.,1993

]

and a development ver-

sion written in C

[

Weixelbaum,1991

]

. This split between

research and development versions of Classic was use-

ful because it allowed for a version of Classic that was

acceptable to developers, while also providing a research

version that could be extended easily for experimental

purposes.

The development version, however, was not as power-

ful as the research version, and could not be changed as

easily as the research version. This meant that advances

to the research version have not transferred to the deve-

lopment version as quickly as we had hoped. Therefore

we are switching to a single version (NeoClassic) that

will be used for both research and applications. With

a single version the requirement for reimplementation

will be eliminated, and quick transfer of changes and

additions from research version to applications will be

possible.

1

It is also a non-trivial task to translate knowledge

bases between the two versions of Classic, particularly

because Classic allows for test functions and computed

rules, written as functions in the underlying program-

ming language, vital aspects of Classic that allows it

to be used where it would otherwise not be su�ciently

powerful. Currently we have tools do this translation, in-

cluding conversion of a set of test functions that are used

in our major applications, but these are by no means gen-

eral tools. As di�erent kinds of test functions are used,

we have to rewrite them in Lisp.

Also, it is next-to-impossible to take full applications

and run them on the research version, because we can-

not move the non-Classic part of the application to the

research platform. Thus we cannot show o� advances

in the research version to developers, and cannot exper-

iment with complete applications to see what advances

in representation or in tools would make them better.

With a single core version of Classic we can easily

transfer both application knowledge bases and complete

applications to the research variant. We will then be

able to perform experiments, instrumenting the behav-

ior of applications, trying out new representation ideas,

and prototyping new tools. The transfer of the results

of these research activities back to applications is also

made easier because there will only be one version of

NeoClassic.

Our experience indicates that many good research

ideas come from applications, so we feel that this two-

way
ow of information will result in new research, as

well as better applications. This is the dominant reason

for the common version of Classic.

Because NeoClassic will be directly used in applica-

1

Of course, there will still be a lag between the time when

new features �rst show up in the research version and the

time when they are approved for use in applications. We

expect that this lag will be much shorter than now and the

process will certainly be much easier than at present.

96

tions it has certain conditions placed on it that are not

required of a research-only tool.

First, a development tool has to be acceptable to de-

velopment organizations. This requires using an accept-

able, mainstream programming language, such as C or

C++. (This language requirement was one of the main

reasons for producing a separate development version of

Classic in the �rst place.) For our purposes C++ has a

number of advantages over C, mostly having to do with

encapsulation and its type hierarchy, so we have chosen

C++ as the implementation language of NeoClassic.

2

Second, a development tool has to be embeddable

in applications. Our current major applications treat

Classic as a small part of a large system. Both the

research and the development versions of Classic have

good interfaces to other programs, but NeoClassic will

have a better one, allowing programs access to the in-

ner workings of the description logic. This will be done

in a way that does not violate data encapsulation|

NeoClassic is a knowledge representation system, not

a data structure storage system.

Programs will be able to access more of the inter-

nal objects of a NeoClassic knowledge base, as C++

objects with appropriate public member functions. Of

course, C++ is not type-safe, so users can puncture the

encapsulation provided by the C++ objects, but this re-

quires special action (i.e., the use of casts) is a violation

of the contract that we will give to users.

Programs will also be able to monitor more of the

internal workings of NeoClassic, and be informed of

changes to the knowledge base. This will be done in two

ways: 1/ via an explanation interface that provides jus-

ti�cations of the inferences that NeoClassic performs,

and 2/ via \hooks" that provide ways for implementers

to call their own functions at appropriate times. For ex-

ample, hooks will allow for the creation of graphical user

interfaces to NeoClassic knowledge bases, both by us

and by application programmers.

Further, a development tool has to have good perfor-

mance, be better tested than the average research tool,

and be available on several platforms. This is not a li-

ability as far as we are concerned|we want to have a

knowledge representation tool that will not break, that

will not produce wrong or too-slow answers, and that

can be used by a large number of people.

We will perform a full suite of tests on NeoClassic,

to ensure that the implementation is up to application

standards. We expect that NeoClassic will be faster

than the Lisp version of Classic and comparable to the

C version, although this is not guaranteed. NeoClassic

will run under both Unix and Windows.

2

C++ is not the ideal language for our purposes. The

ideal language would be strongly typed, like ML, and would

also allow Classic concepts to be part of its type system.

Further, the ideal language would have support for rapid pro-

totyping, such as that provided in many Lisp environments.

However, C++ is acceptable and is the language of choice at

AT&T.

We are not neglecting the research aspects of Neo-

Classic itself, however.

NeoClassic is designed to be more extensible than

the development version of Classic. We are redesign-

ing the core of the system so that it is easier to modify

the non-core portions of the system and add other mod-

ules (like explanation). We plan on making a number of

extensions to the description logic underlyingNeoClas-

sic, to the point of moving away from near-completeness

in some areas. For example, we expect to add a part-of

hierarchy

[

Speel and Patel-Schneider,1994

]

and defaults

[

Nutt and Patel-Schneider,1994

]

to NeoClassic in the

near future.

NeoClassic will also allow for back-end interfaces to

databases and persistent storage. We plan on providing

a simple persistent variant of NeoClassic for use in

applications as well as trying out various connections

between description logics and databases.

We thus expect our research to be aided by NeoClas-

sic, in particular from the closer relationship it will fos-

ter between research and applications. We expect that

the building and use of NeoClassic will provide fur-

ther answers to the following questions, most of which

we have already pursued via the development and use of

the two versions of Classic.

� What characterizes a good implementation of a de-

scription logic system?

� What do applications need beyond a basic descrip-

tion logic system|explanation, user interfaces, pro-

gramming interfaces, noti�cation of activities?

� What can description logic research learn from de-

scription logic applications?

� How much emphasis should a description logic sys-

tem place on the embedding of description logic ap-

plications in larger application systems?

� Is it possible to facilitate more widespread usage

of description logics by integrating description logic

systems with other AI or programming formalisms,

such as rules or object-oriented languages?

References

[

Baader et al., 1994

]

Franz Baader, Maurizio Lenzerini,

Werner Nutt, and Peter F. Patel-Schneider, editors.

Working Notes of the 1994 Description Logic Work-

shop, Bonn, Germany, May 1994.

[

Brachman et al., 1991

]

Ronald J. Brachman, Deb-

orah L. McGuinness, Peter F. Patel-Schneider,

Lori Alperin Resnick, and Alex Borgida. Living with

CLASSIC: When and how to use a KL-ONE-like lan-

guage. In John Sowa, editor, Principles of Semantic

Networks: Explorations in the representation of know-

ledge, pages 401{456. Morgan-Kaufmann, San Mateo,

California, 1991.

97

[

Brachman, 1992

]

Ronald J Brachman. \Reducing"

CLASSIC to practice: Knowledge representation the-

ory meets reality. In Proceedings of the Third Interna-

tional Conference on Principles of Knowledge Repre-

sentation and Reasoning, pages 247{258, Cambridge,

Massachusetts, October 1992. Morgan Kaufmann.

[

Heinsohn et al., 1992

]

Jochen Heinsohn, Daniel Ku-

denko, Bernhard Nebel, and Hans-J�urgen Pro�tlich.

An empirical analysis of terminological representation

systems. In Proceedings of the Tenth National Con-

ference on Arti�cial Intelligence, pages 767{773, San

Jose, California, July 1992. American Association for

Arti�cial Intelligence.

[

McGuinness and Borgida, 1995

]

Deborah L. McGuin-

ness and Alex Borgida. Explaining subsumption in

description logics. In Proceedings of the Fourteenth In-

ternational Joint Conference on Arti�cial Intelligence,

Montreal, Canada, August 1995. International Joint

Committee on Arti�cial Intelligence.

[

Nutt and Patel-Schneider, 1994

]

Werner Nutt and Pe-

ter F. Patel-Schneider. Useful defaults in description

logics. In Baader et al.

[

1994

]

.

[

Patel-Schneider et al., 1991

]

Peter F. Patel-Schneider,

Deborah L. McGuinness, Ronald J. Brachman,

Lori Alperin Resnick, and Alex Borgida. The CLAS-

SIC knowledge representation system: Guiding princi-

ples and implementation rationale. SIGART Bulletin,

2(3):108{113, June 1991.

[

Resnick et al., 1993

]

Lori Alperin Resnick, Alex

Borgida, Ronald J. Brachman, Deborah L. McGuin-

ness, and Peter F. Patel-Schneider. CLASSIC descrip-

tion and reference manual for the COMMON LISP

implementation: Version 2.1. AI Principles Research

Department, AT&T Bell Laboratories, 1993.

[

Speel and Patel-Schneider, 1994

]

Piet-Hein Speel and

Peter F. Patel-Schneider. CLASSIC extended with

physical whole-part relations. In Baader et al.

[

1994

]

.

[

Weixelbaum, 1991

]

Elia S. Weixelbaum. C-Classic ref-

erence manual release 1.0. AT&T Bell Laboratories,

1991.

[

Wright et al., 1993

]

Jon R. Wright, Elia S. Weixel-

baum, Karen Brown, Gregg T. Vesonder, Stephen R.

Palmer, Jay I. Berman, and Harry H. Moore. A

knowledge-based con�gurator that supports sales, en-

gineering, and manufacturing at AT&T network sys-

tems. In Proceedings of the Innovative Applications

of Arti�cial Intelligence Conference, pages 183{193,

Washington, D. C., July 1993. American Association

for Arti�cial Intelligence.

98

Task Acquisition with a Description Logic Reasoner

Martin Buchheit Hans-J�urgen B�urckert Bernhard Hollunder

Armin Laux Werner Nutt Marek W�ojcik

German Research Center for Arti�cial Intelligence - DFKI GmbH

Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germany

e-mail: tacos@dfki.uni-sb.de, fax: (+49 681) 302 5341

1 Introduction

In many areas of Computer Science and Arti�cial Intel-

ligence, like Programming, Databases, and Knowledge

Based Systems, formalisms for modeling an application

domain share a similar view of the world. They perceive

a universe as consisting of objects, which are grouped

into hierarchically organized classes and linked by at-

tributes. The classes and attributes are further speci�ed

by integrity constraints and rules that can be expressed

in some fragment or variant of predicate logic.

In particular, in knowledge acquisition research, which

has the goal of developing knowledge representation

schemes that are capable of capturing the conceptual

structures of human experts, such an object-centered

approach to domain modeling has proven useful. Mean-

while, a number of tools have been built that support

knowledge acquisition in this paradigm (see

[

Gaines and

Shaw,1993; Gil,1994

]

).

As a result, at the core of many knowledge based sys-

tems there is an object-centered domain model. It might

be implemented on di�erent kinds of platforms such as

object-oriented databases, knowledge representation sys-

tems based on Descriptions Logics (DLs), like loom

[

MacGregor,1991

]

, classic

[

Patel-Schneider et al.,1991

]

and kris

[

Baader and Hollunder,1991a

]

, or even know-

ledge acquisition tools that allow one to execute the

elicited knowledge, like kssn

[

Gaines and Shaw,1993

]

or

expect

[

Gil,1994

]

.

The advantage of rich domain models is that expert

knowledge can be represented adequately. However, a

user who wants a system to solve a particular task (e.g.,

booking a ticket or organizing a removal) has to know

the system's domain model well in order to specify his

problem appropriately. Thus, a novice user of a know-

ledge based system is charged with the burden of making

himself familiar with the underlying model and to �gure

out what kind of input is expected by the system.

In this paper we present the system tacos (= task

acquisition for object-centered systems), which utilizes

its domain model to interactively acquire information

from the user. This acquisition process is iterated until

the system can decide whether or not the task is com-

pletely speci�ed. In particular, tacos guides the user

through an object-centered domainmodel and gives sup-

port in querying it and in populating it with relevant

objects.

A tool like tacos can either function as a front-end

to a knowledge based system or serve as a platform for

prototyping simple such systems. Because of its support

for describing objects in terms of a rich object-centered

domain model it can be employed for �lling and main-

taining a large fact base, but also for specifying a partic-

ular task. In this paper, we concentrate on the second

usage because all services of tacos come in useful.

This paper is organized as follows. In the next sec-

tion we give an overview of the system. Sections 3 to 5

describe the main building blocks. Section 6 discusses

further application domains and Section 7 concludes.

2 A Bird's Eye View of tacos

The architecture. tacos consists of three major

components (see Figure 1): a domain modeling compo-

nent, an inference component, and a user interface.

With the modeling component one sets up a model of

the problem domain. A domain model consists of three

parts: (1) an ontology describing the relevant classes

with their attributes as well as simple integrity con-

straints that are to hold between them, (2) assertions

introducing objects and relationships between them, and

(3) a set of monotonic inference rules, by which addi-

tional relationships between objects can be derived. We

also refer to the ontology and assertions as the static part

of a domain model and to the rules as the dynamic part.

The language of the static part contains the essentials of

object-centered modeling formalisms like object-oriented

data models, frame systems, or DLs.

Deductions from the statements in the domain model

are drawn in the inference component, which is realized

by the DL based knowledge representation system kris

[

Baader and Hollunder,1991a

]

. With the help of the in-

ference component, the user interface produces menus

suggesting assertions which the user can enter without

compromising the consistency of the static part.

The functionality. In our view, a task is described by

objects that are|not necessarily completely|speci�ed

in terms of the domain model. A knowledge based sys-

tem responds by either (1) completing the speci�cation,

99

rules

assertions

classes

m

o

d

e

l

l

i

n

g

knowledge

engineer

user interface

end user

K

R

I

S

i

n

f

e

r

e

n

c

e

s

Figure 1: The architecture of tacos.

(2) generating new objects, or (3) producing output in

windows controlled by itself. A user is assisted by tacos

in specifying objects through a menu-based interface.

This interface displays the current information about the

known objects as speci�c as possible and suggests possi-

ble inputs in its menus. The suggestions encompass only

meaningful items in the sense that adding them does not

lead to inconsistencies with respect to the static part of

the domain model. Obviously, due to the expressivity of

the rule language it is impossible to restrict the suggested

input further so that also inconsistencies produced by

rules are prevented. However, we assume that in general

the rules are written in such a way that this case does

not occur. If it happens, earlier states of the session can

be recovered with a backtracking mechanism.

The whole approach is
exible in that the appearance

of the menus and the guidance during the acquisition

process are completely derived from the domain model.

It is a characteristic of tacos that only information that

is meaningful and consistent with respect to the domain

description can be entered. In order to identify such in-

formation, the domain model is translated into a kris

knowledge base. Through its inferences kris is able to

determine into which classes a given object can still be

put and which constraints can be imposed on its at-

tributes without compromising consistency. Moreover,

it can �nd all objects that satisfy a given set of con-

straints.

For two reasons a system like kris is an appropriate in-

ference engine for task acquisition. The �rst pertains to

DL systems in general: Since the purpose of the system is

the assistance in specifying a task, it is confronted with

incomplete information. Such incompleteness is taken

into account by the open world semantics of DLs. The

second is more speci�c: To detect all possible inconsis-

tencies, the reasoning process must not only be sound,

but also complete. There are only a few DL systems

with this property, and kris is one of them.

In the next three sections we will illustrate the languages,

the components, and the services of tacos with a run-

ning example taken from a scenario where a user speci�es

a transport task to be executed by a forwarding agency.

We have implemented this scenario in tacos at DFKI.

3 The Domain Modeling Component

For each part of the modeling component (see Figure 1)

tacos provides a particular language: (1) a class de-

scription language, (2) an assertional (object descrip-

tion) language, and (3) a rule language.

With the class description language one �xes the

structure of a problem domain. Basically, a class de-

scribes a set of objects in terms of more general classes

and of attributes. Figure 2 contains the description of

three classes in our forwarding domain. Classes come

in two variants: basic classes and de�ned classes. The

description of a basic class (indicated by the keyword

Class) imposes only necessary conditions for class mem-

bership. So, the description of the basic class task says

that for every task there is exactly one person which is

the customer, or formally, if an object is an instance of

task, then it must have exactly one �ller of the attribute

customer, and the �ller must be an instance of the class

person. The class transport-task is a specialization of

task. Hence, transport-task inherits from task the at-

tribute customer. In addition, a transport-task has the

attributes cargo, collect-from, deliver-to, and distance,

which are subject to the following constraints: (1) each

cargo is a good, and there is at least one cargo, (2) there

is exactly one collect-from and one deliver-to, which are

locations, and (3) there is exactly one distance, which

is an integer. The distance is computed by the system

and cannot be input by the user. The computation is

speci�ed by rules (see below).

The class domestic-transport-task is a specialization of

transport-task in that the range restrictions for the in-

herited attributes are re�ned: for a domestic-transport-

task the �llers for the two attributes collect-from and

deliver-to must not only be locations, but additionally

must be instances of inland which is a subclass of lo-

cation. Since domestic-transport-task is a de�ned class

(indicated by the keyword De�ned-Class), the description

100

Class task

with

new-attributes

customer [1, 1] : person

end Class

De�ned-Class domestic-transport-task

is-a transport-task with

re�ned-attributes

collect-from [1, 1] : inland,

deliver-to [1, 1] : inland

end De�ned-Class

Class transport-task

is-a task with

new-attributes

cargo [1, -] : good,

collect-from [1, 1] : location,

deliver-to [1, 1] : location

computed-attributes

distance [1, 1] : integer

end Class

Disjoint inland, foreign

end Disjoint

Figure 2: Classes in our forwarding domain.

speci�es both necessary and su�cient conditions for class

membership. This means that any object (1) which be-

longs to transport-task, and (2) whose �llers for collect-

from and deliver-to belong to inland, is also an instance

of domestic-transport-task. De�ned classes can be seen

as prede�ned queries or \views"

[

Buchheit et al.,1994

]

,

which help in structuring the domain. They can be com-

bined to complex queries and provide macros to be used

in the preconditions of rules.

In addition to the means for describing classes dis-

cussed so far, one can also de�ne enumeration classes,

declare a group of basic classes as disjoint and specify

that one basic class covers a group of other basic classes.

Furthermore, there are the built-in classes string and in-

teger, as well as intervals of integers.

In the assertional language one describes a given state

of a�airs in the problem domain by (1) inserting an ob-

ject into a class (e.g., declare my-order as a transport-

task) and (2) relating objects through attributes (e.g.,

make Berlin the �ller of deliver-to for my-order). Usu-

ally, tacos will start with an initial knowledge base

(KB for short) containing facts about individuals that

are relevant for the domain. In our forwarding exam-

ple we assume that there are facts about cities such

as Bonn : inland, Berlin : inland, London : foreign,

(Bonn; 300:000) : inhabitants, etc.

In the rule language one can specify conditions for de-

riving new assertions, generating fresh objects, or calling

functions in the host language (lisp). A rule consists of

a condition part and a consequence part (cf. the rules in

Figure 3).

Suppose that my-order is a transport-task, and that

Bonn and Berlin are the corresponding �llers for collect-

from and deliver-to. Then the �rst rule can be applied

to compute my-order's �ller of the attribute distance as

follows: as the �rst three conditions are entailed by the

static part (if the variables x, y, and z are substituted

by my-order, Bonn, and Berlin), the function compute-

distance is called with the arguments Bonn and Berlin,

and the resulting value, say 598, is bound to the variable

d; thus, the rule �res and the fact thatmy-order's �ller of

distance is 598 is added to the current set of assertions.

The e�ect of applying the second rule is the execution

of a function, which is called for its side e�ects. As my-

order, in our example, is a transport-task whose �llers

for collect-from and deliver-to are instances of inland,

it is recognized as a domestic-transport-task.

1

More-

over, the �ller of distance is not greater than 800. Thus

all preconditions are satis�ed and the function collect-

customer-data is called with argument my-order.

The class description language of tacos captures

essentially what can be expressed in common object-

centered representation formalisms like frame languages,

object-oriented data bases, and DLs. The rule language,

however, goes beyond the rules generally available in

data bases and DLs. Since it allows for the generation

of fresh objects, it is Turing complete even if we ignore

the integration with the host language.

4 The Inference Component

The purpose of the domain modeling component is to

state facts about a problem domain. To draw conclusions

from the represented knowledge we utilize the inference

mechanism of kris. As a full-
edged DL system, kris

provides three languages for the representation of know-

ledge: (1) a terminological language, (2) an assertional

language, and (3) a rule language.

In the terminological language one can de�ne concepts

by means of complex expressions, which are built up

from other concepts using constructs such as conjunc-

tion, disjunction, negation, range and exists restrictions,

and cardinality constraints. While classes can be trans-

lated into concepts in a straightforward manner, the con-

verse is not true, as the terminological language of kris

contains a number of constructs that have no counter-

part in tacos. The assertional language and the rule

language in kris are similar to the ones in tacos, ex-

cept that the former are based on concepts and the latter

on classes. Like a domain model, a kris knowledge base

comprises a static and a dynamic part (static and dy-

namic KB for short). The static KB consists of a set

T of concept declarations and a set A of assertions, the

dynamic KB consists of a set of rules.

The static parts of KBs are interpreted under the stan-

dard DL semantics, which identi�es them with a set of

1

This fact is crucial, e.g., if the agency can carry out do-

mestic transport tasks only.

101

Rule

x : transport-task,

(x,y) : collect-from,

(x,z) : deliver-to,

d is call(compute-distance,y,z)

implies

(x,d) : distance

end Rule

Rule

x : domestic-transport-task,

(x,y) : distance,

�(y,800)

implies

call(collect-customer-data,x)

end Rule

Figure 3: Two rules in our forwarding domain.

�rst order formulas (see

[

Nebel,1990

]

), and inferences are

de�ned with respect to this semantics. Elementary infer-

ence problems are to decide, given a static KB, whether

one concept subsumes a second, whether an object is an

instance of a concept, and whether the KB is consistent

at all. More complex reasoning services, like determin-

ing all subsumption relationships between the concepts

in the KB (classi�cation) and �nding all memberships

of objects in concepts (realization) are based on the ele-

mentary inferences.

When considering inferences, a characteristic comes

into play that distinguishes DLs from databases: a KB

is not viewed as determining a single structure, but as

having|possibly in�nitely many|di�erent models: for

inferences all �rst order models of the KB are taken

into account. For this reason, this semantics is called an

\open world semantics" as opposed to a \closed world

semantics" admitting only a single model.

For the purpose of task acquisition a closed world se-

mantics would be inappropriate because a task is not

completely speci�ed before the very end of a session and

various completions are conceivable. In particular, it

is not justi�ed to conclude negative information from

the absence of information, like a conventional database

system would do. For example, the fact that up to a

given moment no dangerous cargo has been speci�ed for

a transport task does not necessarily imply that all cargo

will be safe. Thus, a task acquisition system has to take

into account all possible completions in its reasoning pro-

cess.

In almost all implemented DL systems, inferences are

realized by sound but incomplete algorithms. This, for

example, means that if a consistency checking procedure

reports a static KB to be inconsistent, one can rely on

this answer. However, if the procedure reports consis-

tency, nothing can be concluded: the KB may or may

not be consistent. For the use in tacos, a DL system

with incomplete algorithms is obviously insu�cient since

it could not prevent a user from entering inconsistent in-

formation. However, kris is an appropriate choice be-

cause its algorithms are sound and complete

[

Baader and

Hollunder,1991b

]

.

To achieve the functionality of tacos, we have ex-

tended kris to perform additional reasoning services,

which are based on elementary inferences, but which usu-

ally are not provided by DL systems. Among them are

the following, where � = hT ;Ai is a static KB, C a

concept occurring in T , R an attribute, and a, b objects:

Possible concepts: C is a possible concept for a if

hT ;A[fa :Cgi is consistent;

Possible range restrictions: C is a possible range re-

striction of R for a if hT ;A[fa :8R:Cgi is consis-

tent;

Possible �llers: b is a possible �ller of R for a if hT ;A[

f(a; b) :Rgi is consistent;

Plausible �llers: b is a plausible �ller of R for a if for

all concepts D having a counterpart in the class lan-

guage of tacos we have that hT ;A[f(a; b) :Rgi j=

b :D if and only if hT ;Ai j= b :D.

Possible concepts, range restrictions and �llers for an

object are computed when tacos determines which in-

formation a user can enter safely. These inferences are

based on consistency checks. The check for plausible

�llers, however, is more involved. Intuitively, b is plau-

sible if it already has all the properties|expressible as

memberships of b in some D|that a �ller of R for a is

required to have. Computationally, this check is realized

by abstracting the constraints imposed on the �llers of

R into a concept and retrieving its instances. Looking

up plausible �llers is helpful when a user combines en-

tering information with querying the domain model for

interesting objects.

Rules in kris are handled analogously to rules in

tacos. The key inference for deciding whether a rule

is applicable is the test whether an object is an instance

of a concept. A set of rules is applied by executing each

rule with all possible instantiations of its variables (see

[

Hanschke and Hinkelmann,1992

]

).

5 The User Interface

The user interface assists a user who wants to specify

a task in populating and querying a domain model. It

has been designed so that it guides the user during the

acquisition phase, passes the information acquired from

the user to the domain modeling component, and dis-

plays appropriate help texts whenever the user needs

additional information (e.g., the description of objects

or classes).

In the sequel we illustrate the �rst of these functional-

ities with an example session in our forwarding scenario.

tacos realizes this functionality by displaying the cur-

rent information about objects, and by proposing to the

user new pieces of information to add. In order to present

only information as speci�c as possible and to o�er all

possibilities of entering compatible information, the user

interface triggers inferences in kris.

102

5.1 Object windows

When data for an object is retrieved from the KB an ob-

ject window showing the information available about the

object appears on the screen. An object window con-

sists of an object level part and an attribute level part.

The �rst contains the name of the object and a list of

the (most speci�c) classes it belongs to; the second con-

tains descriptions of all attributes of the object. Each

class, attribute, and object name in the object window is

mouse-sensitive. When clicking on it a pull-down menu

pops up o�ering operations that can be applied to that

entity. We explain the most important operations con-

tinuing the example from our forwarding domain. Sup-

pose, we have started with the object my-order of the

class task. The system displays the following informa-

tion in an object window.

object: my-order class(es): task

attr.: name range min max �ller(s)

customer person 1 1 |

The object level. On the object level the only data

that can be modi�ed is the list of classes the object be-

longs to. The user can re�ne a class from the list and

extend the list.

Re�ning a class means replacing it by a more speci�c

one. To this end the user chooses an element from a list

of classes o�ered to him by the system. The list is com-

puted by kris, which tests for each concept correspond-

ing to an immediate subclass of the class to be re�ned

whether it is a possible concept for the object in hand

(see Section 4). The support of kris allows the user to

focus on a restricted set of relevant items and guaran-

tees that only consistent information is entered. Assume

there are the following subclasses of task: transport-

task, storing-task (which are disjoint), and single-task,

recurring-task. If we want to re�ne the class task of my-

order, all of them are possible and the system o�ers the

four of them. Suppose we choose transport-task. As ad-

ditional attributes are declared on this class the system

updates the displayed information:

object: my-order class(es): transport-task

attr.: name range min max �ller(s)

customer person 1 1 |

cargo good 1 1 |

collect-from location 1 1 |

deliver-to location 1 1 |

distance integer 1 1 |

Extending the class list consists in adding a class that

is independent of those the object is an instance of.

Again, the candidates are determined by kris, which

proceeds in three steps. First it computes the set of pos-

sible concepts for the object in hand. Then, this set is

�ltered to yield those concepts that neither subsume nor

are subsumed by a concept corresponding to a class in

the current list. Finally, kris returns the most general

concepts in the reduced set. Assume that in our example

we want to extend the list of classes my-order belongs to.

In this case tacos o�ers only single-task and recurring-

task, since storing-task is disjoint from transport-task,

to which my-order belongs.

The attribute level. In the attribute level part the

following items are displayed for each attribute of an

object: the attribute's name, a list of classes restricting

its range, the cardinality constraints, i.e., a lower and

an upper bound for the number of �llers|indicated by

the keywords min and max|and a list of the currently

known �llers. Similar to the object level, one can re�ne

a class in the range and extend the range by another

class. Additionally, the user is allowed to strengthen the

cardinality constraints and to add �llers.

Re�ning a class in the range of an attribute is similar

to re�ning a class in the object level part. The possible

re�nements are computed by kris based on the test for

possible range restrictions. For instance, suppose that

in our example we have decided to re�ne the range of

the attribute collect-from of my-order. Assume further

that location has the two immediate subclasses foreign

and inland, which are disjoint. Then both are suggested

as possible re�nements. For the sake of our example,

suppose we choose inland.

Analogously, extending a list of range restrictions re-

sembles extending the list of classes an object is mem-

ber of. Again, the computation of the candidate classes

suggested by tacos involves the test for possible range

restrictions.

Note that neither re�ning a class in the list of range

restrictions nor extending the list results in displaying

new attributes for the current object. However, as will

be discussed below, it may result in additional attributes

of the �llers when the consequences of these operations

are computed.

The next operation we want to illustrate is the intro-

duction of attribute �llers. As �ller of an attribute, the

user can either create a new object, i.e., one that does

not yet appear in the KB, or he can take an existing

object.

In the second case, he can choose between (1) possible

�llers, which comprise all objects that can be added as

�llers without turning the static KB into an inconsistent

state, and (2) plausible �llers, which are the subset of

possible �llers already satisfying the constraints imposed

on arbitrary �llers of the attribute. They are computed

by means of the tests for possible and plausible �llers

in kris. Coming back to the example, recall that in our

KB Berlin and Bonn are instances of inland, and London

is an instance of foreign. Then the only possible (and

plausible) �llers of collect-from for my-order are Berlin

and Bonn, since we already have re�ned the range of

collect-from to inland. For the attribute deliver-to, also

London is plausible. For our example we choose Bonn

and Berlin.

In the above example, all possible �llers are also plau-

sible. In order to see the di�erence between the two, as-

sume that there is also an instance joe of the class person

in the KB, and assume further that person and location

103

are not disjoint. Then also joe would be a possible �ller,

but not a plausible �ller.

Finally, the user can strengthen the cardinality con-

straints imposed on the number of �llers of a given at-

tribute. More precisely, he can increase the lower bound

and decrease the upper bound. Again the possible values

are o�ered in a mouse-sensitive menu. In our example,

we can change both min and max of cargo. Since min and

max coincide for any of the remaining attributes, they

cannot be changed without running into an inconsistent

state. When we attempt to modify them, tacos will

inform us about this fact. Moreover, it will not accept

additional �llers for collect-from and deliver-to, because

the cardinality constraints require exactly one.

5.2 The reasoning process

During the acquisition process, new information entered

by the user is continuously passed to the domain mod-

eling component. However, the object windows do not

immediately display inferred facts. In order to view such

derived information, the user has to start an update pro-

cess. The process consists of two interleaving phases: re-

alization of objects and application of rules. When the

update has been completed successfully, the new state

of the KB is pushed on a stack containing the states

reached so far.

In the realization phase, all instance relationships be-

tween the objects and the classes occurring in the KB

are computed. As a consequence, the system presents

the most speci�c information about each displayed ob-

ject. In our example, tacos recognizes that my-order

not only belongs to transport-task, but also to domestic-

transport-task. Since the only �ller of deliver-to, namely

Berlin, is an instance of inland, the system concludes

that every �ller of deliver-to belongs to inland; in other

words, the range of deliver-to is specialized to inland.

The application of rules, as described in Section 3

may cause functions to be called and new assertions to

be added. Any newly added assertions may in turn

require another classi�cation phase. In our example,

the rules in Figure 3 are applicable. As my-order is

an instance of transport-task (although just classi�ed

as domestic-transport-task) and has �llers of collect-

from and deliver-to, the value computed by compute-

distance(Bonn,Berlin), say 598, is bound to the vari-

able d and the �rst rule �res. Hence the assertion

(my-order; 598) : distance is added to the KB. Now the

preconditions of the second rule are ful�lled and the func-

tion call in its consequence part is executed. After the

update the object window of my-task looks as follows.

object: my-order class(es): dom.-tr.-task

attr.: name range min max �ller(s)

customer person 1 1 |

cargo good 1 1 |

collect-from inland 1 1 Bonn

deliver-to inland 1 1 Berlin

distance integer 1 1 598

In a similar way as discussed so far, the user will enter

during the next steps his personal data and a description

of the cargo. If the task complies with the conditions for

acceptance, as speci�ed by rules, they can be forwarded

to a data base that keeps track of accepted orders.

5.3 Handling inconsistencies

When tacos is started with an initial KB it computes

its consequences by repeated classi�cation and rule ap-

plication. After these operations it should arrive at a

consistent state, since otherwise no meaningful work can

be done.

From this moment on, the user is allowed to enter

new assertions. As pointed out before, he cannot input

arbitrary facts, but must choose from lists of possible

items presented by the system. The underlying DL in-

ference component guarantees that adding any of the

items o�ered keeps the static KB consistent. However,

this is no more true when also the dynamic part is taken

into account, because arbitrary assertions can be added

through the application of rules.

Therefore, after each reasoning step (see Section 5.2)

the inference component checks whether the static KB is

consistent. When an inconsistency is detected, the user

is informed and the system backtracks to the previous

state.

6 Discussion

We have experimented using tacos with di�erent do-

main models. One of them describes the possible tasks

that can be executed by a shipping company and has

served as illustration in this paper.

As another experiment we have translated the Wines

knowledge base, originally formulated in classic

[

Brach-

man et al.,1991

]

, into tacos. The Wines KB contains

descriptions of meals and wines together with rules that

impose constraints on the wines to accompany the meal.

Loaded into tacos, a user can specify his meal while

the system gives him advise on the beverage. In this

scenario, two services can well be demonstrated: on the

one hand, through the various re�nement operations, one

can stepwise traverse the space of possible meals, on the

other hand, constraints on wines are accumulated and

combined into a query, which then is used to �nd a par-

ticular wine object that satis�es it.

Although a toy example, the Wines scenario is proto-

typical for a whole class of applications, whose common

characteristic is the interactive composition of a com-

plex object, and where a tool like tacos can give sup-

port. Such an object can be a meal or a transportation

task, but it can equally well be a computer or some other

complex technical system to be con�gured.

We also conceive of other areas where the ideas realized

in tacos could be applicable. As schemas of object-

oriented data bases tend to be rich in semantic informa-

tion, there is again the problem for the casual user of

getting acquainted with a domain model, if he wants to

formulate sensible queries. In such a situation, a sys-

tem like tacos could be employed to support a user in

104

specifying not his inputs, but the objects he wants to

retrieve.

We assume that the schema and its integrity con-

straints can be mapped into a tacos domain model.

Considering the entities described by a set of object win-

dows as variables to be instantiated, one could incremen-

tally formulate a query asking for families of objects.

The power of the language would at least be su�cient

to formulate conjunctive queries over unary and binary

predicates (classes and attributes). Due to the assis-

tance through a reasoner, it is impossible to come up

with an inconsistent query, that is, a query that cannot

have instances because of the integrity constraints of the

database.

7 Conclusion

We have presented tacos, an information acquisition

interface, which receives its power from the inferential

capabilities of the DL system kris.

Y. Gil has formulated a set of demands on knowledge

acquisition tools

[

Gil,1994

]

: (1) maximum guidance of

the user, (2) robustness, in the sense that erroneous in-

put is tolerated, or better, prevented, and (3)
exibility,

in the sense that the system is applicable to a wide range

of domains. We think that these requirements give also

a good guideline for the development of task acquisition

systems.

The tacos system meets each of them in a speci�c

way: It guides the user by displaying input patterns and

actively suggesting items for input. It does not allow in-

formation to be entered that is meaningless with respect

to the domain model, so that the need for error recovery

is reduced. Finally, since its functionality is parameter-

ized by a largely declarative domain model, it can be

easily adapted to di�erent applications.

References

[

Baader and Hollunder, 1991a

]

F. Baader and B. Hol-

lunder. KRIS: Knowledge Representation and

Inference System. SIGART Bulletin, 2(3), 1991.

[

Baader and Hollunder, 1991b

]

F. Baader and B. Hol-

lunder. A terminological knowledge representa-

tion system with complete inference algorithms. In

M. Richter and H. Boley, editors, Proc. of PDK'91,

Kaiserslautern, Germany, 1991.

[

Brachman et al., 1991

]

R. J. Brachman, D. L. McGuin-

ness, P. F. Patel-Schneider, L. A. Resnick, and

A. Borgida. Living with CLASSIC: When and how

to use a KL-ONE-like language. In J. Sowa, editor,

Principles of Semantic Networks. Morgan Kaufmann,

San Mateo, Calif., 1991.

[

Buchheit et al., 1994

]

M. Buchheit, F. M. Donini,

W. Nutt, and A. Schaerf. Re�ning the structure of

terminological systems: Terminology = Schema +

Views. In Proc. of AAAI'94, Seattle (Washington,

USA), 1994.

[

Gaines and Shaw, 1993

]

B. Gaines and M. Shaw.

Knowledge acquisition tools based on personal con-

struct psychology. The Knowledge Engineering Re-

view, 8(1), 1993.

[

Gil, 1994

]

Y. Gil. Knowledge re�nement in a re
ective

architecture. In Proc. of AAAI'94, Seattle (Washing-

ton, USA), 1994.

[

Hanschke and Hinkelmann, 1992

]

P. Hanschke and

K. Hinkelmann. Combining terminological and rule

based reasoning for abstraction processes. In Proc. of

GWAI'92, Bonn, Germany, 1992.

[

MacGregor, 1991

]

R. MacGregor. Inside the LOOM de-

scription classi�er. SIGART Bulletin, 2(3), 1991.

[

Nebel, 1990

]

B. Nebel. Reasoning and Revision in

Hybrid Representation Systems, volume 422 of Lec-

ture Notes in Arti�cial Intelligence. Springer-Verlag,

Berlin, 1990.

[

Patel-Schneider et al., 1991

]

P. Patel-Schneider, D. L.

McGuinness, R. J. Brachman, L. Alperin Resnick, and

A. Borgida. The CLASSIC knowledge representation

system: Guiding principles and implementation ratio-

nal. SIGART Bulletin, 2(3), 1991.

105

Part-of Reasoning in Description Logics:

A Document Management Application

Patrick Lambrix

Department of Computer and

Information Science

Link�oping University

S-581 83, Link�oping, Sweden

patla@ida.liu.se

Lin Padgham

Department of Computer Science

Royal Melbourne Institute of Technology

Melbourne, VIC 3000, Australia

linpa@cs.rmit.edu.au

Abstract

The notion of giving support to composite ob-

jects in systems is gaining strength in a number

of areas including description logic systems. In

this paper we examine the usefulness of an ear-

lier proposed approach which introduces part-

of reasoning in a description logic in a docu-

ment management application. We identify key

issues in both expressivity and inferencing.

1 Introduction

The notion of composite objects, or objects made up

of parts, is one which is gaining strength in a number

of areas. Within knowledge representation and reason-

ing there has been an interest in the description logics

community to extend the logics to include the ability to

represent and reason about composite objects. There

have been a number of di�erent approaches including

an extension which allows for treatment of collections as

individuals

[

1

]

and an integration of a description logic

with a rule-based formalism, where properties and in-

ferences about part-whole relations are expressed in the

rule-base

[

2

]

. The KOLA system

[

3

]

also incorporated

some aspects of part-whole relations found necessary in

a medical application.

In our own previous work

[

5

]

we have concentrated on

de�ning a part-of hierarchy which is like the is-a hierar-

chy in that it organizes concept descriptions with respect

to an important relation, and then uses this organiza-

tion/relation to de�ne inferences about individuals and

concepts. The language component of the theory that

we de�ned has some similarities to the language used by

[

6

]

in an extension to CLASSIC.

In this work we examine the usefulness of our ap-

proach for use in a particular application. Such exam-

ination is intended to guide further work in developing

additional expressivity and additional inferencing mech-

anisms, based on the part-of relation. The application

we have chosen is that of a project management system,

where system support is required for such things as def-

inition of document types, classi�cation and checking of

documents for completeness with respect to de�nition,

inheritance of attributes between parts and wholes, and

declaration and management of whole-part relationships.

This application is being developed in cooperation with

a local company, and the requirements are based on dis-

cussions regarding their needs, and documentation de-

scribing how things are currently done manually. In this

paper we de�ne extensions to the language in

[

5

]

which

allow us to de�ne templates as desired, and we discuss

how the system can be used to make the inferences and

answer the queries desired by users. For details and ex-

amples we refer to

[

4

]

.

2 Extending the Language

The language in

[

5

]

allows us to do three things w.r.t.

parts in the concept de�nitions. We can de�ne a part

name and the concept which the part belonging to that

part name must belong to (e.g. (part title-p string));

we can de�ne how many parts there should be of a cer-

tain kind (e.g. (parts 1 title-p)) and we can describe

constraints between parts within a composite (e.g. (pp-

constraint larger-font title-p abstract-p)).

In

[

5

]

we considered the case where we knew for each

part name in the de�nition of a concept exactly how

many parts there were. This was too constraining for

the application considered here. Thus we replace the

parts-construct with two constructs for giving cardinal-

ity ranges for parts: atleastp and atmostp. They are

similar to atmost and atleast for ordinary roles.

The language in

[

5

]

allows for di�erentiation between

di�erent kinds of parts by using di�erent labels. Thus

we can have (part title-p string) and (part abstract-p

abstract) in the same de�nition, indicating that there is

both a title part and an abstract part. However, we have

no way to di�erentiate between di�erent instances of the

same part label. This was necessary in our application,

in particular to support ordering of parts at the individ-

ual level - it is not acceptable for the sections of a docu-

ment to appear in random order. We decided to extend

the language by allowing a number attached to the part

name in some instances. To allow this ordering to extend

over all the parts of a composite in a uniform way, we

also introduce the notion of an order constraint between

two di�erent kinds of parts. This is written as in (order-

constraint section-p reference-p). This indicates that in

the ordering of parts, section-p comes before reference-

106

concept ::=

>

j ?

j atomic-concept

j (and concept

+

)

j (all role concept)

j (atleast number role)

j (atmost number role)

j (allp part atomic-concept)

j (atleastp number part-name)

j (atmostp number part-name)

j (pp-constraint role part part)

j (order-constraint part part)

j (same-�ller attr-path attr-path)

j (aggregate part attribute role)

role ::= identi�er

attribute ::= identi�er

atomic-concept ::= identi�er

part ::= part-name

j part-name:pos-number

part-name ::= identi�er

attr-path ::= attribute

j part.attribute

number ::= non-negative-integer

pos-number ::= strictly-positive-integer

Figure 1: Terminological language: syntax.

p. If there are several sections, indicated as section-p:1,

section-p:2, etc. then these will be ordered by number,

and all will come before all reference-p.

The third extension we introduce gives the ability

to de�ne inheritance information allowing us to infer

attribute

1

values of parts based on those of wholes, or

vice versa, or attribute values of parts, based on those of

other parts. The �rst construct we introduce is same-

�llerwhich is similar to same-as in CLASSIC, but with

restricted path length. It allows us to state such things

as (same-�ller projectnumber section-p.projectnumber),

indicating that the projectnumber attribute of a section

part has the same value as the projectnumber attribute

of the composite in which this de�nition is found. We

also introduce the aggregate-construct which allows us

to aggregate a set of attribute values for a particular kind

of parts and declare these to be role �llers of a particu-

lar role within the composite object. Thus (aggregate

document-p responsible responsibles) in the de�nition of

a folder indicates that the value of the role responsibles

for this composite is an aggregate of the responsible at-

tribute in each of the document parts.

The syntax of the full language

2

we use is de�ned in

�gure 1. An interpretation of the language consists of a

tuple < D;�; " >, where D is the domain of individuals,

� is a total

3

order on D and " the extension function.

The semantics for the di�erent constructs are shown in

1

Attributes are roles which can have exactly one �ller.

2

In

[

5

]

the allp construct was called part.

3

This constraint can be loosened and will be in practice.

"[(and A B)] = "[A] \ "[B]

"[(all r A)] =

f x 2 D j 8 y 2 D: <x,y> 2 "[r] ! y 2 "[A]g

"[(atleast m r)] =

f x 2 D j] f y 2 D j <x,y> 2 "[r]g � m g

"[(atmost m r)] =

f x 2 D j] f y 2 D j <x,y> 2 "[r]g � m g

"[(allp p A)] =

f x 2 D j 8 y 2 D: y <

p

x ! y 2 "[A]g

"[(atleastp m n)] =

f x 2 D j] f y 2 D j y <

n

x g � m g

"[(atmostp m n)] =

f x 2 D j] f y 2 D j y <

n

x g � m g

"[(pp-constraint r p1 p2)] =

f x 2 D j 8 y1,y2 2 D:

(y1 <

p1

x ^ y2 <

p2

x) ! <y1,y2> 2 "[r]g

"[(order-constraint p1 p2)] =

f x 2 D j 8 y1,y2 2 D:

(y1 <

p1

x ^ y2 <

p2

x) ! y1 � y2 g

"[(same-�ller p1:a1 p2:a2)] =

f x 2 D j a1(p1(x)) = a2(p2(x)) g

"[(aggregate p a r)] =

f x 2 D j 8 y,z 2 D:

(y <

p

x ^ <y,z> 2 "[a]) ! <x,z> 2 "[r]g

Figure 2: Terminological language: semantics.

�gure 2. For convenience we write y <

n

x for <y,x> 2

"[n] where n 2 N . We de�ne y <

n:m

x as (y <

n

x ^]

f z 2 D j z <

n

x ^ z � yg = m � 1). Subsumption is

de�ned as usual but taking into account the part names

and the order relation. A subsumes B i� "[B] � "[A] for

every interpretation <D,�,">.

Also the assertional language is modi�ed slightly, but

we refer to

[

4

]

for details.

3 Inferences and Queries

In addition to examining what the application needed

from the language in order to be able to describe its con-

structs, we have also looked at what questions users wish

to ask, or what inferences are useful in this application

and have relevance to the notion of part-of or composite

objects.

1. `Is this individual part of that individual?' or more

generally `To which wholes does this individual be-

long?' Such questions are important for instance

to �nd out which compositions (e.g. documents)

change when a particular part (e.g. a section) is

updated.

2. `Does this individual belong to a particular con-

cept?' This question is important in reasoning

about why an individual was created and how to

use the individual.

3. `Is this concept a building block for another con-

cept?' or `What are the possible building blocks for

a particular concept?' Answers to these questions

provide information about the usefulness of individ-

uals belonging to the �rst concept (e.g. a section)

107

to be used as components for composite individuals

belonging to the second concept (e.g. a document).

4. `Build a new individual belonging to a particular

composite concept given the parts.' This inference

allows us to instantiate composite individuals (e.g.

a document) given the parts (e.g. abstract and

sections). It allows us to create compositions in a

bottom-up way.

5. `Are there missing parts to build an individual be-

longing to a particular concept?' and `Of what kind

are these missing parts?' This inference allows us

to make use of the templates described by the com-

posite concept de�nitions (e.g. documents). It gives

support for creating compositions in a top-down

way.

In

[

4

]

we show how the notions of part-of hierarchy,

composes and compositional inferencing as de�ned in

[

5

]

can be extended to provide answers to all but the last

query. Here we brie
y mention the new inference which

is needed to answer the last query.

3.1 Completion

A common way of writing documents is by using a tem-

plate. A document individual is then created following

the document concept description, but its parts still have

to be instantiated. Important in this method is the fact

that at each moment we want to be able to �nd out what

parts are still missing for the document, given that some

parts are already written. The information we need is of

which kind these missing parts necessarily should be, and

what the necessary relationships should be among these

parts and between these parts and the already available

parts. We also do not want unmotivated new parts.

The notion of candidate completion allows us to ex-

press this information need formally. A candidate com-

pletion is an Abox which represents a proposal for an

instantiation of the missing parts and thus a possible

way to `complete' the composition.

A candidate completion of a set of individuals and

a concept C with respect to an original Abox � is a

pair <�,�

�

> such that �

�

is a set of (individual, part

name)-pairs and � is a smallest Abox such that (i) �

contains the original Abox �, (ii) �

�

contains all the

new individuals used to complete the composition (and

no others) and these are all de�ned in �, and (iii) we

can use the new individuals together with the original

set of individuals to compose (see

[

5

]

for the de�nition)

the given concept C in �. Formal details are given in

[

4

]

.

For some Abox �, set of individuals, and concept C

there may not exist a candidate completion. This can for

example happen if some constraints between the given

parts are not satis�ed. It is also possible that <�,;> is

the only candidate completion, as in the case where the

set of original individuals can be used to compose con-

cept C with respect to the original Abox �. In this case

� is the smallest Abox satisfying the conditions and no

new individuals need to be introduced. There may also

be many possible candidate completions. In

[

4

]

we have

de�ned a preference relation based on the intuition that

we prefer to have as general as possible new individuals.

4 Discussion and Conclusion

In this paper we have examined the usefulness of the ap-

proach proposed in

[

5

]

in a document management ap-

plication. Although this application is not yet fully im-

plemented, we have identi�ed key issues in both expres-

sivity and inferencing. As implementation progresses we

expect to identify further strengths and weaknesses of

this approach.

With respect to expressivity we found that the lan-

guage should be extended in three ways. First, there

was a need to have a construct allowing for cardinal-

ity ranges of parts. Further, the application required

the possibility to order di�erent parts. Finally, value

propagation (or inheritance via part-of) was considered

necessary. We introduced new constructs to re
ect these

needs, and indicated how these can be incorporated in

the framework of

[

5

]

.

For many of the important questions and inferences

the notions such as compositional inclusion, composes

and compositional inferencing introduced in

[

5

]

were

found to be useful and we extended them to conform

with the new language. Further, we de�ned the notion

of candidate completion which is an important inference

when creating compositions in a top-down way. It allows

us to know at all times which kind of parts are missing

for a particular composite individual.

References

[

1

]

Franconi, E., `A Treatment of Plurals and Plural

Quali�cations based on a Theory of Collections',

Minds and Machines, Vol 3(4), pp 453-474, Novem-

ber 1993.

[

2

]

Hanschke, P., A Declarative Integration of Termi-

nological, Constraint-based, Data-driven, and Goal-

directed Reasoning, Ph.D. thesis, University of

Kaiserslautern, Germany, 1993.

[

3

]

Jang, Y., Patil, R., `KOLA: A knowledge organiza-

tion language', Proceedings of the 13th Symposium

on Computer Applications in Medical Care, pp 71-

75, 1989.

[

4

]

Lambrix, P., Padgham, L., `Analysis of Part-of Rea-

soning in Description Logics for Use in a Document

Management Application', 1995.

[

5

]

Padgham, L., Lambrix, P., `A Framework for Part-Of

Hierarchies in Terminological Logics', Doyle, Sande-

wall, Torasso, eds, Principles of Knowledge Repre-

sentation and Reasoning: Proceedings of the Fourth

International Conference - KR 94, pp 485-496, Bonn,

Germany, 1994.

[

6

]

Speel, P.-H., Patel-Schneider, P.F., `CLASSIC ex-

tended with whole-part relations', Proceedings of the

International Workshop on Description Logics, pp

45-50, Bonn, Germany, 1994.

108

Description Logic-based Con�guration for Consumers

Deborah L. McGuinness and Lori Alperin Resnick

AT&T Bell Laboratories

600 Mountain Avenue

Murray Hill, NJ 07974

fdlm,resnickg@research.att.com

Description logic-based con�guration applications

have been used within AT&T since 1990 to process over

two and a half billion dollars worth of orders. While this

family of applications

[

5

]

has widely acknowledged impor-

tance, it is di�cult to use for pedagogical purposes since

the typical product con�gured is a highly interconnected,

complicated technical piece of equipment like the DACS

IV{2000.

1

We have developed a smaller{scale con�gura-

tion application that has analogous reasoning processes

but a more approachable domain|that of building home

theater systems. This application provides a platform for

explaining how Description Logic-based Systems (dlss)

work, in our case the classic knowledge representation

system

[

1

]

, and how they can support industrial applica-

tions like con�guration.

Classic

2

is an object{centered representation and

reasoning tool with a formal foundation in description

logic. Classic and many dlss are particularly well

suited for applications in areas like con�guration that

must

1. encode rich class and object descriptions;

2. provide active inference (such as automatic classi-

�cation of classes and objects into a generalization

hierarchy, rule �ring and maintenance, inheritance,

propagation, etc.);

3. explain the reasoning process;

4. handle an incomplete and incrementally evolving

knowledge base; and

5. handle errors in a way that keeps the knowledge base

consistent, but also provides useful information to

the user.

We will provide some examples in our domain that illus-

trate each of these areas.

Class and object descriptions: As in any applica-

tion, we need a domain ontology in which to work. Our

home theater application contains a knowledge base in-

cluding a concept taxonomy and instance descriptions.

1

DACS IV{2000 is a digital cross{connect system that

processes digitized signals for some US standard transmission

rates.

2

Classic is freely available for academic purposes, and

commercially available for other purposes. It has been dis-

tributed to over 80 universities and is in use in many internal

projects within AT&T.

The knowledge base was created by working with an ex-

pert in the domain. The database of instance informa-

tion was also hand{compiled for this small application

but in other applications where we work with changing

instance information, we have written automatic transla-

tion routines that periodically access databases and then

update our knowledge base

[

2

]

. The terminological know-

ledge base contains de�nitional information concerning

classes as well as rules. We worked directly with an ex-

pert to obtain these rules, but in our larger applications

of this sort

[

5

]

, system builders begin with preexisting

rule speci�cations and use a rule translator to generate

classic rules. Rules in this application fall into two

classes: both hard and fast electrical rules (for example,

a receiver must have an A/B switch in order to sup-

port secondary main speakers), and \rules of thumb"

(for example, home theater systems do not have more

than one TV or two VCRs). All products con�gured

by the knowledge base must abide by the hard and fast

electrical rules, and products con�gured following our

\guidance" also follow the rules of thumb. If classic

supported defaults, all the rules associated with \guided-

stereo-system" would have been defaults.

Active inference: The home theater application

uses classic to provide active inference after the in-

terface has guided the user through a few simple ques-

tions. We assume that people want to build audio only,

home theater only, or combination audio/video systems

and that they already have a price range in mind. The

user interface then presents menu choices for the di�erent

system types and quality (or price) classes. Once those

two choices are made, the application uses classic to

ask follow up questions as appropriate and to produce a

complete (abstract) description of a consistent product.

For example, if the user chooses a high{quality combina-

tion system, then classic deduces that the target sys-

tem must have an ampli�er, preampli�er, tuner, main,

center, and surround speakers, a subwoofer, VCR, and

TV, and it presents this information graphically. clas-

sic calculates the deductive closure of the information

provided, which usually implies properties of the system

as a whole as well as properties of all the individual com-

ponents. The user can view the completed information

on any component just by clicking on the icon. For ex-

109

ample, if she clicks on the TV, she sees, among other

things, that the list price must be at least $1000.

Explanation: classic can justify all of its beliefs.

(For a more complete description of our explanation de-

sign, see

[

3

]

). In the example above, if the user asks

how the TV acquired its price restriction, she learns that

a rule �red which says that high{quality systems must

have high{quality components, which for TVs enforces

a minimum price of $1000. The explanation facility can

also answer other questions such as why one object does

or does not \subsume" (is or is not more general than)

another object, why a rule �red on an object, or why an

error occurred.

Incomplete and evolving knowledge bases:

classic allows re�nement of (and changes to) a system

speci�cation. For example, a user could add new com-

ponents (e.g., a turntable), chosen from a panel of icons.

She might also \instantiate" a component description

by choosing a particular make and model. The interface

will only generate choices that appear to be consistent

with the information that classic has derived about the

component (by using the speci�cation of the component

as a query to the database of individuals). The user may

also delete a requirement on the system, in which case

any deductions that were made as a result of this require-

ment are removed from the speci�cation. When the user

has �nished re�ning the system to her satisfaction, she

can ask the application to complete the speci�cation for

her. The application will then choose consistent makes

and models for all the components she has left unspec-

i�ed. She can then view a parts list, after which she

might want to ship the order o� to the factory.

If the user is not familiar with di�erent types of stereo

equipment, she may wish to trust our expert, and build a

system starting with one of the example systems, where

all the components are known to work well together. She

can then re�ne this system according to her needs, re-

questing alternative makes and models to the ones cho-

sen, and adding and removing components.

Errors: Although classic and the application min-

imize the places where a user can make an error, errors

can still occur since the application does not ask clas-

sic to precalculate all possible consequences of a given

choice. The user could make a choice which would cause

a rule to �re, which would then cause a propagation of

some inconsistent information. For example, suppose the

user wants to build a system, starting with a few compo-

nents she already owns, including a small TV. She may

later add a price range for the whole system, and based

on this information, classic classi�es her system as a

high-quality system. All the high{quality system rules

then �re, including one which requires the system's TV

to have at least a 27{inch diagonal. This information

gets propagated onto the user's small TV, which causes

an error. classic does not allow the knowledge base to

be in an inconsistent state, so it will roll back the know-

ledge base to the previous consistent state, meanwhile

saving copies of all the individuals that led to the error,

in their inconsistent states. If the user asks classic for

an explanation of the error, classic can access the in-

consistent state information to generate an explanation.

We feel that description logic technology is particu-

larly well matched to this style of con�guration prob-

lem for the following reasons: First, the application is

fairly logical (not heuristic) so we would either have

to implement the logic in a programming language or

start with a tool like classic that incorporates a for-

mal logic. Second, this domain is naturally hierarchical

and rule information is appropriate at many di�erent

levels of the taxonomy. dlss support hierarchical rules

instead of using a more traditional,
at rule-based ap-

proach. This may simplify knowledge engineering and

maintenance

[

4

]

. classic rules can be simpler than typi-

cal expert system rules because they only need to contain

content appropriate to a certain level of concept in the

hierarchy, and they do not need to contain any control

information. Finally, the application naturally incorpo-

rates many di�erent types of inference; a few of which

include: inheritance, propagation, bounds constraints,

and rules. These can be encoded directly in dlss in-

stead of needing to be paraphrased into rules. Possibly

more importantly, explanations of the reasoning process

may be in terms of the naturally occurring inferences.

This home theater system is a simple example of a

family of applications where a description logic-based

platform is used to implement standard con�guration

tasks and provide the basis for additional functionalities.

The deployed applications built on this design have pro-

vided many advantages including decreased order pro-

cessing intervals (facilitating hypothetical con�guration

evaluations, which were previously infeasible), reduc-

tions in personnel required to maintain product informa-

tion, accurate and up{to{date pricing for sales quotes,

elimination of duplication in databases, and identi�ca-

tion of incompatible knowledge.

Acknowledgements

We are indebted to Charles Isbell for his collaboration on

the implementation of our demo. We wish to thank the

entire classic group, particularly Peter Patel-Schneider

and Ron Brachman, for their insightful comments on this

work.

References

[

1

]

R. J. Brachman, D. L. McGuinness, P. F. Patel-

Schneider, L. A. Resnick, and A. Borgida. Living with

classic: When and How to Use a kl-one-Like Lan-

guage. In Principles of Semantic Networks: Explo-

rations in the representation of knowledge, J. Sowa, ed-

itor, Morgan-Kaufmann, pp. 401{456, 1991.

[

2

]

R. J. Brachman, P. G. Selfridge, L. G. Terveen, B. Alt-

man, A. Borgida, F. Halper, T. Kirk, A. Lazar, D. L.

McGuinness, and L. A. Resnick. Integrated Support

for Data Archaelogy. in International Journal of Intel-

ligent and Cooperative Information Systems, 2(2), 1993,

pp. 159{185.

110

[

3

]

D. L. McGuinness and A. Borgida. Explaining Sub-

sumption in Description Logics. In Proc. IJCAI, Mon-

treal, August 1995.

[

4

]

J. R. Wright, D. L. McGuinness, C. Foster, and

G. T. Vesonder. Conceptual Modeling using Know-

ledge Representation: Con�gurator Applications. In

Proc. Arti�cial Intelligence in Distributed Information

Networks, IJCAI-95, Montreal, 1995.

[

5

]

J. R. Wright, E. S.Weixelbaum, K. Brown, G. T. Veson-

der, S. R. Palmer, J. I. Berman, and H. H. Moore. A

knowledge-based con�gurator that supports sales, en-

gineering, and manufacturing at AT&T Network Sys-

tems. In Proceedings of the Innovative Applications of

Arti�cial Intelligence Conference, pp.183{193, 1993.

111

FLEX-Based Disambiguation in VERBMOBIL

J. Joachim Quantz

1

, Guido Dunker

1

, Manfred Gehrke

2

, Uwe K�ussner

1

, Birte Schmitz

1

1

TU Berlin, fjjq,dunker,uk,birteg@cs.tu-berlin.de

2

Siemens AG M�unchen, Manfred.Gehrke@zfe.siemens.de

1 Introduction

The VERBMOBIL project is funded by the German

Federal Ministry of Education, Science, Research and

Technology (BMBF) and is concerned with automatic

interpreting of face-to-face dialogues. In the �rst phase

of the project (1993{1996), in which 31 academic and

industrial partners are involved, a demonstrator and a

prototype are built. In this paper we describe the di�er-

ent tasks for which the DL system FLEX is used in the

VERBMOBIL demonstrator, namely domain modeling,

ordering of syntactic parses, conceptual disambiguation,

and determination of dialogue acts. Before describing

these tasks, which are presented in more detail in

[

5; 15;

16; 24; 25

]

, we brie
y sketch the characteristics of the

DL system FLEX.

2 The FLEX System

The FLEX system is an extension of the BACK system

[

7

]

speci�cally designed for the use in VERBMOBIL.

1

Its main characteristics are:

1. an expressive term language

2. situated object desriptions

3. weighted defaults

4.
exible inference strategies

A detailed description of the FLEX system is currently in

preparation

[

15

]

, here we contend ourselves with listing

the constructs provided by the system and discuss their

relevance for the VERBMOBIL application.

c ! c1 and c2, c1 or c2, not(c)

all(r,c), atleast(N,r,c), atmost(N,r,c)

r:o, f:c, oneof([o1,...,oi]), rvm equal(r1,r2)

r ! r1 and r2, r1 or r2, not(r)

domain(c), range(c), r1 comp r2, inv(r)

 ! t1 := t2, t1 :< t2, c1 => c2,

c1 � N �> c2, o :: c in s

In the current VERBMOBIL application disjunction is

only rarely used for concepts and not at all for roles;

1

FLEX is to a large extent compatible with BACK V5. It

does not support revision, however, and provides a di�erent

programming interface, in particular with respect to queries.

negation is only used as primitive negation for both con-

cepts and roles; `atleast' and `atmost' are only used for

cardinality 1; and role value maps are only used for fea-

tures.

Term-valued features (f:c) allow a modeling similar to

typed feature structures

[

4

]

. Their behavior can be char-

acterized by the following subsumption relations:

! f:c1 and f:c2 = f:(c1 and c2)

! f:cbot = cbot

c1 < c2 ! f:c1 < f:c2

Term-valued features are used to model the conceptual

content of NL expressions, as exempli�ed below in Sec-

tion 4.2.

The inference rules implemented in FLEX follow the

normalize-compare paradigm, i.e. concepts and roles are

transformed into normal forms by applying normaliza-

tion rules. To test subsumption, these normal forms

are then structurally compared using subsumption rules.

The approach of deriving such inference rules by rewrit-

ing proofs in the Sequent Calculus is described in detail

in

[

20; 21; 22

]

. In principle, each inference rule is im-

plemented twice, once as a normalization rule and once

as a subsumptions rule. The
exible inference strategy

is then achieved by providing for each inference rule the

choice whether it is to be applied during normalization

or subsumption cheking, or whether it is to be switched

o� completely.

2

The version of the FLEX system used in the VERB-

MOBIL demonstrator contains those inference rules

needed for the application. We are currently integrating

the missing inference rules into the system. In general,

the architecture chosen for the implementation of the in-

ference rules proved to be rather adequate for such an

incremental implementation.

3 Domain Modeling

Domainmodels are used in Natural Language Processing

systems to provide domain-speci�c background know-

ledge. This is usually achieved by de�ning the concepts

2

Choosing a particular inference strategy is a task to be

performed by the system developer for a particular applica-

tion, and not by a naive user of the FLEX system.

112

SL−expression 1

SL−expression 2

TL−expression 1concept 1

TL−expression 2concept 2

TL−expression 3concept 3

Figure 1: NL expressions and concepts are related by m-to-n mappings.

occurring in a particular application, i.e. by modeling

their relevant properties and the hierarchical relations

between them. Obviously, the main problem consists in

deciding which aspects are relevant for a particular ap-

plication.

We illustrate this problem by considering the task of

assigning concepts to the lexemes of a language. The

most fundamental decision concern the number of con-

cepts assigned to a lexeme. Consider an example taken

from the literature, namely the meaning of the lexeme

`open' discussed in

[

23, p. 145

]

:

(3.0) a. Tom opened the door.

b. Sally opened her eyes.

c. The carpenters opened the wall.

d. Sam opened his book on page 37.

e. The surgeon opened the wound.

Searle claims that

... the word \open" has the same literal mean-

ing in all �ve of these occurrences. Anyone who

denied this would soon be forced to hold the

view that the word \open" is inde�nitely or

perhaps even in�nitely ambiguous since we can

continue the example; and inde�nite ambiguity

seems an absurd result.

[

23, p. 146

]

He gives additional examples in which one might argue

that the lexeme `open' has a di�erent meaning:

(3.0) a. The chairman opened the meeting.

b. The artillery opened �re.

c. Bill opened a restaurant.

These examples indicate that the assignment of concepts

to lexemes is in
uenced both by linguistic and by ency-

clopedic knowledge.

In the context of Machine Translation, a straightfor-

ward criterion for deciding how many conceptual con-

tents to assign to a source-language expression is to pro-

vide a separate concept for each possible target-language

translation. Consider the examples (1) and (2)|the

German translation for `open' in (1) is `�o�nen', whereas

in (2) it is `er�o�nen'. This would be a reason to dis-

tinguish the conceptual content of `open' expressed in

(1) and (2). In general, we would thus have m-to-n

mappings between NL expressions and concepts, as il-

lustrated in Figure 1.

3

Note that the structure of the conceptual hierarchy to

be modeled thus depends on the particular source and

target languages. Based on contrastive analyses it can

be decided whether a concept has to be included into

the domain model or not. Note further, that it is in

principle possible to extend such a bilingually motivated

hierarchy by adding new source and target languages,

i.e. by adding mappings and integrating the additionally

required conceptual distinctions

[

6; 8

]

.

Another requirement to distinguish readings of a lex-

eme arises from the need to choose the appropriate con-

cept given an NL expression in a particular context (see

Section 4.2). Given the task of Machine Translation in

general and of conceptual disambiguation in particular,

there are thus two main criteria for deciding which con-

ceptual distinctions to include in the domain model:

1. distinctions corresponding to potential translations

of an expression;

2. distinctions relevant for selectional restrictions used

for disambiguation.

The current version of the domain model in the VERB-

MOBIL demonstrator contains approximately 300 con-

cepts and 170 roles. In the following we illustrate its use

by considering three di�erent examples of FLEX-based

disambiguation.

4 Disambiguation

4.1 Ordering Syntactic Parses

In the VERBMOBIL demonstrator the syntactic parser

receives as input a word lattice and produces as output

syntactic structures of the various paths in the lattice,

which are syntactically legal. In general, each of the

syntactically legal pathes in the word lattice yields one

or more syntactic analyses.

4

In the demonstrator the

3

We thus assume that the so-called translational mis-

matches

[

10

]

are not the exception but rather the average

case.

4

For the VERBMOBIL corpus the average number of

parses per sentence/path is 4.4.

113

syntactic analysis

5

is augmented by a test on selectional

restrictions. Wrt this tests the alternative parses are or-

dered, and the best analysis is then passed to semantic

construction, which builts DRT-like semantic represen-

tations for the syntactic parse.

The ordering of alternative parses is performed on

the basis of sort information represented in the domain

model. Basically, two types of checks are performed:

� A subsumption test between the sort of an argu-

ment position and the sort of the possible argument,

where the �rst one has to subsume the second one.

The same holds between the sort of a phrase and

the sort of an adjunct.

� Checking whether subsumption or a speci�c re-

lation (a FLEX-role) holds between the sorts of

two arguments, in order to take into account some

global constraints between arguments and/or ad-

juncts. This is especially useful for semantically

empty verbs such as `to be' or `to have'. E.g. a dis-

tinctive feature for `to be' in the de�nitorial reading

is that the sort of the subject has to be subsumed

by the sort of predicate noun.

In order to test the selectional restrictions most lexical

entries are augmented by a \sort"-feature, whose value

is associated with a concept of the domain model

6

. The

grammar has to provide for the percolation of the sortal

information and to test it at appropriate grammar rules.

Though these tests lead to wrong results in cases of type

coercion or metonomies they are nevertheless useful to

recognize such cases as well as acoustic recognition er-

rors.

Consider the following examples where the �rst one

is a recognizer mismatch, while the second is a case of

type coercion (violations of sortal restrictions are em-

phasized):

(4.0) a. Dann mu� ich drei Uhr auf den Freitag ver-

schieben.

b. I have to postpone three o`clock to friday.

(4.0) a. Dann mu� ich Dreyer auf den Freitag ver-

schieben.

b. I have to postpone Dreyer to friday.

c. (lit.: I have to postpone the meeting with

Dreyer to friday.)

If the process of semantic construction should not be

burdened with the task to select the semantically sensi-

ble readings out of the parsing results, a solution to this

dilemma, i.e. discarding meaningless utterances, but still

have a chance to interpret cases of type coercion, is to

5

Cf.

[

2

]

.

6

Wrt the m-to-n-mapping between lexemes and concepts

exempli�ed in section 3 the sort of a lexeme is often enough

a rather general concept, located near the top of the con-

cept hierarchy. In the course of conceptual disambiguation

it will be re�ned to a more speci�c concept depending on

the context of actual usage as e.g. described in

[

1; 12;

13

]

.

apply the test of the selectional conditions as a soft con-

straint, which gives each selectional clash a penalty in-

stead of immediatelly rejecting it. Thus the application

of selectional restrictions results in an ordering, where

the \sortally" best readings are presented �rst to seman-

tic construction process.

7

These selectional conditions are thus modeled as soft

constraints and not as strict �lters. Such a modeling of

selectional restrictions as soft constraints instead of as

strict �lters allows preferential disambiguation without

making sentences containing type coercion ungrammati-

cal and it enhances the robustness of the system. Techni-

cally, this is realized by a bonus system, where each suc-

cessfull application of a condition increments the bonus

counter. The bonus system is additionally re�ned by giv-

ing preferred constructions an extra bonus. Normalizing

the total bonus �gure with the number of all applica-

tions of selectional conditions of the utterance gives a

measure for the selectional quality of an analysis. Thus

we get the following \soft" quality criteria:

N (successes)

N (tests)

=

(

� 1 literal meaning

< 1 non-literal meaning or

acoustic recognition error

Given the Verbmobil test corpus with approximately

200 turns, i.e. about 400 sentences, as evaluation ba-

sis, the test of selectional restrictions increases the total

parsing time by 5 %. For a part of this corpus (76 utter-

ances) that syntactic reading of each utterance has been

determined which is the intended one in the respective

dialogue. An application of the parser without testing se-

lectional restrictions on this smaller corpus with written

input gives the intended reading as the �rst reading in 49

(64 %) of all cases, while with selectional restrictions the

�rst reading is the intended one in 71 (95 %) cases. Most

of the remaining cases, where the correct reading is not

the �rst one, are due to either PP-attachment (adjunct

or modi�er) or the lack of prosodic information, where

the boundary between two sentences of an utterance is

misplaced in the �rst reading. The evaluation on word

lattices gives similar results. But one has to consider,

that sortally deviant utterances are not discarded, they

just have a worse scoring (< 1). When there is just one

result later stages of evaluation have to decide whether

to do some repair due to acoustic mismatches or to in-

terprete type coercion.

4.2 Conceptual Disambiguation

One of the central tasks of Machine Translation is to

choose the appropriate concept given an NL expression

in a particular context. Usually this involves complex

background knowledge and the major problem for con-

ceptual disambiguation is

1. to make background knowledge available, i.e. to

store it in the computer;

7

Note that this ordering thus follows the strategy of pref-

erential disambiguation as described in

[

14

]

.

114

o_1

anbieten

pred

termin_vorschlagen

conc

o_1_ref

ref

o_2

person
conc

pred

sprecher

ref

o_2_ref

o3

conc
datum

ref

o3_ref
pred

datum

agent

theme

vorschlag_wer

vorschlag_was

termin

start_zeit

o4

intantiates

intantiates

intantiates

Figure 2: Sample representation of linguistic and conceptual structure.

2. to provide fast access to background knowledge, i.e.

to provide inference mechanisms drawing the rele-

vant inferences.

In the absence of a satisfying solution to this task which

comprises our entire common-sense knowledge one has

to devise heuristics based on partial information and in-

complete reasoning. The most popular way of doing con-

ceptual disambiguation is by means of selectional restric-

tions. Roughly speaking, conceptual disambiguation is

performed in this approach by considering the arguments

of an expression, or vice versa the functor taking an ex-

pression as argument. Note that this is a rather limited

way of taking context into account, but it is exactly this

limitation which makes it computationally feasible.

In the demonstrator, conceptual disambiguation is

achieved by partly translating the Discourse Representa-

tion Structure (DRS)

[

11

]

built by semantic construction

[

3

]

into FLEX. In the demonstrator we use a 3-level re-

presentation: for each utterance we introduce a FLEX

object; this object is related via the role `cond' to ob-

jects representing the semantic conditions in the DRS;

these conditions are in turn related via the role `ref' to

the discourse referents. The conditions themselves are

related by thematic roles, such as `agent', `theme', etc.

Figure 2 shows a simpli�ed representation of this 3-

level representation for the sentence:

(4.0) a. Ich kann Ihnen 17 Uhr anbieten.

b. (lit.) I can o�er you 5 pm.

The mapping of the semantic predicates used in the

DRS's into concepts is achieved by rules like:

pred:anbieten and the(theme comp ref,termin c)

=> conc:termin vorschlagen c

pred:vergessen and the(theme comp ref,zeit c)

=> conc:nicht passen c

pred:gut and the(ref,passen c)

=> conc:gut passen c

pred:unguenstig and the(ref,zeit c)

=> conc:schlechter termin c

Note that `conc' is modeled as a concept-valued feature

and that the �llers of the role `ref' are constrained to be

instances of the concept �lling the `conc' feature.

4.3 Determining Dialogue Acts

Given the restricted scenario of the VERBMOBIL

demonstrator, namely appointment scheduling, approx-

imately 20 domain-speci�c dialogue acts (e.g. `suggest',

`request comment', `accept', `reject') have been de�ned.

8

The automatic determination of the dialogue act per-

formed by utterances is based on preference rules en-

coding conventions pertaining on various levels (see

[

14;

18

]

for details on preferential disambiguation).

Technically, these preference rules are represented as

weighted defaults

[

19

]

: if there is a piece of information

X in the representation of the utterance, then there is

a preference of weight w for the utterance to be of type

Y . The information represented on the left-hand side of

a default concerns di�erent types of knowledge, namely:

� syntactic information (e.g. sentence type, voice of

the verb),

� keywords (certain discourse markers like German

`leider' or `schon'),

� semantic information (the conceptual content of ex-

pressions, the conceptual type of referents),

� macro-structural information (e.g., the dialogue act

of the previous utterance).

8

Recently, a new terminology wrt dialogue acts in VERB-

MOBIL has been agreed upon

[

9

]

. Though our implementa-

tion used the dialogue acts de�ned in

[

24

]

, we use the more

recent terms in the following.

115

some(cond, conc:gut_passen) and

keyword:whtemp_wann and

satz_typ:int and

verb_modus:conj and

no(temp_ref) and

previous_speech_event:object_27.

some(cond, conc:gut_passen) ~50 ~>
request_proposal.
some(keyword,temporalfrage)
and
satz_typ:int ~200 ~>request_proposal.

the(previous_speech_event,
initialization)~10~>
request_proposal.

wann wär's Ihnen denn recht

object_28::

Utterance PS1000_2

is represented by

applied defaults:

request_proposal.

object_28::

Figure 3: Determining the dialogue act for utterance (6).

dialogue act sum recognized in the set recognition failed

reject 30 29 97 % - 1

accept 23 16 70 % 1 6

request comment 7 6 86 % - 1

request suggest 17 16 94 % - 1

give reason 15 12 80 % - 3

con�rm 19 13 68 % - 6

init 10 10 100 % - -

clarify query 5 1 20 % - 4

clarify answer 10 5 50 % 4 1

comment 5 4 80 % - 1

suggest 80 73 91 % 7 -

sum 221 185 84 % 12 24

Figure 4: First evaluation of the accuracy of dialogue act assignment.

In this way each utterance is partially represented by a

DL concept, i.e. roughly speaking by a list of feature-

value pairs. Part of these feature values are provided

by the syntactic component, namely those concerning

keywords, the sentence type and the voice of the verb,

others are semantic information. Figure 3 illustrates how

the utterance

(4.0) a. Wann w�are es Ihnen denn recht?

b. (lit.) When would it suit you?

is represented in the FLEX system and recognized as

an instance of `request proposal' by applying weighted

defaults.

The current implementation used in the VERBMO-

BIL demonstrator contains 83 rules, of which 64 are de-

faults and 19 strict. 22 of the defaults rely on keyword

information alone, 9 are exclusively based on syntactic

information, whereas 27 use only semantic information.

The remaining defaults draw on a combination of these

types of information.

Since input from semantic construction was not yet

available we evaluated the system by using 15 annotated

116

dialogues as input (see Figure 4). On the basis of 221 an-

notated utterances we obtained an accuracy of 84 %|a

rather encouraging result for this �rst implementation,

which is based only on micro-structural information. We

hope to achieve even better results when taking into ac-

count also macro-structural information.

5 Conclusion

The application of the FLEX system in the VERBMO-

BIL demonstrator has in general been successful. Given

the expressivity of FLEX, most information could be rep-

resented in a declarative manner. In addition to these

declarative representations, small Prolog programs had

to be written, realizing the interface to the other compo-

nents in VERBMOBIL. These programs contained tells

and queries of the FLEX Prolog interface.

Wrt the weighted defaults used for the determination

of dialogue acts two results seem particularly important.

As had to be expected, choosing the right weights is

a non-trivial task. The choice of the weights has im-

pact not only on the resulting dialogue act but also on

the time needed to compute it. For the demonstrator

we achieved an e�cient performance on the basis of a

trial-and-error approach. It is obvious, however, that

additional tools are needed to support the weighting of

defaults.

Finally, the architecture of FLEX made the incremen-

tal integration of inference rules straightforward. We

added normalization/subsumption rules whenever they

were needed in our application. In this respect, the idea

of
exible inference strategies underlying FLEX proved

to be rather adequate.

Acknowledgements

This work was funded/partially funded by the German

Federal Ministry of Education, Science, Research and

Technology (BMBF) in the framework of the Verbmobil

Project under Grants 01 IV 101 Q 8 and 01 IV 102 A 0.

The responsibility for the contents of this study lies with

the authors.

References

[

1

]

M. Bierwisch, \Semantische und konzeptuelle Repr�a-

sentation lexikalischer Einheiten", Studia grammatica

XII, 61{99

[

2

]

H.U. Block, S. Schachtl,\Trace & Uni�cation Gram-

mar", COLING-92, 87 { 93

[

3

]

J. Bos, E. Mastenbroek, S. McGlashan, S. Mil-

lies, M. Pinkal, \A Compositional DRS-based For-

malism for NLP Applications", Proceedings of the In-

ternational Workshop on Computational Semantics,

Tilburg, 1994

[

4

]

B. Carpenter, The Logic of Typed Feature Structures,

Cambridge: Cambridge University Press, 1992

[

5

]

M. Gehrke, Sorting Syntactic Analysis by Selec-

tional Restrictions, Verbmobil Report in preparation,

Siemens AG, 1995

[

6

]

R. Henschel, J. Bateman, \The Merged Upper

Model: A Linguistic Ontology for German and En-

glish", COLING-94, 803{809

[

7

]

T. Hoppe, C. Kindermann, J.J. Quantz, A.

Schmiedel, M. Fischer, BACK V5 Tutorial & Man-

ual, KIT Report 100, Technische Universit�at Berlin,

1993

[

8

]

E. Hovy, S. Nirenburg, \Approximating an Interlin-

gua in a Principled Way", in Proc. of the DARPA

Speech and Natural Language Workshop, Hawthorne,

NY, Feb. 1992

[

9

]

S. Jekat, A. Klein, E. Maier, I. Maleck, M. Mast,

J.J. Quantz, Dialogue Acts in VERBMOBIL, Verb-

mobil Report 65, Universit�at Hamburg, 1995

[

10

]

M. Kameyama, R. Ochitani, S. Peters, \Resolv-

ing Translation Mismatches With Information Flow",

ACL-91, 193{200

[

11

]

H. Kamp, U. Reyle, From Discourse to Logic, Dor-

drecht: Kluwer, 1993

[

12

]

J. Pustejovsky, \Current Issues in Computational

Lexical Semantics", EACL-89, xvii{xxv

[

13

]

J. Pustejovsky, \Type Coercion and Lexical Selec-

tion", in J. Pustejovsky (Ed.), Semantics and the Lex-

icon, Dordrecht: Kluwer, 1993, 73{94

[

14

]

J.J. Quantz, Preferential Disambiguation in Natural

Language Processing, PhD Thesis, Technische Univer-

sit�at Berlin, 1995

[

15

]

J.J. Quantz, G. Dunker, F. Bergmann, I. Kellner,

The FLEX System, KIT Report in preparation, Tech-

nische Universit�at Berlin, 1995

[

16

]

J.J. Quantz, M. Gehrke, U. K�ussner, \Domain

Modeling for Machine Translation", to appear in TMI-

95

[

17

]

J.J. Quantz, M. Gehrke, U. K�ussner, B. Schmitz,

The VERBMOBIL Domain Model, KIT Report 122,

Technische Universit�at Berlin, 1994

[

18

]

J.J. Quantz, B. Schmitz, \Knowledge-Based Disam-

biguation for Machine Translation", Minds and Ma-

chines 4, 39{57, 1994

[

19

]

J.J. Quantz, S. Suska, \Weighted Defaults in De-

scription Logics{Formal Properties and Proof The-

ory", in B. Nebel, L. Dreschler-Fischer (eds), KI-94:

Advances in Arti�cial Intelligence, Berlin: Springer,

1994, 178{189

[

20

]

V. Royer, J.J. Quantz, \Deriving Inference Rules

for Terminological Logics", in D. Pearce, G. Wagner

(eds), Logics in AI, Proceedings of JELIA'92, Berlin:

Springer, 1992, 84{105

[

21

]

V. Royer, J.J. Quantz, Deriving Inference Rules for

Description Logics: a Rewriting Approach into Se-

quent Calculi, KIT Report 111, Technische Universit�at

Berlin, 1993

117

[

22

]

V. Royer, J.J. Quantz, \On Intuitionistic Query

Answering in Description Bases", in A. Bundy (Ed.),

CADE-94, Berlin: Springer, 1994, 326{340

[

23

]

J.R. Searle, Intentionality, Cambridge: Cambridge

University Press, 1983

[

24

]

B. Schmitz, S. Jekat-Rommel, \Eine zyklische

Approximation an Sprechhandlungstypen|zur An-

notierung von

�

Au�erungen in Dialogen", Verbmobil

Report 28, 1994

[

25

]

B. Schmitz, J.J. Quantz, \Dialogue Acts in Auto-

matic Dialogue Interpreting", to appear in TMI-95

118

A Concept Language for an engineering application with part{whole

relations

Ulrike Sattler

RWTH { Aachen, uli@cantor.informatik.rwth-aachen.de

Introduction

Terminological Knowledge Representation (TKR) Sys-

tems are powerful means to represent unambiguous

knowledge { like knowledge in technical domains. We

investigate how TKR Systems can be used in process

modeling, a �eld dealing with modeling huge chemical

plants. As these plants are very complex, support of

top{down modeling is a quite ambitious, but useful task

for TKR Systems. An interesting problem to solve in

this context is the handling of composite objects: An

appropriate TKR System for this application should be

able to

� handle di�erent part{whole relations, for example

Component{Composite or Stu�{Object (most of

which are transitive),

� represent inverses of these part{whole relations,

� model transitivity{like interactions between part{

whole relations since some chains of di�erent part{

whole relations imply further part{whole relations.

These implicit relations permit reasoning about ob-

jects having parts, which have parts, which: : :which

have certain properties.

� represent special characteristics of composite ob-

jects, for example parts belonging exclusively to a

single whole.

Hence the application calls for a concept language with

powerful role forming operators.

In this paper, results of an investigation of part{whole

relations and their relevance for a process{modeling ap-

plication are given and a concept{language P with ap-

propriate expressive power is de�ned. Satis�ability of

concept terms in P is undecidable, hence it is necessary

to drop some (but not many) of the demands made for

the bene�t of decidability. Several ways to handle the

high complexity of inference algorithms of P are dis-

cussed.

The application

Process modeling plays an important role in process en-

gineering, for planning as well as for optimization and

controlling. To model chemical plants, they are decom-

posed into components like distillation columns, tubu-

lar reactors, valves, mixed phases, signal transformers,

etc. These components are again decomposed into com-

ponents which are again decomposed, etc., until com-

ponents are obtained whose physico{chemical charac-

teristics can be described via di�erential, algebraic or

integro{algebraic equations. Hence support of modeling

with varying granularity and standard building blocks is

indispensable. Furthermore, there is a large number of

standard building blocks, which have to be specialized or

modi�ed for each concrete model. It is very di�cult to

de�ne these numerous blocks such that the implicit tax-

onomy is the same as the explicitly stated and intended

one, and a system able to infer implicit subsumption re-

lations could help the model builder to verify his/her

de�nitions. A TKR System able to handle part{whole

relations could give this support.

Demands made by the application

Classi�cations of part{whole relations can be found in

[

Winston et al.,1987; Gerstl and Pribbenow,1993

]

and

a fusion of these classi�cations seems to be adequate

for the given application. Integration of part{whole re-

lations into TKR Systems is treated in

[

Padgham and

Lambrix,1994; Artale et al.,1994; Franconi et al.,1994

]

,

but the application asks for an integration with more ex-

pressive power since reasoning in this application needs

for example transitive part{whole relations and conse-

quences of transitivity{like interactions between these

relations.

A widely held opinion is that the part{whole relation

is not transitive in general. However, the non{transitive

counter{examples come from mixing up di�erent types

of part{whole relations. For example: This arm is part

of Herbert. Herbert is part of this orchestra. To con-

clude \This arm is part of the orchestra." does not

make much sense { at least it sounds odd. In this

case, Component{Object and Member{Collection rela-

tions have been mixed.

The next table shows all types of part{whole relations

relevant for the given technical application, how they in-

teract and, in the diagonal, whether they are transitive

or not. Examples are given to illustrate these relations

and their domains, exact de�nitions cannot be given

here. Please note that the three relations \Quantity-

Mass", \Stu�-Object" and \Ingredient-Object" are nec-

119

Relation, aCCb^ aMCb aSEb aSOb aIOb Remarks

Example bXc) bXc) bXc) bXc) bXc)

Component { Component inherent

Composite aCCc aCCc aCCc aSOc 9d : aQMd part-whole boundaries,

motor-car ^ dSOc whole is inhomogeneous

Member { parts de�ned through

Collection Nothing

1

Nothing Nothing aSOc 9d : aQMd whole, parts not

grain-2 g salt ^ dSOc locally �xed

Segment { Arbitrary part-whole

Entity Impos.

2

aMCc aSEc aSOc 9d : aQMd boundaries

front car-car ^ dSOc

Quantity { Whole has no boundaries,

Mass Impos. aMCc aQMc aSOc 9d : aQMd no volume; part is

2 kg steel-steel ^ dSOc bounded

Stu� { Part is a unbounded

Object Impos. Nothing Impos. aSOc Impos. mass

steel-bike

Ingredient { Part and whole

Object Impos. aSOc 9d : aQMd aSOc 9d : aQMd are spatially

2 kg steel-bike ^ dSOc ^ dSOc inseparable

Figure 1: A survey of di�erent part{whole relations and their transitivity{like interactions

essary to reason about objects made of some ingredients

if we can not calculate: If we know that this bike has a

frame and that its frame is made of 6 kg aluminium |

what is to infer for the whole bike beside the fact that it

is made of aluminium?

The �ve middle columns list pseudo{transitive conse-

quences. Relations are abbreviated by their initials, e.g.

aCCb stands for an element a being part of b with respect

to the relation Component{Composite. The variable X

refers to the relation in the respective row.

A column showing consequences of aQMb^bXc (QM is

short for the relation \Quantity{Mass") for part{whole

relation X is missing since there are no such conse-

quences (note that the Quantity{Mass relation is not

transitive).

Since a relation X is transitive i� it is the transitive

closure of some relation Y � X, we introduce six primi-

tive roles is d component, is d member, etc., to model

these direct, minimal relations Y and de�ne six roles

representing the transitive closure of the respective di-

rect role (if it is transitive) and the above mentioned

transitivity{like connections between them:

(defrole is component (is d component t

(is member � is d component))

+

),

(defrole is member

(is d member t (is d member � is segment)

t (is d member � is quantity))),

1

This means that a; b; c with these relations are possible,

but nothing can be concluded.

2

Where \Impossible" means that there cannot be such b.

(defrole is segment (is d segment)

+

),

(defrole is quantity

(is d quantity)t (is segment � is d quantity)),

(defrole is ingredient (is d ingredient)),

(defrole is stu� (is d stu� t

(is d stu� � (is component t is member t

is segment t is ingredient t is quantity))

t (is member � is ingredient)

t ((is quantity)

�1

� is segment � is ingredient)

t ((is quantity)

�1

� is ingredient

� (is ingredient t is component t is member

t is segment t is quantity)))

+

),

Syntax and semantics de�ned in the usual manner, for

example see

[

Baader and Hollunder,1991

]

. If we want to

allow only for models where the direct part{whole roles

are interpreted as pairwise disjoint relations, we have to

de�ne a superconcept Disj of all other concepts by:

(defconcept Disj (8 Y

�

.

(8 ((is d component u is d member) t

(is d component u is d segment) t � � �).?)))

where Y has to be replaced by a disjunction of all prim-

itive roles occuring in the TBox and their respective in-

verses (see for example

[

Schild,1991

]

for an explanation

of this universal role). By de�ning each concept as a sub-

concept of A, we prevent parts from being simultaneously

related to one whole via two di�erent direct part{whole

relations. Hence direct part{whole roles can only be in-

terpreted as pairwise disjoint relations.

Beside these relations, the application asks for means

to express special characteristics on part{whole rela-

tions, as for example parts belonging exclusively to a

whole.

Exclusive parts: A part is an exclusive part of a whole,

if it has at most one role{�ller with respect to one of

the direct is{part{of relations. One way to express

this in a terminological system is to use number re-

120

strictions on roles, for example to express that a

motor is part of at most one whole:

(defconcept motor (� 1 is d component:

car) u : : :).

Multi{Possessed parts: In our technical applica-

tions, we have to model composite devices whose

parts use a common part. In the next �gure for

example, a device S contains some reactors that all

use the same tank T. It is not possible to view the

tank as part of S, since the reactors have a tank as

a necessary direct part. One way to de�ne those

multiple possessions is the following.

(defconcept S

((= 1 ((is d component)

�1

)

2

: T)u : : :))

Owner{Restricted parts: These objects are parts

of a set of wholes, which are characterized

as being themselves parts of one single whole.

S
S’

T’ T

.

For example, we do not want any other reactor be-

side the ones contained in the device S to use the

same tank T. This restriction of wholes to contain

parts can be expressed through a restriction on parts

to be contained by wholes:

(defconcept T

((= 1 (is d component)

2

:S) u

(8is d component.(9is d component.S))u : : :))

Essential parts: The existence of an essential part is

essential for the existence of a whole. This can easily

be expressed using Exists Restriction

(defconcept human

(9 (is d component)

�1

.brain))

Dependent parts: For a dependent part the existence

of its whole is essential. The de�nition of dependent

parts can easily be done using exists restrictions:

(defconcept ceiling

(9 is d component.room))

Finally, part{whole relations are acyclic. This demand

can be realized by introducing a second superconcept

Acyc of each concept which is de�ned as:

(defconcept Acyc

(8 Y

�

.(8 (self u (is component t

is segment t is d ingredient t : : :)).?)))

where Y is the previously described universal role and

self = id(>).

Consequences of these demands

Summarizing, to represent these part{whole relations as

well as their transitive{like extensions and characteris-

tics in the suggested way, a concept language P is de-

�ned where role terms are built from role names using

the following role{forming operators:

a top role (>�>), inverse roles (r

�1

), role conjunc-

tion (rus), role disjunction (rts), role composition

(r � s) and transitive closure of roles (r

�

).

Concept terms are built from role terms and concept

names using the following concept{forming operators:

concept conjunction (C u D), primitive concept

negation (:A, where A is a primitive concept), ex-

ists restriction (9 r: C), value restriction (8 r: C),

primitive single restriction (� 1 r

p

: C).

Concept terms and role terms are interpreted in the

usual manner. Note that P includes neither concept

disjunction nor a top concept and that we can restrict

single restrictions to primitive or negated primitive roles

r

p

because of the following equivalence

(� 1 r � s : C) � (� 1 r : (9 s: C))u

(8 r:(� 1 s : C)):

Investigation of the decidability of the satis�ability of

concept terms in P led us to the question whether con-

cept disjunction in general can be expressed using role

disjunction, inverse roles and composition of roles. This

would mean that renouncement of concept disjunction

with the goal of achieving lower complexity is pointless

if we have such strong role{forming operators.

Lemma 1 Concept disjunction can be expressed in P.

More formally: Let C be a concept term of P including

(possibly nested) concept disjunction. Then a concept

term

^

C of P can be constructed with the following prop-

erties: Each interpretation I of C can be extended to an

interpretation

^

I of

^

C such that (�) holds.

dom(I) = dom(

^

I) and

8x

I

2 dom(I) : x

I

2 C

I

i� x

^

I

2 C

^

I

:

(�)

Vice versa, if

^

I is an interpretation of

^

C, and I is the

restriction of

^

I to role and concept names in C, then

(�) is satis�ed. The idea in the construction of

^

C is to

substitute concept terms of the form D tE by

(9(d t e):N) u (8d � d

�1

:D) u (8e � e

�1

:E);

where d; e are new primitive roles and N is a new prim-

itive concept.

Corollary 1 Satis�ability of concept terms in P is un-

decidable.

Using lemma 1 and observing that

1. a top concept > can be simulated by (C t :C),

2. global features (functional roles) can be expressed

(let r

1

,: : :,r

n

be all role names appearing in a con-

cept term C, then in all connected models of C u (8

(r

1

t r

�1

1

t : : :t r

�1

n

)

�

.(� 1 r:>)) the role r

is interpreted as a feature),

121

3. role value maps on feature chains can be simulated,

for example (v f g) as

((� 1 (f t g): >) t (8 f.?)),

Corollary 1 follows from undecidability of FSL with role

intersection

[

Schild,1991

]

or can easily be shown by a

reduction of the domino problem.

Note, that in

[

Baader and Hanschke,1993

]

it was

shown that the extension of ALC by functional roles,

transitive closure of roles and integration of concrete

domains leads to undecidable inference problems. This

means that a knowledge representation system able to

handle part{whole relations can not \calculate". Hence

all constants (especially landmark{values) and their

comparisons will have to be treated symbolically, and

their exact treatment will be left to the user or a numer-

ical system { which will be needed anyway to continue

the modeling process.

Possible ways out

One way to handle undecidability (or the high complex-

ity of a reduced language) is to use incomplete algorithms

to solve satis�abilty or subsumption problems. The aim

of this knowledge base is not \just" to classify concepts

and primitives in process engineering, but to support

modeling of chemical plants, which means that the user

has to be able to interprete answers given by his/her

system. For example, if a user wants to know whether

a concrete model of a chemical process contains a phase

which is carcinogenic, then an incorrect answer \yes" is

not dangerous. By contrast, an incorrect answer \yes" to

the question whether all phases contained in this plant

are eatable could be dangerous. This means that the

semantic of answers given by an incomplete inference

algorithm has to be known. Furthermore, as the one

asking questions has to ask \good" questions in order

to get no dangerous answers, users have to know about

this semantic. There are two �rst ideas for incomplete

reasoning with part{whole relations where the meaning

of incompleteness is well de�ned.

A �rst approach, which can be viewed as a special case

of reasoning with incomplete inference algorithms where

only \yes" answers to satis�ability questions and \no"

answers to subsumption questions can be incorrect, is to

disallow role conjunction. This modi�cation of P yields a

concept language with decidable inference problems. As

shown in

[

Schild,1991; De Giacomo and Lenzerini,1994b;

De Giacomo and Lenzerini,1994a

]

, subsumption is de-

cidable for this highly expressive sublanguage, even pro-

vided with full concept negation. For our application,

this means that we have to allow for models where di-

rect part{whole roles are no longer interpreted as dis-

joint relations and with possibly cyclic part{whole rela-

tions, whereas all part{whole relations as well as their

transitive{like extensions and their special characteris-

tics can still be expressed.

The next approach is just an idea { and might or might

not work: It is to modify the language P in order to de-

crease the complexity of its inference algorithms by sub-

stituting the transitive closure of a role R { which is the

smallest transitive role extending R { by a role R

0

which

is transitive and contains R. Let us call such a roleR

0

the

transitive orbit of R. There are hints from modal logic

that reasoning with transitive orbits is easier than with

transitive closures. The consequences for the application

are the following: A TBox T where R

0

is the transitive

orbit ofR has more models than the same TBox T

0

, with

R

0

beeing the transitive closure of R. Hence theorems

of T are subsets of theorems of T

0

. This means that \C

subsumes D" can be true in T

0

while it is not true in

T , whereas a concept can be satis�able in T and unsat-

is�able in T

0

. Hence, as in the above mentionned case,

only \yes" answers to satis�abilty questions and \no"

answers to subsumption questions can be incorrect.

These and other possibilities will be thoroughly inves-

tigated.

Acknowledgement

I would like to thank Franz Baader, Diego Calvanese

and the anonymous referees for valuable suggestions and

comments.

References

[

Artale et al., 1994

]

A. Artale, F. Cesarini, E. Grazzini,

F. Pippolini, and G. Soda. Modelling composition in

a terminological language environment. In Workshop

Notes of the ECAI Workshop on Parts and Wholes:

Conceptual Part-Whole Relations and Formal Mereol-

ogy, pages 93{101, Amsterdam, 1994.

[

Baader and Hanschke, 1993

]

Franz Baader and Philipp

Hanschke. Extensions of concept languages for a

mechanical engineering application. In Proc. of the

16th German AI-Conference, GWAI-92, volume 671

of LNCS, pages 132{143, Bonn, Deutschland, 1993.

Springer-Verlag.

[

Baader and Hollunder, 1991

]

Franz Baader and Bern-

hard Hollunder. A terminological knowledge repre-

sentation system with complete inference algorithm.

In Proc. of the Workshop on Processing Declarative

Knowledge, PDK-91, volume 567 of LNAI, pages 67{

86. Springer-Verlag, 1991.

[

De Giacomo and Lenzerini, 1994a

]

Giuseppe De Gia-

como and Maurizio Lenzerini. Boosting the correspon-

dence between description logics and propositional dy-

namic logics (extended abstract). In Proc. of AAAI-

94, 1994.

[

De Giacomo and Lenzerini, 1994b

]

Giuseppe De Gia-

como and Maurizio Lenzerini. Concept language with

number restrictions and �xpoints, and its relationship

with mu-calculus. In Proc. of ECAI-94, 1994.

[

Franconi et al., 1994

]

Enrico Franconi,

Alessandra Giorgi, and Fabio Pianesi. A mereological

characterization of temporal and aspectual phenom-

ena. In Carlos Martin-Vide, editor, Current Issues

in Mathematical Linguistics, pages 269{278. Elsevier,

North-Holland Linguistic Series, 1994.

122

[

Gerstl and Pribbenow, 1993

]

Peter Gerstl and Simone

Pribbenow. Midwinters, end games and bodyparts. In

N. Guarino and R. Poli, editors, International Work-

shop on Formal Ontology-93, pages 251{260, 1993.

[

Padgham and Lambrix, 1994

]

Lin

Padgham and Patrick Lambrix. A framework for part-

of hierarchies in terminological logics. In Jon Doyle,

Erik Sandewall, and Pietro Torasso, editors, Proc. of

KR-94, pages 485{496, 1994.

[

Schild, 1991

]

Klaus Schild. A correspondence theory for

terminological logics: Preliminary report. In Proc. of

IJCAI-91, pages 466{471, Sydney, 1991.

[

Winston et al., 1987

]

M.E. Winston, R. Cha�n, and

D. Herrmann. A taxonomy of part whole relations.

Cognitive Science, 11:417{444, 1987.

123

Parallelizing Description Logics

Frank W. Bergmann and J. Joachim Quantz

Technische Universit�at Berlin, Projekt KIT-VM11

Abstract

Description Logics (DL), one of the major

paradigms in Knowledge Representation, face

e�ciency problems due to large-scale applica-

tions, expressive dialects, or complete infer-

ence algorithms. In this paper we investigate

the potential of parallelizing DL algorithms to

meet this challenge. Instead of relying on a

parallelism inherent in logic programming lan-

guages, we propose to exploit the application-

speci�c potentials of DL and to use a more

data-oriented parallelization strategy that is

also applicable to imperative programming lan-

guages. We argue that object-level propagation

is the most promising inference component for

such a parallelization, as opposed to normaliza-

tion, comparison, or classi�cation.

We present two alternative PROLOG imple-

mentations of parallelized propagation on a

loosely coupled MIMD (Multiple Instruction,

Multiple Data) system, one based on a farm

strategy, the other based on distributed objects.

Whereas the farm strategy yields only poor re-

sults, the implementation based on distributed

objects achieves a considerable speedup, in par-

ticular for large-size applications.

1 Introduction

In the last 15 years Description Logics (DL) have be-

come one of the major paradigms in Knowledge Repre-

sentation. Combining ideas fromSemantic Networks and

Frames with the formal rigor of First Order Logic, re-

search in DL has focussed on theoretical foundations

[

Donini Et Al. 91

]

as well as on system development

[

Brachman Et Al. 91

]

and application in real-world sce-

narios

[

Quantz, Schmitz 94

]

.

Whereas in the beginning it was hoped that DL pro-

vide representation formalisms which allowed e�cient

computation, at least three trends in recent years caused

e�ciency problems for DL systems and applications:

� a trend towards expressive dialects;

� a trend towards complete inference algorithms;

� a trend towards large-scale applications.

With the current state of technology it seems not pos-

sible to build a DL system for large-scale applications

which o�ers an expressive dialect with complete infer-

ence algorithms. The standard strategy to cope with

this dilemma is to restrict either expressivity, or com-

pleteness, or application size.

In this paper we investigate an alternative approach,

namely a parallelization of Description Logics. Due to

physical limitations in performance gains in conventional

processor architectures, parallelization has become more

and more important in recent years. This comprises par-

allel structures inside processors as well as outside by

scaling several processors to parallel systems.

Several �elds of high-performance computing already

adopted to this new world of paradigms, such as image

processing

[

Burkhard Et Al 94

]

, �nite element simu-

lation

[

Diekmann Et Al 94

]

, and
uid dynamics

[

Striet-

zel 94

]

. We expect that in future parallelismwill become

a standard technique in the construction of complex AI

applications.

A standard approach to parallelization in the context

of logic programming concentrates on the development

of parallel languages that exploit the parallelism inherent

in the underlying logic formalism (

[

Clark, Gregory 87

]

,

[

Pontelli, Gupta 94

]

and many more). In this paper we

will follow a rather di�erent approach which analyzes a

particular application, namely Description Logics. The

parallelization we propose uses explicit parallelism based

on the notion of processes and messages that is program-

ming language independent.

In the next section we give a brief introduction into

Description Logics and the parallelization potential of

DL inference algorithms. In Section 3 we describe two

di�erent strategies of parallelizing object-level propaga-

tion in DL systems. The corresponding implementations

are evaluated in detail in Section 4.

2 Description Logics

In this section we give a brief introduction into Descrip-

tion Logics. In doing so we sketch the main inference

components of a DL system and point out their com-

plexity and their potential for parallelization.

124

Basically, the alphabet of a Description Logic contains

concepts (unary predicates), Roles (binary predicates),

and objects (individual constants). DL dialects vary wrt

the term-forming operators they support, e.g. conjunc-

tion, disjunction, and negation for concepts and roles;

value restrictions and number restrictions for concepts;

composition and inversions of roles.

Three types of formulae are usually distinguished in

DL systems, namely term introductions

1

(t

n

:< t or t

n

:=

t), rules (c

1

=> c

2

), and object descriptions (o :: c).

Given a modeling, i.e. a list of such formulae, DL systems

basically answer two types of queries:

t

1

? < t

2

o ? : c

The �rst query succeeds i� the term t

1

is subsumed by

the term t

2

(i.e. t

2

is more general than t

1

), the second

one i� the object o is an instance of the concept c.

Two main reasoning paradigms are used in DL sys-

tems. Originally, inferencing was realized by normalize-

compare algorithms, which �rst transform concepts and

roles into normalforms and then structurally compare

these normalforms. Note that the normalforms of ob-

jects are similar to the normalforms of concepts and can

thus be generated and compared by the same algorithms.

At the end of the 1980's tableaux methods, as known

from fol were applied to DL (e.g.

[

Donini Et Al. 91

]

).

The resulting subsumption algorithms had the advan-

tage of providing an excellent basis for theoretical inves-

tigations. Not only was their correctness and complete-

ness easy to prove, they also allowed a systematic study

of the decidability and the tractability of di�erent DL

dialects.

The main disadvantage of tableaux-based subsump-

tion algorithms is that they are not constructive but

rather employ refutation techniques. Thus in order to

prove the subsumption c

2

v c

1

it is proven that the term

c

1

u : c

2

is inconsistent, i.e. that o :: c

1

u : c

2

is not

satis�able. Though this is straightforward for comput-

ing subsumption, this approach leads to e�ciency prob-

lems in the context of retrieval. In order to retrieve the

instances of a concept `c' in a situation `s', we would

in principle have to check for each object `o' whether

� [fo :: c in sg is satis�able.

2

In most existing systems, on the other hand, inference

rules are more seen as production rules, which are used

to pre-compute part of the consequences of the initial

information. This corresponds more closely to Natural

Deduction or Sequent Calculi, two deduction systems

also developed in the context of fol. A third alterna-

tive, combining advantages of the normalize-compare ap-

proach and tableaux-based methods has therefore been

proposed in

[

Royer, Quantz 92

]

. The basic idea is to

use Sequent Calculi instead of tableaux-based methods

for the characterization of the deduction rules. Like

1

We use `term' to designate both concepts and roles.

2

See

[

Schaerf 94

]

for tableaux-based algorithms for object-

level reasoning and

[

Kindermann 95

]

for a discussion of e�-

ciency problems.

tableaux methods, sequent calculi provide a sound logi-

cal framework, but whereas tableaux-based methods are

refutation based, i.e. suitable for theorem checking, se-

quent calculi are constructive, i.e. suitable for theorem

proving.

Based on the ideas presented in

[

Royer, Quantz 92;

Royer, Quantz 94

]

the DL system FLEX has been devel-

oped at the Technische Universit�at Berlin. The paral-

lelization described in the following has been performed

for the FLEX system. The general techniques are ap-

plicable to all normalize-compare systems, however, and

the following presentation does not rely on the particular

features of FLEX.

In the remainder of this section we brie
y sketch three

main inference components of DL systems, describe their

realization within the normalize-compare paradigm, and

evaluate their potential for parallelization.

Subsumption Checking. To test subsumption be-

tween two terms, both terms are �rst normalized and

then structurally compared. The format of normaliza-

tion rules depends on the expressiveness of the DL di-

alect. For the purpose of this paper it is su�cient to

consider normalforms as sets of atoms and normaliza-

tion rules as having the form

�

1

; : : : ; �

n

* �

i.e. if the atoms �

1

; : : : ; �

n

are contained in a normal-

form, then � is added to this normalform.

In the comparison phase it is then checked whether for

each atom in the subsuming normalformwe �nd an atom

in the subsumed normalform which is more speci�c.

Classi�cation. When processing the term introduc-

tions, each term name is classi�ed, i.e. compared with all

previously introduced names. As a result subsumption

hierarchies for concepts and roles are obtained, which

are directed acyclic graphs. Classi�cation is basically re-

alized by searching direct supers and direct subs in the

subsumption hierarchy, i.e. by a number of subsumption

checks between the new term and previously introduced

terms.

Propagation. The two reasoning components de-

scribed so far are usually called terminological reasoning.

We will now turn our attention towards assertional rea-

soning, i.e. reasoning on the object level. The main dif-

ference between terminological and assertional reasoning

is that the former is inherently local, whereas the latter

is inherently global. In principle we can distinguish be-

tween a local phase and a nonlocal phase in object-level

reasoning.

In the local phase we determine for an object the most

speci�c concept it instantiates. This can be done by us-

ing the standard normalize and compare predicates and

the search for direct supers in the classi�cation compo-

nent. Thus we normalize the description of an object

thereby obtaining a normal form and compare it with

125

the normal forms of the concepts in the hierarchy. In

addition to this standard classi�cation we also have to

apply DL rules when processing objects. This is achieved

by applying all rules whose left-hand sides subsume the

object's normal form. After this application the normal

form is again normalized and classi�ed until no new rules

are applicable

[

Owsnicki-Klewe 88

]

.

In the nonlocal phase we have to propagate informa-

tion to other objects. For illustration consider the fol-

lowing propagation rules:

o

1

:: all(r,c) & r:o

2

* o

2

:: c

o

1

:: r:o

2

& atmost(1,r), o

2

:: c * o

1

:: all(r,c)

o

1

:: r

1

:o

2

, o

2

:: r

2

:o

3

* o

1

:: r

1

comp r

2

:o

3

o

1

:: r:o

2

* o

2

:: inv(r):o

1

We call these rules nonlocal since information at an ob-

ject o

1

can have impact on an object o

2

. Depending

on the \connectivity" of the objects, adding a new de-

scription at an object can thus cause a reclassi�cation of

arbitrarily many other objects.

Parallelization. In principle, all three inference com-

ponents show some parallel potential. We will ar-

gue, however, that parallelizing propagation is the most

promising. The reason for this is that the basic oper-

ations in normalization, comparison, and classi�cation

are rather �ne-grain, compared with the message pass-

ing overhead of MIMD systems.

Object-level propagation, on the other hand, is an

ideal candidate for our parallelization strategy. Each

propagation is rather time-consuming and causes addi-

tional propagations which can be straightforwardly par-

allelized since they are both independent and monotonic.

In the following section we will present two di�erent

strategies for parallelizing propagation.

3 Parallelization Strategies

We begin by noting several relevant properties of object-

level propagation. As already indicated above propa-

gation of information from one object to another can

cause additional propagation to other objects. This kind

of `ping-pong' interaction terminates only when a `�xed

point' is reached and no new information is produced.

Since propagation in Description Logics is monotonic,

we can execute propagations in an arbitrary order, al-

ways ending up with the same result. We will refer to

this property as con
uence.

FLEX Data Flow. Figure 3 shows the �rst few stages

after the start of a propagation process. In this example

every propagation causes three other propagations. This

creates a `chain reaction', thus increasing the number of

`pending propagations' exponentially. This rise will stop

as soon as the new information (from the object tell)

becomes more and more integrated into the network.

This results in a smaller `fan out' that leads to a

decrease of pending propagations until the �xed point

initial propagation

o1
o2

o4
o5

o6

o7

o8

o3

Figure 1: A group of objects interchanging propagations.

1

10

100

1000

0 2 4 6 8 10 12 14 16 18 20

Pending Propagations

Propagation

Partial Idling

100% Load

Steps

Items

Network Size

Figure 2: Exponential increase of propagations.

Master

Worker 1

Worker 2

Worker 3

Worker N

time

Figure 3: Timing of the farm communication scheme.

is reached. Figure 3 shows qualitatively the increase

and decrease of pending propagations with respect to

to propagation steps. Please note that the steps in the

middle part take much longer than the steps at the sides,

because each processor (only a limited number of proces-

sors available) has to compute several propagations.

Given the analysis of the FLEX data
ow, we consider

two parallel paradigms as potential candidates for an im-

plementation: The farm paradigm and the distributed

objects paradigm. In the remainder of this section we

brie
y present these two alternatives. Theoretical con-

siderations and numerical calculations towards e�ciency

and scalability can be found in the detailed analysis in

[

Bergmann 95

]

.

126

Worker 1

Worker 2

Worker 3

Worker N

time

1

Worker 1

Worker 2

Worker 3

Worker N

1

2

Worker 1

Worker 2

Worker 3

Worker N

4

3

3

Worker 1

Worker 2

Worker 3

Worker N

4

Worker 1

Worker 2

Worker 3

Worker N

2

Figure 4: Communication events and workload distribu-

tion during the �rst two Propagation Stages.

Farm Parallelism. The farm communication struc-

ture shown in Figure 3 is widely used in industrial ap-

plications such as image processing

[

Burkhard Et Al 94

]

and �nite element simulation

[

Diekmann Et Al 94

]

. It

is theoretically well known and there exists a variety of

strategies to distribute workload evenly across a network.

A farm consists of several parallel processes with a

�xed structure: one process is called `master' and is re-

sponsible to distribute tasks to a group of `worker' pro-

cesses which perform their tasks in parallel and return

control and results back to the master. Farm structures

are frequently used to parallelize applications that can

be split into subtasks with a priori known duration. Ex-

amples are image processing or �nite element systems.

From a theoretical point of view, there are two potential

sources of ine�ciency in this architecture:

1. uneven distribution of workload and

2. a communication bottleneck created by the central-

ized position of the master.

Communicating Objects Parallelism. In the

communicating-objects paradigm the central manage-

ment institution (master) of the farm parallelism is re-

placed by (local) knowledge of all objects about the `ad-

dresses' of their neighbors. Objects communicate di-

rectly with each other, in contrast to the centered com-

munication scheme of the farm. This helps to avoid com-

munication bottlenecks in a network. The general dif-

ference between a farm and a network of communicating

objects is the di�erent perspective of parallelism: Within

a farm, tasks are distributed; within the distributed ob-

jects scheme, objects are distributed.

This approach appears to be similar to the agent-

based paradigm developed by distributed AI research

[

Dossier 91

]

. In contrast to this approach, objects within

FLEX have to be considered elements of a distribution

strategy rather then independently interacting entities.

With respect to the de�nition given in

[

Bond, Gasser 88

]

we have to subsume our e�orts here under the �eld of

`distributed problem solving'.

SUN

16*T800, 4MByte

1*T800, 1MByte

1

2

3

4

5

6

7

8

9

10

12

13

14

15

16

17

11

4x4

4x3

3x3

3x2

2x2

2x1

Topology 2x1 2p1 2x2 3x2 3x3 4x3 4x4

Processors 3 4 5 7 10 13 17

Workers 1 2 3 5 8 11 15

Figure 5: Hardware con�guration and working nodes.

For an e�ective balancing of workload, certain assump-

tions about tasks and the computational environment

have to be made. In our case, all processors can be as-

sumed to behave identical and the statistical distribution

of the task length is assumed to be narrow. Uneven dis-

tributions of workload can �nally be treated by special

load balancing algorithms (see below).

4 Experimental Results

We chose the 'Parsytec Multicluster II' machine as base

for the parallel implementation of FLEX. It consists of

16 processing nodes that each contain an INMOS T800

Transputer with 4 MByte of RAM. Each Transputer con-

sists of a RISC processing kernel, a memory interface

and 4 DMA driven serial interfaces, called 'links'. Each

link has a transfer rate of approximately 1.2 MByte/s

and all 4 links can run independently together with the

RISK kernel, hardly a�ecting processing performance

(communication delays could be neglected). This hard-

ware platform is especially suitable to serve as a testbed

for parallel implementations due to its simple architec-

ture and the availability of comfortable development en-

vironments. However, it does not provide state of the

art computational performance and su�ers substantially

from memory restrictions.

Figure 5 shows the topologies used for the tests in this

chapter and the number of available worker nodes. The

overhead of 2 processors is due to memory limitations.

Processor 1 could not be used because its 1 MByte RAM

is not su�cient to hold the FLEX code. Processor 2 is

used to hold the 'shell' process that synchronizes the

generation of new objects. Normally this process can be

located somewhere in the network and would not con-

sume any computing performance, but in this case it

had to be separated due to memory restrictions.

The language used to implement Distributed FLEX is

a Prolog dialect called Brain Aid Prolog (BAP). It repre-

sents a 'standard' Prolog with parallel library extensions,

implementing a scheme similar to CSP

[

Hoare 85

]

. Paral-

127

r :< rtop o1 :: r:o3 and r:o2 and r:o8

c1 :< all(r,c2) o2 :: r:o4 and r:o7 and r:o2

c2 :< all(r,c3) o3 :: r:o7 and r:o2 and r:o1

c3 :< all(r,c1) o4 :: r:o1 and r:o8 and r:o6

o5 :: r:o2 and r:o7 and r:o8

o6 :: r:o1 and r:o7 and r:o5

o7 :: r:o3 and r:o8 and r:o4

o8 :: r:o7 and r:o4 and r:o6

o1 :: c1

Figure 6: A sample benchmark with 8 Objects, 3 Con-

cepts and Fanout 3.

lelism and synchronization is expressed explicitly using

the notion of 'processes' and 'messages'. A process in

BAP is a single and independent Prolog instance with

a private database. A message is any Prolog term that

becomes exchanged between two processes. Messages

are send and received using the send msg(Dest, Msg)

and rec msg(Sender, Msg) predicates. Message sender

and destination are identi�ed by their 'process id' (PID).

Messages are routed transparently through the network.

The order of messages is maintained when several mes-

sages are send from the same sender to the same desti-

nation. When a message reaches its destination process,

it is stored in a special database, called `mailbox'. Each

process owns its private mailbox in which the messages

are stored FIFO.

Although the development of parallel FLEX was

greatly simpli�ed by the way BAP expresses parallelism,

it is possible to apply the same parallel techniques to fu-

ture FLEX implementation in programming languages

such as LISP or C.

The main area of FLEX applications within the KIT

research group is Natural Language Processing (NLP)

[

Quantz, Schmitz 94

]

. Unfortunately memory limita-

tions kept us from using these applications as bench-

marks. Instead we imitate the structure of our NL ap-

plications leading to benchmarks with similar behavior

but much lower memory requirements.

Base of our considerations is the fact that in the NL

applications each propagation creates a certain number

of propagations to other objects. This results in an

'avalanche' of propagations, rising exponentially until

the systems slowly reaches a �xed point. The average

fan out (the number of propagations following an initial

propagation) is a measure to describe this avalanche ef-

fect and turned out to be a major factor in the system

performance.

To evaluate the FLEX performance with benchmarks

of di�erent sizes, we created a benchmark generator that

is capable of generating randomly connected networks of

objects. These benchmarks maintain a structure similar

to our application while consuming much less memory

resources.

3

3

[

Bergmann 95

]

analyzes quantitatively the in
uence

of the avalanche exponent on the applicability of parallel

(seq) 1 2 3 5 8

c10 3 2 (58) 78 63 55 56 58

c20 3 2 (177) 253 185 159 160 162

Figure 7: Execution times (seconds) for the farm paral-

lelization.

Figure 7 shows the execution times for the farm bench-

marks. The �rst row contains the benchmark names that

are composed by three numbers that indicate the number

of objects, concepts and fanout respectively (for exam-

ple `c20 5 3' means that the benchmark consists of 20

objects, 5 concepts and a fan out of 3). The following

rows give the execution times with respect to the num-

ber of processors. The `(seq)' �elds gives the reference

time of the (original) sequential version of FLEX.

The parallelization of FLEX using the farm paradigm

showed very poor results. This can be explained by the

rather high costs to distribute the system state out to the

workers and to integrate the computation results back

into the system state. Both activities have to be done

sequentially, thus slowing down the parallel execution.

Although there is some potential for optimizing the

FARM implementation, we stopped the development

and focused on the distributed-object version of FLEX.

The parallelization of FLEX using the distributed ob-

jects paradigm turned out to be a lot more promising.

Figure 8 shows the absolute execution times of the con-

sidered benchmarks. The names of the benchmarks are

composed as in Figure 7.

Note that the execution times in Figure 8 are mea-

sured with an accuracy of �2 seconds. The sequential

execution times (entries in the '1' row) for several bench-

marks are not available due to the memory limitations.

This means that it is not possible to calculate the rela-

tive speedup in such a line (future tests on Transputer

machines with more memory will �ll these gaps). This

is the reason why we omited the speedup �gures in all

but the �rst 4 benchmarks.

The table shows high speedups (e�ciencies > 80%)

for all benchmarks, if the number of objects exceeds the

number of processors by a certain factor (between 5 and

10). This result can be interpreted by the perspective

of Section 3, where we saw that network e�ciently is

dependent on the number of pending propagations in

the network. If this number is too low, few processing

nodes are busy, resulting in a bad network e�ciency.

Within

[

Bergmann 95

]

the quantitative analysis shows

that the propagation-processor ratio is more relevant to

system performance than the overhead caused by mes-

sage passing.

4

It also indicates how these problems can

be overcome, allowing for even larger networks.

A major problem for all distributed systems is the

balance of load inside the network. Within distributed

execution.

4

This is valid for Transputer systems with 2..256 proces-

sors, 2D matrix topology and shortest path routing algorithm

128

1 2 3 5 8 11 15

c10 3 2 (1.0) 59 (1.9) 30 (1.8) 32 (3.3) 18 (3.3) 18 (2.8) 21 (3.3) 18

c10 3 3 (1.0) 43 (1.5) 28 (1.5) 28 (2.4) 18 (2.7) 16 (2.5) 17 (2.9) 15

c10 3 4 (1.0) 327 (2.0) 159 (2.3) 141 (3.1) 105 (3.8) 87 (4.4) 74 (4.4) 73

c20 3 2 (1.0) 179 (1.8) 97 (3.0) 59 (3.1) 58 (4.0) 45 (4.8) 37 (4.5) 40

c20 3 3 145 129 58 56 66 51

c20 3 4 240 173 164 70 74 68

c20 5 3 527 355 173 155 141 160

c20 5 4 344 453 411 185 126 189

c40 3 2 314 176 137 105 111 72

c40 3 3 258 231 141 111 87

c40 3 4 569 467 264 319 230

c80 3 2 1032 665 225 200 181

c80 3 3 443 336 266

c80 3 4 947 662 583

Figure 8: Benchmark Execution Times.

Time (s)

1

3

5

7

Sum

Processor

0

200

400

600

800

Load (%)

Figure 9: Runtime behavior of distributed FLEX within

a 3x3 Network

FLEX each object represents a potential load. Unfortu-

nately the presence of objects is only a statistical mea-

sure for load, while the actual distribution depends on

runtime conditions. The illustration in Figure 9 depicts

execution of a benchmark with an uneven load distribu-

tion. The Transputers 2 and 4 slow down the overall

performance. It is easy to see that the network is quite

busy during the �rst half of the execution time (ca. 75%

e�ciency). At the second half, all object servers have

terminated, except two (ca. 25% e�ciency). This leads

to a reduction of the overall e�ciency to ca. 50% and

explains the variation of the results in Figure 8

The necessary optimization of the uneven distribu-

tion of processor load over the network can be achieved

by temporarily 'relocating' objects to other processors.

Such a mechanism would be capable of reducing over-

head time created by loads remaining on a few proces-

sors. We are currently implementing this optimization.

5 Conclusion

The results of the parallel implementation of FLEX are

in general very satisfying. We achieved high speedups

with benchmarks that are structurally similar to the

real-world applications in natural language processing

(> 80% for benchmarks that �t the size of the net-

work). The e�ciency of execution rises mainly with the

propagation=processor ratio and thus with the applica-

tion size. This is an important result because especially

large applications are to be considered candidates for

a parallel implementation. Theoretical considerations

[

Bergmann 95

]

show that there are only few technical

limits to the scalability of the distributed objects imple-

mentation.

We have to state that the Transputer system under

consideration here is not applicable to real world prob-

lems due to its poor overall performance and its mem-

ory restrictions. Ideal candidates for such implementa-

tions are parallel computers with large (local) memory

resources and high communication bandwidth. Alterna-

tively, shared-memory multiprocessor workstations ful�ll

all requirements for an e�cient parallelization.

We assume that the communication structure of

FLEX is similar to many other applications in Arti�-

cial Intelligence. In particular, applications involving

complex, forward-chaining inferencing are potential can-

didates for a parallelization based on the distributed-

objects approach presented in this paper.

References

[

BAP 93

]

F.W. Bergmann, M. Ostermann, G. von Wal-

ter, \Brain Aid Prolog Language Reference" Brain

Aid Systems, 1993

[

Bergmann 95

]

F.W. Bergmann, Parallelizing FLEX,

KIT Report in preparation, TU Berlin

[

Bond, Gasser 88

]

A. Bond, L. Gasser, \Readings in Dis-

tributed Arti�cial Intelligence", Morgan Kaufmann,

Los Angeles, CA, 1988

[

Brachman Et Al. 91

]

R. Brachman, D.L. McGuiness,

P.F. Patel-Schneider, L. Alperin Resnick, A. Borgida,

\Living with CLASSIC: When and How to Use a

KLONE-like Language", in J. Sowa (Ed.), Principles

129

of Semantic Networks: Explorations in the Represen-

tation of Knowledge, San Mateo: Morgan Kaufmann,

1991, 401{456

[

Burkhard Et Al 94

]

H. Burkhard, A. Bienick,

R. Klaus, M. Nlle, G. Schreiber, H. Schulz-Mirbach,

\The Parallel Image Processing Sytem PIPS" in

R. Flieger, R. Grebe (eds), Parallelrechner Grundla-

gen und Anwendung IOS Press, Amsterdam, Nether-

lands, 1994, 288{293

[

Clark, Gregory 87

]

K. Clark, S, Gregory, \PARLOG:

Parallel Programming in Logic" in E. Shapiro (ed),

Concurrent Prolog The MIT Press, Cambridge, Mas-

sachusetts, 1987, 84 { 139

[

Diekmann Et Al 94

]

R. Diekmann, D. Meyer, B.

Monien, \Parallele Partitionierung unstrukturierter

Finite Elemente Netze auf Transputernetzwerken" in

R. Flieger, R. Grebe (eds), Parallelrechner Grundla-

gen und Anwendung IOS Press, Amsterdam, Nether-

lands, 1994, 317{326

[

Donini Et Al. 91

]

F.M. Donini, M. Lenzerini, D. Nardi,

W. Nutt, \The Complexity of Concept Languages",

KR'91, 151{162

[

Dossier 91

]

A.C. Dossier, \Intelligence Arti�cielle Dis-

tribuee", Bulletin de l'AFIA, 6, 1991

[

Hoare 85

]

C. A. R. Hoare, \Communicating Sequen-

tial Processes" Prentice Hall, Englewood Cli�s, N.J.,

USA, 1985

[

Kindermann 95

]

C. Kindermann, Verwaltung asser-

torischer Inferenzen in terminologischen Wissens-

banksystemen, PhD Thesis (submitted), TU Berlin,

1995

[

Owsnicki-Klewe 88

]

B. Owsnicki-Klewe, \Con�gura-

tion as a Consistency Maintenance Task", in

W. Hoeppner (Ed.), Proceedings of GWAI'88, Berlin:

Springer, 1988, 77{87

[

Pontelli, Gupta 94

]

E. Pontelli, G. Gupta, \Design

and Implementation of Parallel Logic Programming

Systems", Proceedings of ILPS'94 Post Converence

Workshop 1994

[

Quantz, Schmitz 94

]

J.J.

Quantz, B. Schmitz, \Knowledge-Based Disambigua-

tion for Machine Translation", Minds and Machines

4, 39{57, 1994

[

Royer, Quantz 92

]

V. Royer, J.J. Quantz, \Deriving In-

ference Rules for Terminological Logics", in D. Pearce,

G. Wagner (eds), Logics in AI, Proceedings of

JELIA'92, Berlin: Springer, 1992, 84{105

[

Royer, Quantz 94

]

V. Royer, J.J. Quantz, \On Intu-

itionistic Query Answering in Description Bases", in

A. Bundy (Ed.), CADE-94, Berlin: Springer, 1994,

326{340

[

Schaerf 94

]

A. Schaerf, Query Answering in Concept-

Based Knowledge Representation Systems: Algo-

rithms, Complexity, and Semantic Issues, Disser-

tation Thesis, Dipartimento di Informatica e Sis-

temistica, Universit�a di Roma \La Sapienza", 1994

[

Strietzel 94

]

\Large Eddy Simulation turbulenter -

Str�omungen auf MIMD-Systemen" in R. Flieger,

R. Grebe (eds), Parallelrechner Grundlagen und An-

wendung, IOS Press, Amsterdam, Netherlands, 1994,

357 - 366

130

Implementing and Testing Expressive Description Logics:

a Preliminary Report

Paolo Bresciani, Enrico Franconi and Sergio Tessaris

Knowledge Representation and Reasoning group

IRST, I-38050 Povo TN, Italy

fbrescianijfranconijtessarisg@irst.itc.it

Abstract

The aim of the crack project is the research

and the development of a knowledge represen-

tation system based on description logics. The

crack language di�erentiates itself from other

knowledge representation systems for its high

expressivity and its provably sound and com-

plete reasoning procedures. With respect to

other systems available in the research commu-

nity crack is more expressive, it is expand-

able to new constructs, it treats the conceptual

and individual levels in a homogeneous way, it

is modular, it is comparably fast. However,

crack algorithms do not work in polynomial

space, i.e. in the (arguably rare in practice)

worst cases they may require exponential mem-

ory. The performance of the system has been

tested against several di�erent classes of ran-

dom knowledge bases, characterized by an or-

der parameter generating phase transitions in

the satis�ability probability space.

1 Introduction

In this paper we present the knowledge representation

system crack, an implementation of an expressive de-

scription logic. In the full paper

[

Bresciani et al.,1995

]

more details on crack could be found. The greatest

motivation for the crack project is the possibility of

having a modular system, where the expressivity of the

language could be extended, without re-implementing

the control part of the system. Thus, experimentation

with many operators and, if a very expressive language is

implemented, with di�erent sub-languages can be done.

Algorithms in crack are based on the tableaux calcu-

lus technique, according to the many recent theoretical

works in description logics. However, di�erently from

other implementations, rules of tableaux are directly im-

plemented, allowing for a high grade of modularity by

just adding/removing rules. As a further consequence of

this choice, it turns out that the conceptual and the indi-

vidual levels are treated in a uniformmanner. The archi-

tecture of the system has been organized in such a way

that di�erent possible extensions of the language { in-

volvingmany di�erent condition testing for the rules, dif-

ferent basic data management, or di�erent clash checking

{ can be easily added on top of the core system.

The �nal part of the paper is dedicated to the topic of

testing such a system, by considering the problem of gen-

erating random average knowledge bases. Stimulated by

the studies in the literature of the hardness of the satis�-

ability problems for some classes of random propositional

formulae, we have tried to explore the probability space

of satis�ability in the case of description logics. Such

tests are just at the beginning, but we believe that it is

a good direction to explore.

2 The ALCRIFO Description Logic

In the following, we will consider only ALCRIFO, a

signi�cative fragment of the language currently imple-

mented in crack, because it embeds the main pecu-

liarities of the system. We will not go into details

of the language, since it is just a collection of stan-

dard constructors in description logics. ALCRIFO

extends the propositionally complete concept language

ALC

[

Schmidt-Schau� and Smolka,1991

]

with role con-

junction (R)

[

Hollunder et al.,1990

]

, inverse roles (I)

[

Donini et al.,1991

]

, feature selection, agreement and

disagreement (F)

[

Hollunder and Nutt,1990

]

, enumer-

ated types (O)

[

Schaerf,1994

]

. Section 4 describes the

full crack language and some of its possible extensions.

Figure 1 de�nes syntax and semantics of ALCRIFO.

Knowledge base satis�ability is the basic reasoning

task, since all the relevant reasoning tasks { like con-

cept satis�ability, concept subsumption, instance check-

ing, retrieval { are reducible to it. Checking for KB sat-

is�ability is deciding whether there is at least one model

for a knowledge base �, made out of TBox axioms and

ABox statements.

The tableaux-based calculus to decide the satis�ability

of ALCRIFO knowledge bases operates on constraints.

A constraint is an expression of the type x : C, xRy,

xpy and xneqy, where x; y are objects, i.e. either indi-

viduals or variables belonging to a prede�ned set of vari-

able symbols. Starting from a system S associated to

a knowledge base { i.e. obtained by directly translating

into constraints every ABox statement { the propagation

131

C;D! A j

> j �

I

? j ;

:C j �

I

n C

I

C uD j C

I

\D

I

C tD j C

I

[D

I

8R.C j fi 2 �

I

j

8j.R

I

(i; j)! C

I

(j)g

9R.C j fi 2 �

I

j

9j.R

I

(i; j) ^C

I

(j)g

p" j �

I

n dom p

I

p : C j fi 2 dom p

I

j C

I

(p

I

(i))g

p

#

=

q j fi 2 dom p

I

\ dom q

I

j

p

I

(i) = q

I

(i)g

p

6

#

=

q j fi 2 dom p

I

\ dom q

I

j

p

I

(i)neqq

I

(i)g

f a

1

: : : a

n

g fa

I

1

: : : a

I

n

g

R;Q! P j

R

�1

j f(i; j) 2 �

I

��

I

j R

I

(j; i)g

R uQ R

I

\Q

I

p; q ! f j

p � q p

I

� q

I

Figure 1: Syntax and semantics for the ALCRIFO de-

scription logic.

rules are applied, until a contradiction (a clash) is gen-

erated or a model of � is explicitly obtained: the prop-

agation rules preserve satis�ability. A clash is a system

having one of the forms: fx : ?g; fx : A; x : :Ag;

fxneqxg; fx : f "; xfyg; fxfa; xfbg if a and b are

individuals; fa : f a

1

: : :a

n

gg with aneqa

i

for all i.

Figure 2 lists a complete set of propagation rules for

ALCRIFO; they are a simple variant of the standard

rules found in the literature. A role R = R

1

u : : :uR

k

u

(R

k+1

�1

u : : : u R

n

�1

) is written as the pair hR

+

; R

�

i

where R

+

= fR

1

; : : : ; R

k

g and R

�

= fR

k+1

; : : : ; R

n

g.

We say that xRy holds in a constraint system S if xQy

is in S and Q specializes R { i.e. R

+

� Q

+

and R

�

�

Q

�

. For the calculus, we consider only concepts in a

sort of normal form

[

Bresciani et al.,1995

]

. An arbitrary

ALCRIFO concept can be transformed in polynomial

time into an equivalent concept in the normal form.

Propagation rules are either deterministic { they yield

a uniquely determined constraint system { or nondeter-

ministic (e.g. !

t

) { yielding several possible constraint

systems. A constraint system is said to be complete if

no propagation rule is applicable to it. Because of the

presence of nondeterministic rules, several complete sys-

tems can be derived from the starting one. A constraint

system is satis�able if and only if there exist a clash free

complete constraint system which can be derived from

it by applying the propagation rules.

S !

u

fx : C

1

; x : C

2

g [S

if x : C

1

u C

2

in S,

and both x : C

1

and x : C

2

not in S

S !

t

fx : Dg [S

if x : C

1

t C

2

in S,

and neither x : C

1

nor x : C

2

in S,

and D = C

1

or D = C

2

S !

9

fxRy; y : Cg [S

if x : 9R.C in S,

and there is no z s.t. both xRz and z : C in S,

and y is a new variable

S !

8

fy : Cg [S

if x : 8R.C in S, and xRy holds in S,

and y : C not in S

S !

�1

fyPxg [S

if xP

�1

y in S,

and yPx not in S

S !

+1

fyP

�1

xg [S

if xPy in S,

and yP

�1

x not in S

S !

:

fxpy; y : Cg [S

if x : (p : C) in S,

and there is no z s.t. both xpz and z : C in S,

and y is a new variable

S !

#

=

fxpy; xqyg [S

if x : p

#

=

q in S,

and there is no z s.t. both xpz and xqz in S,

and y is a new variable

S !

6

#

=

fxpy; xqz; yneqzg [S

if x : p

6

#

=

q in S,

and there are no y

0

, z

0

s.t. xpy

0

, xqz

0

and y

0

neqz

0

in S,

and y, z are new variables

S !

�

fxpz; zqyg [S

if x(p � q)y in S,

and there is no w s.t. both xpw and wqy in S,

and z is a new variable

S !

funct

[y=z]S

if xfy and xfz in S,

and y is not an object,

and y is not equal to z

S !

fg

[x=a

i

]S

if x : f a

1

: : : a

n

g in S,

and x is not an object

S !

:fg

fxneqa

1

: : : xneqa

n

g [S

if x : :f a

1

: : : a

n

g in S

Figure 2: Propagation rules for the ALCRIFO descrip-

tion logic.

3 Implementing Tableaux Calculus

In this section we will show a general architecture for

implementing reasoning systems based on tableaux cal-

culus; in our case, it will be a procedure for deciding

satis�ability of ALCRIFO knowledge bases.

The main idea is to implement directly the rules

of tableaux calculus, as opposed to the currently im-

plemented tableaux-based description logics relying on

a functional algorithm, like e.g. KRIS

[

Baader and

Hollunder,1991

]

. A functional algorithm exploits the

property of independency between traces of a satis�a-

bility proof. It assumes that a completed system can

be partitioned into traces, where the computation can

be performed independently { i.e. a clash can be gen-

132

erated only by constraints belonging to the same trace.

The functional algorithm for ALCR can be sketched as

follows

[

Hollunder et al.,1990

]

:

sat(S) = if S includes a clash

then false

elseif C uD 2 S and C 62 S or D 62 S

then sat(S [fC;Dg)

elseif C tD 2 S and C 62 S and D 62 S

then sat(S [fCg) or sat(S [fDg)

else forall 9R.C 2 S

sat(fCg [fD j 8Q.D 2 S ^R v Qg)

Unfortunately, it seems that expressive languages do

not have this nice property. For example, inverse roles

and one-of introduce interactions between traces. The

unsatis�ability of the concept:

9CHILD. (Manu f peter g) u 9CHILD. (:Manu f peter g)

can not be detected with a trace-based algorithm. The

two traces generated by the two existential quanti�ca-

tions on CHILD are independently satis�able, but are

globally unsatis�able, since both existential variables

should be co-referenced to the individual peter.

Thus, our general satis�ability algorithm does not

assume any independency between traces, since it has

to be used for very expressive description logics. This

allows for deductions like that in the above exam-

ple. However, there is a price to pay for this choice:

sub-languages where the complexity of satis�ability is

PSPACE-complete are not handled properly with such a

non-trace algorithm. In fact, the plain non-deterministic

application of the propagation rules may generate an ex-

ponential number of variables. For example, the com-

pleted system generated by the concept (of dimension

n)

[

Donini et al.,1992a

]

:

9R.C

1

u 9R.C

2

u

8R. (9R.C

1

u 9R.C

2

u 8R. (: : : : : :

n

)

2

)

1

has an exponential number of variables with respect to

n, as shown below:

x : 9R.C

1

u 9R.C

2

u 8R. (9R.C

1

u 9R.C

2

u 8R. (: : :))

xRx

1

; x

1

: C

1

x

1

: 9R.C

1

u 9R.C

2

u 8R. (: : :)

: : :

: : :

xRx

2

; x

2

: C

2

x

2

: 9R.C

1

u 9R.C

2

u 8R. (: : :)

: : :

: : :

We believe that such worst cases are unlikely to happen

in real cases, just as exponential in time worst cases do

not happen in real and average knowledge bases; for a

preliminary study on the meaning of average knowledge

base refer to the section 5 of the paper.

Another peculiarity of our approach is that the com-

putation is driven by the constraints, and not by the

non-deterministic choice of applicable rules. At the be-

AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA

REASONING SERVICES

Checker

DATA
BASE

QUEUE
OF

CONSTR.

RULES

Pop

Push

Insert

Ask

Ask

KB-SAT

Figure 3: The crack architecture.

ginning of a satis�ability proof, constraints are inserted

in a queue and processed in a sequential manner. A

constraint triggers the application of only one rule, and

thereafter it could be either inserted in the database of

permanent constraints { if the constraint itself could be

necessary in the future for checking the application of

some other rule triggered by some other constraint or

for detecting a clash { or otherwise discarded. The ap-

plication of a rule may generate other new constraints,

which are pushed in the queue and further elaborated.

Figure 3 presents the crack architecture.

This architecture may deal with very expressive lan-

guages, and it can be extended to handle new propaga-

tion rules without having to reconsider the control mech-

anism of the system. Moreover, the treatment of new

types of clashes or new types of operations on constraints

can be easily added to the system by changing only the

a�ected modules. In the following, the formal opera-

tional semantics describing the behavior of the system

for handling ALCRIFO will be introduced, the data

structures will be analyzed, and an abstract overview to

the satis�ability algorithm itself will be given.

3.1 Operational Semantics

The operational semantics is de�ned through a formal

system that allows to prove assertions of the form:

hS;DBi ` v

where S is a sequence of constraints, DB is a database

and v is either a database or the symbol FAIL. An

assertion of this kind states that an \evaluation" of con-

straints in S over the database DB produces the result

v. If v is FAIL the constraint set with respect to the

database is unsatis�able, otherwise the result is a new

database DB' from which a model may be derivable.

A database is a pair h�; �i, where � is a set of con-

straints and � is a rename function mapping objects into

objects. Due to the unique name assumption, the re-

name function restricted to individuals must be the iden-

133

tity. The rename function may change as new constraints

are added to the constraint system by the propagation

rules; for this reason, we introduce the notation �[z; r] {

where � is a rename function { denoting a new rename

function �

0

equal to � except that �

0

(r) = z. We also

impose some restrictions on the structure of role and

feature constraints in the database. For every pair of re-

lated objects there must be at most one role constraint

{ conjoining all the asserted role constraints { and if a

role binds a pair of objects its inverse should bind the

inverted pair of objects. A similar restriction is applied

also for feature constraints (and their inverses). Accord-

ing to this, adding role or feature constraints involves

some extra operations on the set; for sake of simplicity,

will will ignore this in the following.

There are �ve types of constraints: instance, rela-

tion, attribute, inequality and equality constraints (x :

C; xRy; x f y; xneqy; x = y). Only persistent con-

straints are stored in a database. They are those which

may be used more than once during a satis�ability proof.

For example, a universal constraint is processed any time

a new �ller for the role (i.e. a new role constraint) is

added to the constraint system; on the contrary, an ex-

istential constraint is processed only once. It can be

easily veri�ed that persistent constraints are only of

the kind: x : A, x : :A, x : 8R.C, x(R

+

uR

�

)y, xfy,

xf

�1

y, xneqy, x : f ", where R

+

; R

�

are conjunctions of

roles and inverse roles respectively.

The formal system of operational semantics is given

in form of pre-conditions which should be veri�ed in or-

der to prove the truth value of every assertion. Oper-

ationally, the control of the \executor" is �xed by the

sequence of pre-conditions to check. Let's see, for exam-

ple, the conditional assertion about the and concept:

h�(�x : D)(�(�x : C)S); h�; �ii ` v

h<(x : C uD) : S>; h�; �ii ` v

This formula states that the result of the evaluation

on a sequence, whose head is the conjunction of two con-

cepts, over a database (h�; �i) is the same as the eval-

uation on a sequence obtained by adding two new con-

straints (�x : C and �x : D) to the rest of the original

sequence (S) over the same database. Please note the

strategy two-place function �: it maps a constraint and

a sequence of constraints into a new sequence of con-

straints. Intuitively, the strategy function inserts a new

constraint into a sequence determining a \good" place

for it. The strategy function does not modify a sequence

when trying to add an already present constraint.

In the following the set of the conditional assertions

for ALC is listed { the complete set for ALCRIFO

can be found in

[

Bresciani et al.,1995

]

. The domains

of the operational semantics are: objects names (O), in-

cluding individuals names (J) and variables names (V);

Concept Names (C

nam

); Role Names (R

nam

); Feature

Names (F

nam

); Concept Expressions (C); Role Expres-

sions (R); Feature Expressions (F). The terminology

function T maps a concept name into its de�nition; if

a concept name does not have a de�nition, the termino-

logy function returns the name itself. The normal form

function Nf maps a concept expression into its normal

form.

Termination on Success

� h2; h�; �ii ` h�; �i

Bottom Concept

� h<(x : ?) : S>; h�; �ii ` FAIL

Atomic concept

�

:A(�x) 2 �

h<(x : A) : S>; h�; �ii ` FAIL

�

:A(�x) 62 �

T (A) = A

�

0

= � [fA(�x)g

hS; h�

0

; �ii ` v

h<(x : A) : S>; h�; �ii ` v

�

:A(�x) 62 �

Nf(T (A)) = C CneqA

�

0

= � [fA(�x)g

h�(�x : C)S; h�

0

; �ii ` v

h<(x : A) : S>; h�; �ii ` v

Negated Atomic Concept

�

A(�x) 2 �

h<(x : :A) : S>; h�; �ii ` FAIL

�

A(�x) 62 �

T (A) = A

�

0

= � [f:A(�x)g

hS; h�

0

; �ii ` v

h<(x : :A) : S>; h�; �ii ` v

�

A(�x) 62 �

Nf(:T (A)) = C Cneq:A

�

0

= � [f:A(�x)g

h�(�x : C)S; h�

0

; �ii ` v

h<(x : :A) : S>; h�; �ii ` v

And concept

�

h�(�x : D)(�(�x : C)S); h�; �ii ` v

h<(x : C uD) : S>; h�; �ii ` v

Or concept

�

h�(�x : C)S; h�; �ii ` v

vneqFAIL

h<(x : C tD) : S>; h�; �ii ` v

�

h�(�x : C)S; h�; �ii ` FAIL

h�(�x : D)S; h�; �ii ` v

h<(x : C tD) : S>; h�; �ii ` v

Some concept

�

y new variable

�

0

= �[y; y]

h�(y : C)(�(�xR y)S); h�; �

0

ii ` v

h<(x : 9R.C) : S>; h�; �ii ` v

Universal concept

�

S

0

= min� � S s:t:

8Q(�x; y) 2 �.Q v R) � = �(y : C)�

hS

0

; h�; �ii ` v

h<(x : 8R.C) : S>; h�; �ii ` v

Role

�

S

0

= min� � S s:t:

(8(8Q.C)(�x) 2 �.R v Q) � = �(�y : C)�) ^

(8(8Q.C)(�y) 2 �.R

�1

v Q) � = �(�x : C)�)

hS

0

; h�; �ii ` v

h<(xR y) : S>; h�; �ii ` v

134

Slot name Content Indexed by

name A none

preceding-entry 7�! entry none

is-variable fTjFg none

Constraints:

isa hA

1

; : : :i concept name

isnt hA

1

; : : :i concept name

universals h[R

1

: C

1

]; : : :i none

roles h

"

x

1

:

direct 7�! role-struct

inverse 7�! role-struct

#

; : : :i related object

features h

h

x

1

: 7�! feature-struct

i

; : : :i related object

inv-features h

h

x

1

: 7�! feature-struct

i

; : : :i related object

not-equal hx

1

; : : :i object name

unde�nedness hf

1

; : : :i feature name

Figure 4: The data structure for an entry.

3.2 The Data Structures

A special data structure is used to implement the

database, in order to allow for e�cient computation of

the applicability conditions of the rules, for a fast de-

tection of clashes, and for an e�ective insertion of new

constraints in the database itself. Moreover, the data

structure is capable to cope with the non-determinism

of the database updating, and with the problem of vari-

able renaming.

The data structure has been organized in a way that

new rules can be added without reimplementing the

database structure. Thus, the expressivity of the lan-

guage can be extended by just adding new rules, being

not necessary to change the whole system architecture

or the data structures.

The Constraint System is the structure for the data-

base, holding descriptions of persistent constraints. A

constraint system is represented by a stack of frames.

Each frame is a backtrack point for a non-deterministic

rule: when a non-deterministic rule is applied, a new

empty frame is pushed on the top of the stack. The top

frame is called active frame. The active frame is the loca-

tion where the information is stored at a certain point of

the non-deterministic computation. Backtracking pops

the top frame from the constraint system, such that the

preceding frame becomes active.

A Frame is the data structure for a deterministic part

of a database. It is a pair consisting of a table of entries

indexed by objects (either variables or individuals) and

a mapping from variables to objects { implementing a

rename function. Note that an index may appear, obvi-

ously, at most once within a frame; however, the same

object may be an index for di�erent entries in di�erent

frames. The mapping binds variables to objects and al-

lows to collapse two or more objects without an explicit

change in the frame structure. The rename function is

de�ned only through the mapping in the active frame.

An Entry is the data structure for persistent con-

straints indexed by objects { see �gure 4 for details. It

maintains information about constraints which must be

stored during a satis�ability proof. Associated to each

object, there are the persistent constraints containing

the object itself. A role (or feature) structure contains

the information about the relation between two objects

{ see �gure 5 for details.

In the constraint system there is always only one active

role-structure between the same pair of objects: the last

one added. When a new relation is established between

two objects already related in a non-active frame, the

old relation is copied from the newest of the non-active

frames and updated in the current active frame. On the

contrary, information on attributes is distributed over

the frame chain. The di�erence between an attribute

and a role is that the latter needs an e�cient handling

of the holds test predicate.

Every instance of the above described structures is

local to a single frame; thus, entries of di�erent frames

do not share any structure. This is necessary for the

backtracking mechanism, since it is necessary to discard

the last frame without any change in the previous ones.

3.3 The Satis�ability Abstract Algorithm

During the computation, a structure called constrack

maintains constraints before their use. The satis�ability

checker iterates over such constraints, applies the prop-

agation rules and inserts persistent constraints in the

constraint system. The constrack structure is indexed

by object names and it is simpler than the constraint

system structure, since it does not allow for complex in-

+ hR

1

; : : :i direct relations (R

+

)

{ hR

1

; : : :i inverse relations (R

�

)

hf

1

; : : :i conjunction of features

Figure 5: The role and feature data structures.

135

dexing between objects and concepts.

The function SAT takes a set of constraints and a con-

straint system structure and returns the completed con-

straint system, if the set of constraints are satis�able, nil

otherwise.

function sat(ConstraintsSet,database)

constrack := set2constrack(ConstraintsSet)

new-dbase := database

foreach object in constrack

new-dbase :=

eval-object(object,constrack,new-dbase)

if new-dbase = NIL then EXIT_WITH_FAILURE

endloop

EXIT_WITH_SUCCESS

endfunction

The function EVAL-OBJECT evaluates all the con-

straints related to a given object. It modi�es the con-

strack, by inserting new constraints, and the database. If

a clash is found, the it returns NIL, otherwise it returns

the modi�ed database.

function eval-object(obj,constrack,dbase)

new-dbase := dbase

loop until there are no constraints for obj

new-dbase :=

(OR eval-and-constraints

(obj,constrack,new-dbase)

...

eval-role-constraints

(obj,constrack,new-dbase))

if new-dbase = NIL return(NIL)

endloop

return(new-dbase)

endfunction

There is a EVAL-: : :-CONSTRAINTS function for each

type of constraint; functions for ALC are listed below

{ the complete listing for ALCRIFO can be found in

[

Bresciani et al.,1995

]

. Those functions apply the corre-

sponding rule to the constrack and the database; they

return NIL if a clash is found; otherwise they return

the modi�ed database. They change the constrack, re-

moving used constraints and possibly adding new con-

straints.

function

eval-and-constraints(object,constrack,dbase)

foreach concept of and-constraint for object

if concept is simple

then if (concept = bottom) or

(:instance object (:not concept))

in database

then return(NIL)

else add (:instance object concept)

to dbase

else add (:instance object concept)

to constrack

endloop

return(dbase)

endfunction

function

eval-or-constraints(object,constrack,dbase)

foreach concept of or-constraint for object

new-db := sat(copy(constrack) +

(:instance object concept),

add-frame(dbase))

unless new-db=NIL return(new-db)

endloop

return(NIL)

endfunction

function

eval-some-constraints(object,constrack,dbase)

foreach (:some role concept)

of some-constraint for object

new-object := create-variable

add (:related object new-object role) and

(:instance new-object concept)

to constrack

endloop

return(dbase)

endfunction

function

eval-role-constraints(object,constrack,dbase)

foreach (:related object object1 role)

of role-constraint for object

if (:instance object (:all role1 concept))

in dbase and

role specializes role1

then add (:instance object1 concept)

to constrack

if (:instance object1 (:all role1 concept))

in dbase and

(:inverse role) specializes role1

then add (:instance object concept)

to constrack

add (:related object object1 role) to dbase

endloop

return(dbase)

endfunction

4 Extensions to the language

The crack system currently implements complete rea-

soning for a larger language than ALCRIFO. Roles

and features have been syntactically uni�ed, so that the

existential and universal quanti�ers can be uniformly

used with them. Composition, range and domain have

been added for roles. Existential agreement between role

paths, singleton variable and �ll operators have been

added for concepts. The crack language can express,

for example, the schema-views language for querying

object-oriented databases { with the exception of cyclic

de�nitions in the schema

[

Buchheit et al.,1994

]

.

We plan to add the possibility of expressing general

inclusion statements { as in

[

Buchheit et al.,1993

]

. Of

course, in this case only the subset ALCR of the lan-

guage should be used in order to guarantee the termi-

nation of the satis�ability procedure. A more ambitious

plan is the implementation of CIF

[

De Giacomo and

Lenzerini,1994

]

{ a description logic in correspondence

with an extension of converse-PDL, i.e. propositional

dynamic logic with the converse operator. De Giacomo

136

and Lenzerini have proved the decidability of satis�abil-

ity in CIF , which includes ALC, functional restrictions,

and disjunction, composition, transitive closure, inverse,

and identity for roles. In CIF , full terminological ax-

ioms can be expressed. Number restrictions, which are

present in KRIS and in other systems, can be naively im-

plemented within crack, using the same basic modules

(like the one for variable renaming) and data structures;

however, the e�ciency of such a straightforward imple-

mentation should be tested. Perhaps, more sophisticated

data structures are needed to handle e�ciently num-

ber restrictions. Two other possible extensions we have

taken into consideration are concrete domains

[

Baader

and Hanschke,1991

]

and plural entities

[

Franconi,1993

]

.

crack supports also an e�cient way of management

of ABox constraints, i.e. constraints where only indi-

viduals are involved. From an abstract point of view,

the architecture described so far already supports ABox

constraints, since they are uniformly processed as a spe-

cial type of constraint. Since no variables but only in-

dividuals are involved, ABox constraints may be con-

sidered static { i.e. they may be stored permanently,

being the same for every computation. This avoids re-

dundant applications of the same rules. Thus, a perma-

nent frame containing pre-completed ABox constraints

is maintained in the constraint system, as the bottom

frame. A pre-completion is the processing of the deter-

ministic part of a constraint, which is necessarily equal

in every completion of the initial constraint system. The

non-deterministic ABox constraints are stored in the en-

tries of the permanent frame, such that they could be

processed in later stages. Moreover, dependencies be-

tween individuals is maintained, in order to consider

only connected parts of the ABox in the processing.

Of course, revision of ABox constraints is disallowed

without canceling the permanent frame (or at least the

connected part of it) and recomputing the whole pre-

completion. Preliminary, but not su�ciently complete,

tests show that ABox reasoning is quite e�cient. We

are still working on optimizing this task. It should be

noted, however, that the presence of enumerated types

{ i.e., one-of { yields to implicit assertions which can

not be easily treated as ABox constraints in the general

architecture.

A powerful query language for retrieval has been im-

plemented in crack. Apart from the possibility of

querying an ABox with the usual open world seman-

tics, it is possible to e�ciently query an ABox under

a closed world assumption. Closed queries make sense

because give to the knowledge base a database interpre-

tation, which is the preferred one in most real applica-

tions. The answer to such a query is computed as if

the knowledge base had a closed world semantics; it is

equivalent to a query on the knowledge base having the

usual open world semantics, where each atomic role and

concept is pre�xed by the epistemic operator

[

Donini et

al.,1992b

]

. Individuals are indexed with respect to the

taxonomic structure of concept terms, in order to opti-

mize the retrieval task. Two di�erent indices sets are

Prob(sat)

mean

median

percentile 90%

-

6

1 3 5 7 9 11 13 15 17

L/N

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

msec.

0

0.2

0.4

0.6

0.8

1

Prob(sat)

Figure 6: Random propositional 3-SAT transition. N

is the number of propositional variables (i.e. primitive

concepts); L is the number of and branches.

pre-computed, using the one for open queries and the

other for closed queries. The query is classi�ed and the

obtained indexed individuals are checked; thus, the num-

ber of instance checking problems to solve is considerably

reduced.

5 Testing Description Logics

In this section we present some preliminary results on

testing the hardness of satis�ability in description logics.

The �rst problem in such an e�ort is to �nd a reasonable

way of generating random knowledge bases to be used in

the test. It turns out that it is not even an easily de�ned

task. In fact, it is not clear how a random distribution in

the multi-dimensional space of well formed formulae of

description logics (knowledge bases) could be expressed.

Which parameters are the relevant ones? Which struc-

tures are representative of the average element of the

space? Does such a distribution include both easy and

hard problems?

It is possible, like it has been done in

[

Baader et

al.,1994

]

, to generate random knowledge bases

1

accord-

ing to a prede�ned structure, which should resemble the

one of real knowledge bases used in di�erent applications

based on description logics. A more general idea would

be to generate knowledge bases according to the gram-

mar of the language itself, where each transition has the

same probability. However, an extensive testing proved

that the generated knowledge bases do not include the

real hard cases, and, moreover, they are almost always

satis�able cases (more than 95%, for ALC knowledge

bases).

For these reasons, we looked for particular structures

of knowledge bases that could be easily characterized in

terms of an order parameter with respect to satis�abil-

ity, and showing some neat di�cult case in correspon-

1

In this section, knowledge bases mean just TBoxes.

137

Prob(sat)

mean

median

percentile 90%

-

6

1 2 3 4

L/N

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

msec.

0

0.2

0.4

0.6

0.8

1

Prob(sat)

Figure 7: Random modal 2-SAT transition (degree 1).

N is the number of propositional variables (i.e. primitive

concepts); L is the number of and branches.

dence to a phase transition in the satis�ability proba-

bility space.

[

Cheeseman et al.,1991

]

conjecture that all

NP-complete problems have at least one order parame-

ter and the hard to solve problems are around a criti-

cal value (phase transition) of this order parameter; the

phase transition separates the over-constrained from the

under-constrained regions of the problem space. There

are many papers { e.g. refer to

[

Gent and Walsh,1994

]

{

giving for propositional logic quite extensive case studies

and some theoretical results. Figure 6 points out the ran-

dom propositional 3-SAT transition obtained with the

propositional sub-language of crack. Of course, this

is not a surprising result, since theoretical studies fore-

see the easy-hard-easy pattern for satis�ability, within a

sat/unsat transition in 3-SAT problems, at around the

critical empirical value of 4.2 L/N. The sat/unsat transi-

tion appears smooth since we did not consider formulae

with more that 20 conjuncts for our limited computing

resources

2

. Extensive tests show that average cases in

propositional 3-SAT are 3 orders of magnitude harder

than average cases in full ALC with random grammar:

this gives strong evidence that the random grammar

based generator does not capture any of the hard cases,

where the testing is more meaningful.

It is interesting to notice that in the (easy) ALC cases

crack is 3 times faster than KRIS, whereas in the hard

propositional cases (with 4.2 L/N) the ratio is inverted.

This is due to the way crack handles in general nonde-

terministic rules (like the disjunction rule: !

t

): crack

naively generates a fresh new frame at each nondetermin-

istic point of the computation. We are re-implementing

the basic resource manager in order to reuse unused

frames instead of generating new ones.

Then, we tried to extend the study to the ALC case

2

Satis�ability checkers tailored for propositional calculus

are much more e�cient than our tableaux-based architecture.

{ which is in correspondence to the propositional modal

logic K

(m)

[

Schild,1991; Halpern and Moses,1985

]

. It

turned out that it is not easy to �nd a parameter leading

to a phase transition; moreover, no results are presented

in the literature for satis�ability in PSPACE-complete

languages { like ALC. Nonetheless, we have found some

interesting cases

3

. For example, �gure 7 indicates that

even in the modal case a phase transition can be found;

formulae are in conjunctive normal form, with L con-

juncts and 2 disjuncts, where each literal could be either

an existential or a universal expression, whose restriction

is a L-2-CNF formula with ground literals. Again, also

in this experiment the transition appears smooth. The

same transition has been found using both crack and

KRIS. For the same reasons as above, crack is slower

than KRIS in the hard cases. More experimental and

theoretical studies are needed in order to generalize this

preliminary result.

Acknowledgments

Many people contributed to the e�ort of developing the ideas

behind crack. We would like to thank Francesco M. Donini,

Andrea Schaerf, Werner Nutt, Bernhard Hollunder, Roberto

Sebastiani for the invaluable discussions we had with them.

We thank also the anonymous referees who carefully read

previous versions of the paper. All the errors of the paper

are, of course, our own.

References

[

Baader and Hanschke, 1991

]

Franz Baader and Philipp

Hanschke. A scheme for integrating concrete domains into

concept languages. In Proc. of the 12

th

IJCAI, pages 452{

457, Sidney, Australia, 1991.

[

Baader and Hollunder, 1991

]

F. Baader and B. Hollunder.

A terminological knowledge representation system with

complete inference algorithm. In Proc. of the Workshop

on Processing Declarative Knowledge, pages 67{86, Kaiser-

slautern, Germany, 1991.

[

Baader et al., 1994

]

F. Baader, E. Franconi, B. Hollunder,

B. Nebel, and H. J. Pro�tlich. An empirical analysis of

optimization techniques for terminological representation

systems. Applied Intelligence, 4(2):109{132, April 1994.

Kluwer Academic Publishers. Special Issue on Knowledge

Base Management. Edited by John Mylopoulos.

[

Bresciani et al., 1995

]

Paolo Bresciani, Enrico Franconi,

and Sergio Tessaris. Implementing and testing expressive

description logics: a preliminary report. Long Version.

Submitted, February 1995.

[

Buchheit et al., 1993

]

Martin Buchheit, Francesco M.

Donini, and Andrea Schaerf. Decidable reasoning in ter-

minological knowledge representation systems. In Proc. of

the 13

th

IJCAI, pages 704{709, Chambery, France, Au-

gust 1993.

[

Buchheit et al., 1994

]

Martin Buchheit, Manfred A.

Jeusfeld, Werner Nutt, and Martin Staudt. Subsumption

between queries to object-oriented databases. Information

Systems, 19(1):33{54, 1994.

3

Thanks to Roberto Sebastiani.

138

[

Cheeseman et al., 1991

]

Peter Cheeseman, Bob Kanefsky,

and William M. Taylor. Where the really hard problems

are. In Proc. of the 12

th

IJCAI, pages 331{337, 1991.

[

De Giacomo and Lenzerini, 1994

]

Giuseppe De Giacomo

and Maurizio Lenzerini. Boosting the correspondence be-

tween description logics and propositional dynamic logics.

In Proc. of AAAI-94, 1994.

[

Donini et al., 1991

]

F. M. Donini, M. Lenzerini, D. Nardi,

and W. Nutt. Tractable concept languages. In Proc. of

the 12

th

IJCAI, pages 458{465, Sidney, Australia, August

1991.

[

Donini et al., 1992a

]

F. M. Donini, B. Hollunder, M. Lenz-

erini, A. Marchetti Spaccamela, D. Nardi, and W. Nutt.

The complexity of existential quanti�cation in concept lan-

guages. Arti�cial Intelligence, 53:309{327, 1992.

[

Donini et al., 1992b

]

F. M. Donini, M. Lenzerini, D. Nardi,

A. Schaerf, and W. Nutt. Adding epistemic operators to

concept languages. In Proc. of the 3

rd

International Con-

ference on Principles of Knowledge Representation and

Reasoning (KR-92), pages 342{353, Cambridge, MA, 1992.

[

Franconi, 1993

]

Enrico Franconi. A treatment of plurals

and plural quanti�cations based on a theory of collec-

tions. Minds and Machines, 3(4):453{474, November 1993.

Kluwer Academic Publishers. Special Issue on Knowledge

Representation for Natural Language Processing.

[

Gent and Walsh, 1994

]

Ian P. Gent and Toby Walsh. The

SAT phase transition. In Proc. of the 11

th

ECAI, pages

105{109, 1994.

[

Halpern and Moses, 1985

]

J. Y. Halpern and Y. Moses. A

guide to the modal logics of knowledge and belief: Prelim-

inary draft. In Proc. of the 9

th

IJCAI, pages 480{490, Los

Angeles, CA, 1985.

[

Hollunder and Nutt, 1990

]

B. Hollunder and W. Nutt. Sub-

sumption algorithms for concept languages. Research Re-

port RR-90-04, DFKI, April 1990.

[

Hollunder et al., 1990

]

B. Hollunder, W. Nutt, and

M. Schmidt-Schau�. Subsumption algorithms for concept

description languages. In Proc. of the 9

th

ECAI, pages

348{353, Stockholm, Sweden, 1990.

[

Schaerf, 1994

]

Andrea Schaerf. Reasoning with individuals

in concept languages. Data and Knowledge Engineering,

13(2):141{176, 1994.

[

Schild, 1991

]

Klaus D. Schild. A correspondence theory for

terminological logics: preliminary report. In Proc. of the

12

th

IJCAI, pages 466{471, October 1991.

[

Schmidt-Schau� and Smolka, 1991

]

M. Schmidt-Schau�

and G. Smolka. Attributive concept descriptions with com-

plements. Arti�cial Intelligence, 48(1):1{26, 1991.

139

From Frames to Concepts:

Building a Concept Language within a Frame-based System

T. Kessel, O. Stern, F. Rousselot

ERIC (Equipe de Recherche en Ingenierie de Connaissances), ENSAIS

24, boulevard de la Victoire, 67084 Strasbourg, France

Tel.: (+33) 88 14 47 37

hkessel, stern, roussei@steinway.u-strasbg.fr

1 Introduction

Elicitating and acquiring knowledge from texts written

in natural language, in order to build a domain ontol-

ogy and establish (semi-automatically) in the following

phase a knowledge-based system, is the overall objective

of our research project. This task induces some speci�c

requirements for an underlying knowledge representation

and reasoning (KR) system, for instance automatic clas-

si�cation of domain terms, handling of partial individual

descriptions and assuring a maximumof coherence in the

knowledge base.

We have chosen the paradigm of KL-ONE lan-

guages or Description Logics (DL) in combination

with a frame language as a base for the implemen-

tation of the KR module , because it seems to ful-

�ll most of our requirements. Therefore the devel-

oped C3L (Constraint-based Concept Classi�cation

Language) system is implemented in a frame-based lan-

guage, integrating so most of the powerful features of

object-oriented representation

[

?; ?

]

. But it still pro-

vides the usual expressive power of Description Logics,

its inferences and declarative semantics. We would like

to bridge the gap between frame languages and descrip-

tion logics by showing common foundations as well as

substantial di�erences, as it might be already indicated

in this paper's title.

C3L is a research prototype, implemented in Common

Lisp on Macintosh Computers, which will be o�cially

released in summer '95. A C++ version is planned to

be incorporated in more conventional software environ-

ments.

2 Principles of the C3L-TBox

In the following paragraphs a brief description outlines

the main characteristics of C3L:

� The system is based on the "structural" subsump-

tion method as described in

[

?

]

, because it seems

to be more appropriate for object-oriented or frame

languages. The algorithm does not compare syntac-

tical constructs, but it follows a rather role-centered

approach, which checks the corresponding expres-

sions (stored as frames) role by role.

� An optimization of the subsumption computation

could be obtained by means of diverse caching

strategies and complex concept structures. Further-

more there exist implementations of three di�erent

classi�cation methods (brute force, simple and en-

hanced traversal), based on the article of

[

?

]

, allow-

ing us to compare the consequences of each classi�-

cation depending on a special knowledge base.

� C3L provides a set of usual role operators: ALL,

SOME, ONE-OF, FILLS and CARD. The last

one is a combination of the well-known atleast and

atmost operators. A role hierarchy was recently in-

troduced, as well as the speci�cation of numerical

values by means of intervals.

� An enhancement of the expressive power is planned

towards a "local" complement and disjunction. We

follow the rather pragmatic argumentation of

[

?

]

,

giving the user a maximum of expressiveness. The

"local" complement is a kind of weakened negation

that is exclusively restricted to role operators and

therefore cannot be applied to logical connectives

(AND, OR) or complete concept expressions. The

motivation for such a limited complement is that it

can be easily implemented in our system and the

(role operators) arguments need not be inverted.

This enhancement will be implemented as fol-

lows: each role operator is attached to a com-

plementary one which stores the arguments. The

"local" complement is interpreted as the set of

all elements of the domain universe without the

explicit arguments given in the role operator.

For instance let r be a role and c a concept

name, then (COMP (ONE �OF r individual �

list)) is transformed into the internal represen-

tation (COMP ONE � OF r individual � list).

All role �llers have to be distinct from the ele-

ments of the individual-list. Another example :

(COMP (ALL r c)) is transformed into the inter-

nal representation (COMP ALL r c). It is inter-

preted that no role �ller is of the concept c (instead

of the usual interpretation that there exists at least

one role �ller which is not c).

A restricted "local" disjunction allows to give sev-

140

eral concepts as operands in the ALL role opera-

tor. For instance (ALL r (c1 c2 c3)) is interpreted

as whether all role �llers can be instances of the

concepts c1, c2 or c3. In our opinion such an en-

hancement is su�cient.

A rule-based system is going to be linked to the sys-

tem's kernel, allowing the modeling and execution of dy-

namic knowledge. In a short term, it will be restricted

to object instances, and in the following phases be at-

tached to a more powerful query language based on the

ABox. It might be soon completed by a planning lan-

guage denoting actions and plans, by an object-oriented

database system and a graphical user interface.

3 ERICA | An ABox for C3L

For the representation of individuals and some reasoning

about them we have built a subsystem which is known

as ABox in the literature

[

?

]

. Assuming an open world

semantics, it is possible to assign partial descriptions to

individuals. Information about them may be completed,

and implicit information which is not initially given in

the description may be deduced. The system is domain-

independent and can therefore be used in many applica-

tions.

The following paragraphs provide a short overview of

ERICA:

� Assert-time deduction is used to detect inconsisten-

cies as soon as possible. The TBox-contents are

additionally used as an integrity constraint for the

ABox. This feature is supported by the use of

the TBox inference algorithms for subsumption and

classi�cation without any change for the ABox in-

ferences. With the integration of large parts of the

TBox-syntax into the individual de�nition part of

the ABox-syntax, we obtained an even closer cou-

pling of these subsystems

[

?

]

. Concepts, Roles and

Individuals can be declared in approximately the

same fashion with the same operators.

� A further key objective in the construction of the

ABox could be achieved by the de�nition of a se-

mantics which is common to both, the ABox and

the TBox. Combined with the syntax this results

in exactly the same expressiveness of the two sub-

systems. Considering the complementary fact that

mutual e�ects of the subsystems (introduction of

new concepts, changes of cardinalities, etc.) are also

computed in an appropriate fashion, it can be con-

cluded that the assertional and the terminological

component are well balanced

[

?

]

.

� To compute instantiation relationships between in-

dividuals and TBox-concepts (recognition) we use a

method called abstraction on demand, as described

in

[

?

]

. This means that only abstractions of terms

needed in the current recognition step are really cal-

culated. The necessary classi�cation of concept de-

scriptions is only temporary to avoid the introduc-

tion of new concepts into the TBox-taxonomy. In

combination with the forward and backward propa-

gation of individual-information we can assure (rel-

ative) completeness of the recognition-process

[

?

]

.

Almost all possible inferences can be drawn at the

current state of implementation. In our tests we

were able to deduce all consequences on other indi-

viduals intended by the individual descriptions.

� To provide a faster access to the once calculated

instantiation relationships we use a semantic index-

ing technique. By means of this feature we might

achieve a considerable speed-up for the common re-

trieval facilities of the ABox

[

?

]

.

3.1 Implementation of ERICA

The ABox has been designed in an entirely object-

oriented fashion. The implementations of our ABox and

TBox were completely separated from each other. Com-

munication between them is only performed by means of

the general user interfaces of the subsystems. This de-

sign makes it even possible to use several ABoxes with

only one underlying TBox for an application

[

?

]

.

Inside the ABox there exist di�erent kinds of informa-

tion representation for usage with the user interface, the

knowledge base, and for internal use inside the inference

algorithms. With such a division into a kernel (internal

data representation and inference algorithms) and some

interfaces (transformation of the representations and in-

teraction of the subsystems) it might be very easy to

attach further components.

4 Topics of interest

Our research interests concern less the theoretical foun-

dations of Description Logics, but applications of these

principles in the knowledge acquisition domain or in

the �eld of CAD and con�guration problems. Further-

more we obtained a lot of interesting results by choos-

ing a frame language as the base for the implemen-

tation. Besides, our position (in the middle of De-

scription Logics and frame-based Languages) �ts rather

well into a discussion in the wrench scienti�c commu-

nity about the limits and common characteristics of

object-centered representation and object-oriented pro-

gramming languages.

The proposition of enhancing C3L by a "local" com-

plement and disjunction might be worth discussing with

other researchers, having already implemented similar

expressive power or estimated its computational costs.

Furthermore we are curious to talk about possible rule-

based extensions of DL systems.

Last but not least, we would appreciate to exchange

our experiences with other researchers, how to speed up,

optimize or validate a DL system. We would be inter-

ested in obtaining large or special knowledge bases, al-

ready tested or used by other research groups, to validate

our system and study its performance

[

?

]

.

141

References

[

BHNP92

]

F. Baader, B. Hollunder, B. Nebel, H.-J.

Pro�tlich, et al. An empirical analysis of op-

timization techniques for terminological re-

presentation systems. In Principles of Know-

ledge Representation and Reasoning, San

Mateo, CA, 1992.

[

DP91

]

J. Doyle and R.S. Patil. Two theses of know-

ledge representation: language restrictions,

taxonomic classi�cation, and the utility of

representation services. In Arti�cial Intelli-

gence, Volume 48, pages 261-297, 1991.

[

HKNP94

]

J. Heinsohn, D. Kudenko, B. Nebel and H.-

J. Pro�tlich. An empirical analysis of termi-

nological representation systems. In Arti�-

cial Intelligence, Volume 68, pages 367-397,

1994.

[

KIND94

]

C. Kindermann. Personal communication,

1994.

[

KMRBK

]

T. Kessel, H. de Medeiros, F. Rousselot,

J. B�urkle and B. Keith. Some useful en-

hancements of KL-ONE languages to be-

come modeling languages. In M. Willems,

D. Fensel, F. v. Harmelen, editors, Work-

shop on Modeling Languages for Knowledge-

Based Systems, 1995.

[

MACG88

]

R. MacGregor. A de-

ductive pattern matcher. In Proceedings of

the National Conference on Arti�cial Intel-

ligence, AAAI-88, pages 403-408, 1988.

[

NEB90

]

B. Nebel. Reasoning and Revision in Hy-

brid Representation Systems, volume 422

of Lecture Notes in Arti�cial Intelligence.

Springer, 1990.

[

NL87

]

B. Nebel and K. Luck. Issues of integration

and balancing in hybrid knowledge represen-

tation systems. In K. Morik, editor, GWAI-

87, pages 114-123. Springer, 1987.

[

RK94

]

F. Rousselot, T. Kessel. Implementing sub-

sumption in a declarative frame language

to build a knowledge base. In R. Cunis, D.

Champeux and H. Kaindl, editors, ECAI'94,

Workshop on Integrating Object-orientation

and Knowledge Representation, 1994.

[

ST95.1

]

O. Stern. Development of a Recognition Al-

gorithm for C3L. Internal working paper of

ERIC. ENSAIS Strasbourg, 1995.

[

ST95.2

]

O. Stern. Development of an Assertional

Component (ABox) for C3L. Internal work-

ing paper of ERIC, forthcoming. ENSAIS

Strasbourg, 1995.

142

Selecting description logics for real applications

Piet-Hein Speel

Knowledge-Based Systems Group

University of Twente

Enschede, the Netherlands

speel@cs.utwente.nl

Abstract

In order to use knowledge representation sys-

tems (KRSs) in realistic, knowledge-intensive

applications, a wide gap between theory and

practice needs to be bridged. We have intro-

duced a bridge: the KRS selection procedure.

The purpose of this procedure is to help users

�nd answers to the general question \Which

KRSs are adequate for realistic, knowledge-

intensive applications? "

This bridging principle has been illustrated in

a particular case study. In this study we have

focused on the Plinius project which aims at

developing a system for semi-automatic extrac-

tion of domain knowledge from short texts in

a sub-�eld of material science. From a set of

candidate KRSs, namely description logics, we

have selected adequate ones for this applica-

tion, based on the expressive power and (run-

time and memory usage) performance proper-

ties.

We found that the DLs BACK, BACK++, C-

CLASSIC, CLASSIC, KRIS, and LOOM have su�-

cient expressive power to approximately rep-

resent the Plinius domain knowledge. From

the empirical performance study we did for

four DLs, we conclude that all candidate DLs

showed insu�cient performance. However, ex-

cept for BACK, the remaining DLs BACK++,

CLASSIC, and LOOM showed promising perfor-

mance.

1 Introduction

When we started the Plinius project, four years ago, one

of the purposes was to investigate the reuse of exist-

ing systems. In particular, we intended to reuse KRSs

and NLP systems.

1

It turned out to be very di�cult

to make a legitimate choice for an adequate KRS. One

of the main reasons is the rather wide gap between the-

oretical knowledge representation and reasoning issues,

1

Discussion of the reuse of NLP systems is beyond the

scope of this thesis.

on the one hand, and practical requirements of realis-

tic, knowledge-intensive applications, on the other. This

gap has arisen in the KRS research �eld, where most

attention has been paid to the development of KRSs.

Therefore, research has been mainly focused on the ex-

pressiveness of KRS formalisms in relation to their rea-

soning mechanisms. Relatively little attention has been

paid to the use of KRSs in realistic, knowledge-intensive

applications, although consensus exists of the necessity

of such enterprise (Brachman [1990]; Padgham [1994]).

In this context, we have identi�ed the need for the

selection of adequate KRSs for realistic, knowledge-

intensive applications. In our attempt to bridge this gap

by means of systematic selection, we have introduced the

KRS selection procedure. Using a list of KRS properties,

users should be able to match the requirements of the

applications against the characteristics of the candidate

KRSs in order to select adequate KRSs. In general, the

KRS selection procedure consists of the following steps:

1. Determine the set of candidate KRSs;

2. Determine the relevant KRS properties with respect

to the application;

3. Determine the selection criteria, the required values

of the properties, imposed by the application;

4. Determine the values of the relevant properties of

the candidate KRSs;

5. Determine the subset of adequate KRSs by assess-

ing the property values of the candidate KRSs with

respect to the selection criteria.

We have illustrated this KRS selection procedure in a

detailed case study. In this study, we have focused on

the Plinius KBS as a realistic, knowledge-intensive ap-

plication (Mars et al. [1994]; Van der Vet et al. [1994]).

In addition, from a large, varied set of candidate KRSs,

we have isolated DLs in general, and six concrete DLs in

particular. Finally, we have selected two particular KRS

properties, namely the expressive power and the (run-

time and memory usage) performance. This case study

has been described in detail in Speel [1995].

Before summarizing the conclusions of the Plinius case

study in Section 3, we discuss the DL properties expres-

sive power and performance in some detail in Section 2.

143

We close with some general conclusions in Section 4.

2 DL properties

2.1 Expressive power of DLs

Using a slight extension of Baader's formal de�nition

of expressive power (Baader [1990]; Baader [1992]), DL

constructions representing speci�ed knowledge of an ap-

plication domain can be formally veri�ed. However, in

many cases the expressive power of DL formalisms is,

strictly speaking, insu�cient. Nevertheless, sets of DL

axioms which \approximately" represent the speci�ed

knowledge might be useful. We have considered two pos-

sibilities, namely (i) sets of DL axioms which represent

more general knowledge which include the required spec-

i�ed knowledge, and (ii) sets of DL axioms representing

more restrictive knowledge than speci�ed. Here, we dis-

cuss the �rst possibility in more detail.

Often, sets of DL axioms which represent more general

expressions can be created. These axioms represent the

speci�ed knowledge, but due to the generality of the con-

structions, these axioms can be treated in an unintended

way (not corresponding to the knowledge speci�cations).

However, if a particular, restricted way of usage would be

enforced, exactly the speci�ed knowledge is represented.

The restrictions to this particular way of usage are called

representational restrictions. Due to this restricted way

of usage, the set of DL axioms in fact is satis�ed by a

subset of the usual set of models.

Note that the usage of generalized representations is

dangerous, since inferences which seem obvious to users

may not be drawn.

For example, consider the knowledge speci�cation ex-

pressed by disjunction t = t

1

[t

2

where t; t

1

and t

2

stand

for object classes. We are interested to know whether

a DL formalism without concept disjunction (C

1

t C

2

)

is able represent this knowledge speci�cation. The ax-

ioms T

1

v T and T

2

v T represent this disjunction if

treated in an appropriate way (Brachman et al. [1991]).

In general, it might be the case that an instance of T

is an instance of neither T

1

nor T

2

. If the representa-

tional restriction enforces that this case must never occur

(which results in the elimination of all models in which

T

I

� T

I

1

[T

I

2

), then this set of axioms can be used as

a representation of the disjunction. However, note that

the system will never deduce that an instance of T is also

an instance of T

1

if it cannot be an instance of T

2

.

2.2 Performance of DLs

Performance can be measured both analytically and em-

pirically. In the analytical approach, which is widely

adopted in the DL �eld, one usually determines worst-

case performance. The standard of worst-case time ef-

�ciency is motivated by the desire to develop general-

purpose DLs which are of use in all applications, and

thus, fast enough even for the most critical ones. How-

ever, the core subsumption determination process in DLs

with formalisms with reasonable expressive power is in-

tractable and sometimes even undecidable. This is an

undesirable result since one can only state that the per-

formance of DLs for applications will never exceed the

measures of the worst-case analytical studies (if optimal

algorithms are used), while applications probably have

more restrictive criteria. Thus, although worst-case per-

formance analysis is useful for DL development (espe-

cially the (un)decidability analysis), it seems to be not

really useful for DL adequacy assessment with respect to

realistic, knowledge-intensive applications. This state-

ment is also motivated by the fact that worst cases often

have a theoretical nature which seems not or seldomly

to occur in practice.

Peter F. Patel-Schneider

2

has proposed the following

compromise. Instead of worst or average cases, normal

cases can be considered. These normal cases are created

by the formulation of particular assumptions which ex-

clude abnormal cases. Within these assumptions, then,

worst-case analysis can be performed. If adequate as-

sumptions are formulated, the actual performance for

realistic, knowledge-intensive applications is closely re-

lated to the normal-case performance, and will not ex-

ceed the normal-case performance. In CLASSIC, for ex-

ample, normal-case analysis has been used, based on the

assumptions that expanding concepts does not signi�-

cantly increase the size of a KB, and that the size of role

hierarchies are small.

Instead of analytical performance studies, perfor-

mance can also be studied empirically. Since DLs are

software programs, the performance can be measured

by running the DLs through a particular compiler on a

particular machine with a particular (worst- or average-

case) input, and then measure the actual processing time

and space taken. Due to the in
uence of external factors

it is a problem to determine the performance of the DL

in isolation. However, when applications of DLs are con-

sidered, the external in
uences are also important. For

example, if a machine is used with restricted memory ca-

pacity, then DLs with e�cient memory usage should be

preferred. However, in a DL competition, the external

in
uences should be either eliminated or equated as far

as possible.

Empirical studies have been worked out in the DFKI

performance experiment (Heinsohn et al. [1992]; Hein-

sohn et al. [1994]). In addition to performance measures

of some hard cases, the time to load and classify six real

terminological KBs (100{400 concepts) in six DLs was

measured in this experiment. Moreover, the time to load

and classify DFKI synthetic KBs with up to 5000 con-

cepts was measured. The main result is that both size

and structure of KBs can have signi�cant impact on the

performance.

3 DLs with adequate expressiveness

and performance for the Plinius KBS

In this section, we answer the question \Which DLs have

su�cient expressive power and show adequate perfor-

2

This information has been obtained via personal commu-

nications with Peter F. Patel-Schneider.

144

mance for the Plinius application? ". In particular, we

have focused on the candidate DLs BACK, BACK++,

C-CLASSIC, CLASSIC, KRIS, and LOOM.

Expressive power

Based on an extension of Baader's formal de�nition of

expressive power, in which also approximate representa-

tions can be formally analyzed, the su�ciency of the ex-

pressive power of the candidate DLs has been determined

(Speel [1995]). This leads to the following conclusion:

Under various restrictions, all six DLs have su�-

cient expressive power to represent the Plinius do-

main knowledge. In our opinion, the restrictions

attached to LOOM are less drastic than those of

BACK, BACK++, CLASSIC and KRIS which in turn

are less drastic than those of C-CLASSIC. Based on

this judgement, for the Plinius application, we pre-

fer the expressive power of LOOM to that of BACK,

BACK++, CLASSIC and KRIS, which we prefer to

the expressive power of C-CLASSIC.

Note that the DL expressiveness property has in
u-

ence on other DL properties, such as inference prop-

erties. In this work, we have de�ned the DL expres-

siveness property in terms of standard, model-theoretic

semantics. Given these standard semantics, the infer-

ence engine of BACK, BACK++ and LOOM are known

to be incomplete. In contrast, KRIS supports a com-

plete inference engine. C-CLASSIC and CLASSIC have

an incomplete inference engine with respect to standard

model-theoretic semantics, but a complete inference en-

gine with respect to a variant semantics (Borgida &

Patel-Schneider [1994]). This means that DLs with su�-

cient expressive power for a particular application, might

have insu�cient inference properties.

Performance

In addition, we have focused on the performance prop-

erty with regard to the candidate DLs BACK, BACK++,

CLASSIC, and LOOM in the Plinius scalability experi-

ment (Speel et al. [1995]; Speel [1995]). In order to make

comparisons between these candidate DLs possible, we

have considered representations expressed in a common

subset of DL constructions. Both runtime and memory

usage have been measured for storage of various Plinius

synthetic terminological and assertional KBs. In addi-

tion, runtime has been measured for retrieval of Plinius

knowledge. In particular, the performance of DLs for

large amounts of knowledge have been considered, with

Plinius terminological KBs containing more than 12,500

concepts and roles, and Plinius assertional KBs contain-

ing more than 110,000 assertions.

For the storage and retrieval of Plinius domain know-

ledge on a Sun SPARCsystem 10, we draw the following

conclusion with respect to the performance property.

The combined runtime and memory usage perfor-

mance of the candidate DLs BACK,BACK++, CLAS-

SIC, and LOOM with respect to the Plinius selection

criteria is insu�cient.

However, except for BACK, all the candidate DLs

showed performance which was rather close to the Plin-

ius selection criteria. A test performed on a more pow-

erful computer will result in better performance mea-

sures that might be su�cient with respect to the Plinius

selection criteria. In addition, we expect that particu-

lar improvements of DL implementations will increase

the performance considerably. For example, the perfor-

mance of BACK++ might increase if manipulations of

concrete domain individuals are implemented more e�-

ciently. Moreover, the performance of CLASSIC might

increase due to memory usage improvements.

Combination

We conclude that based on the combination of expres-

siveness and performance properties, BACK, BACK++,

CLASSIC and LOOM have insu�cient measures to sat-

isfy the Plinius selection criteria. However, the measures

of BACK++, CLASSIC and LOOM are promising. BACK

cannot be used for the Plinius application due to insuf-

�cient performance. We cannot give a �nal conclusion

for C-CLASSIC and KRIS since we have no performance

measures.

4 General conclusions

Based on the previous section, we conclude that it is

possible to systematically select a set of adequate DLs for

the Plinius application with respect to the expressiveness

and performance properties. In the remainder of this

section we abstract from the Plinius application in order

to draw some general conclusions with respect to DLs.

Since most attention in the DL research �eld has been

paid to e�cient inferences, we have focused on the ex-

pressiveness property in order to arrive at a complemen-

tary result. We conclude that knowledge representation

in DLs is a complex task. First, knowledge of realis-

tic, knowledge-intensive applications needs to be shoe-

horned into representations of DLs due to their restric-

tive expressive power. This has turned out to be a far

from trivial task. We have introduced approximate rep-

resentations in order not to simply fail. Second, various

philosophical assumptions are used in DLs which require

a particular use of DLs. For example, the open-world as-

sumption has consequences for knowledge representation

in terminological KBs in order to avoid unwanted situa-

tions in assertional KBs. Third, concise and transparent

representations are preferred. Last but not least, the re-

sulting DL representations should support e�ective and

e�cient reasoning.

Based on the performance property, we conclude that

research on e�cient reasoning is moving towards average

cases. On the one hand, worst cases have been replaced

145

by normal cases in computational complexity analyses

(and applied in CLASSIC). On the other hand, empirical

performance studies, namely the DFKI performance ex-

periment and the Plinius scalability experiment, focus on

average cases. Besides, from a practical point of view,

concrete DLs become more e�cient. Due to improved

inference algorithms and e�cient code, large KBs can

be dealt with by most DLs. A few years ago in the DFKI

performance experiment, DLs could deal with KBs con-

taining at most 5,000 concepts. At this moment, most

current DLs are able to deal with terminological KBs

containing over 10,000 concepts and roles, and with as-

sertional KBs containing tens of thousands assertions.

Note that all properties relevant to a particular appli-

cation need to be studied in order to systematically select

a set of adequate DLs. In addition to the expressiveness

and performance properties, many other properties need

to be discussed, such as \philosophical background", \in-

ference engine capacity" and \reliability".

In order to determine the su�ciency of the expressive

power of the candidate DLs, we have gained practical

experience in representing knowledge in DLs. For the

task of knowledge representation for realistic, knowledge-

intensive applications, we successfully used an approach

similar to that of KRS selection. First, we focused on the

application requirements which led to knowledge speci�-

cations. These knowledge speci�cations can be expressed

in knowledge-speci�cation languages, such as Ontolin-

gua/KIF (Gruber [1992]; Genesereth & Fikes [1992])

and Z (Spivey [1992]). Second, various DL construc-

tions were produced which correspond to these speci�ca-

tions. Third, the knowledge speci�cations were matched

against the DL constructions in order to select the ap-

propriate representations. For a more detailed discussion

of this approach, we refer to Speel [1995].

5 Acknowledgments

I would like to thank anyone who helped me creating

my Ph.D. thesis. In particular, I would like to thank

Nicolaas Mars, Paul van der Vet and Franz Baader for

their contribution. In addition, I would like to thank

the developers of the systems BACK, BACK++, CLAS-

SIC, C-CLASSIC,KRIS and LOOM for providing me their

systems and for their support.

6 References

Franz Baader [1990], \A formal de�nition for the ex-

pressive power of knowledge representation languages,"

in Proceedings Ninth European Conference on Arti�cial

Intelligence, Stockholm, 6{10 August 1990, Luigia Car-

lucci Aiello, ed., Pitman Publishing, London, 53{58.

Franz Baader [1992], \A formal de�nition for the ex-

pressive power of terminological knowledge representa-

tion languages," to appear in Journal of Logic and Com-

putation as a revised version of DFKI Research Report

RR-90-05, titled \A formal de�nition for the expressive

power of knowledge representation languages".

Alexander Borgida & Peter F. Patel-Schneider [1994],

\A semantics and complete algorithm for subsumption

in the CLASSIC description logic," Journal of Arti�cial

Intelligence Research 1, 277{308.

Ronald J. Brachman [1990], \The future of knowledge re-

presentation: extended abstract," in Proceedings Eight

National Conference on Arti�cial Intelligence, Boston,

MA, 29 July{3 August 1990, AAAI Press/MIT Press,

Menlo Park, CA, 1082{1092.

Ronald J. Brachman, Deborah L. McGuinness, Peter

F. Patel-Schneider, Lori Alperin Resnick & Alexander

Borgida [1991], \Living with CLASSIC: when and how

to use a KL-ONE-like language," in Principles of seman-

tic networks: explorations in the representation of know-

ledge, John F. Sowa, ed., The Morgan Kaufmann se-

ries in representation and reasoning, Morgan Kaufmann

Publishers, Inc., San Mateo, CA, 401{456.

Michael R. Genesereth & Richard E. Fikes [1992],

\Knowledge Interchange Format, Version 3.0, Reference

Manual," Computer Science Department, Stanford Uni-

versity, Report Logic-92-1, Stanford, CA.

Thomas R. Gruber [1992], \Ontolingua: a mechanism to

support portable ontologies," Knowledge Systems Lab-

oratory, Stanford University, Technical Report KSL 91{

66, Palo Alto, CA.

Jochen Heinsohn, Daniel Kudenko, Bernhard Nebel &

Hans-J�urgen Pro�tlich [1992], \An empirical analysis

of terminological representation systems," in Proceed-

ings Tenth National Conference on Arti�cial Intelligence,

July 12{16, 1992, AAAI Press/MIT Press, Menlo Park,

CA, 767{773, also as DFKI Research Report RR-92-16.

Jochen Heinsohn, Daniel Kudenko, Bernhard Nebel &

Hans-J�urgen Pro�tlich [1994], \An empirical analysis of

terminological representation systems," Arti�cial Intel-

ligence 68, 367{397.

Nicolaas J.I. Mars, Hidde de Jong, Piet-Hein Speel,

Wilco G. ter Stal & Paul E. van der Vet [1994], \Semi-

automatic knowledge acquisition in Plinius: an engineer-

ing approach," in Proceedings of the 8th BANFF Know-

ledge Acquisition for Knowledge-Based Systems Work-

shop, Alberta, Canada, January 30{February 4, 1994,

Brian R. Gaines & Mark Musen, eds., 4-1{4-15.

Lin Padgham [1994], \Systems vs. theory vs. ...: KR&R

research methodologies," in Proceedings of the Fourth

International Conference on Principles of Knowledge Re-

presentation and Reasoning, KR'94, May 24{27, 1994,

Bonn, Germany, Jon Doyle, Erik Sandewall & Pietro

Torasso, eds., Morgan Kaufmann Publishers, Inc., San

146

Francisco, CA, 649.

Piet-Hein Speel [1995], \Selecting knowledge representa-

tion systems," Ph.D. thesis, University of Twente, En-

schede, the Netherlands.

Piet-Hein Speel, Frank van Raalte, Paul E. van der Vet

& Nicolaas J.I. Mars [1995], \Scalability of the Perfor-

mance of Knowledge Representation Systems," in To-

wards Very Large Knowledge Bases: Knowledge Build-

ing & Knowledge Sharing 1995, Nicolaas J.I. Mars, eds.,

IOS Press, Amsterdam, the Netherlands, 173{183.

J.M. Spivey [1992], The Z Notation: a reference man-

ual; Second edition, Prentice-Hall International Series

in Computer Science; edited by C.A.R. Hoare, Prentice

Hall International, UK.

Paul E. van der Vet, Hidde de Jong, Nicolaas J.I. Mars,

Piet-Hein Speel & Wilco G. ter Stal [1994], \Plinius

intermediate report," University of Twente, Memoran-

dum UT-KBS-94-10, Memoranda Informatica 94-35, En-

schede, the Netherlands.

147

