Lecture 6: Planning in propositional logic

- Actions as propositional formulae.
- Translations of operators into propositional formulae.
- Planning as satisfiability testing.
Actions as propositional formulae

\[P = \{p_1, \ldots, p_n\} = \text{state variables in the current state} \]

\[P' = \{p'_1, \ldots, p'_n\} = \text{state variables in the successor state} \]

A formula \(\phi \) over \(P \cup P' \) can be viewed as representing an action, because it can be viewed as a relation over sets of states.

For \(n \) state variables a formula (over \(2n \) variables) represents an adjacency matrix of size \(2^n \times 2^n \).

E.g. for \(n = 20 \), matrix size is \(2^{1048576} \times 2^{1048576} \sim 10^{12} \) elements
Actions as propositional formulae: example

Formula \((p_1 \leftrightarrow p'_2) \land (p_2 \leftrightarrow p'_3) \land (p_3 \leftrightarrow p'_1)\) represents matrix

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Translating operators into formulae

- Any operator can be translated into a propositional formula.
- Translation is polynomial time, formula has polynomial size.
- Use in planning algorithms. Two main approaches are
 1. Translate problem instance into a formula ϕ, find a satisfying assignment v, read the plan from the assignment v.
 = Planning as Satisfiability
 2. Use formulae as a data structure for representing sets of states, algorithm manipulates these data structures.
 e.g. BDD-based planning algorithms, (regression)
Translating operators into formulae

1. First transform operator \(o = \langle z, e \rangle \) into normal form.

2. If an atomic effect \(l \) does not occur in \(e \), add \(\bot \triangleright l \) to \(e \).

3. \(\tau_o \) is the conjunction of \(z \) and

 \[
 ((c \lor (p \land \neg c)) \leftrightarrow p') \land (\neg c \lor \neg c)
 \]

 for every state variable \(p \in P \), with \(c \triangleright p \) and \(\overline{c} \triangleright \neg p \) in \(e \).
Translating operators into formulae: example

Consider operator ⟨A ∨ B, ((B ∨ C) ▷ A) ∧ (¬C ▷ ¬A) ∧ (A ▷ B)⟩.

The corresponding propositional formula is

\[(A ∨ B) \land (((B ∨ C) ∨ (A ∧ ¬¬C)) \leftrightarrow A') \land (¬(B ∨ C) ∨ ¬¬C') \land ((A ∨ (B ∧ ¬⊥)) \leftrightarrow B') \land (¬A ∨ ¬⊥) \land ((⊥ ∨ (C ∧ ¬⊥)) \leftrightarrow C') \land (¬⊥ ∨ ¬⊥) \equiv (A ∨ B) \land (((B ∨ C) ∨ (A ∧ C)) \leftrightarrow A') \land (¬(B ∨ C) ∨ C) \land ((A ∨ B) \leftrightarrow B') \land (C \leftrightarrow C')\]
Planning as satisfiability

1. Encode operator sequences of length 0, 1, 2, ... as formulae $\phi_0, \phi_1, \phi_2, \ldots$
2. Test satisfiability of $\phi_0, \phi_1, \phi_2, \ldots$
3. Satisfiable formula corresponds to a plan.
4. Has been used with the Davis-Putnam procedure and local search algorithms for satisfiability.

This is applied in microprocessor verification / intelligent debugging: Intel, ... (Hot topic in model-checking in CAV!!! Called Bounded Model-Checking.)
Planning as satisfiability: encoding 1

Let $\langle P, I, O, G \rangle$ be a problem instance.

Let $\mathcal{R}_1(B^0, B^1)$ denote $\bigvee_{o \in O} \tau_o$ with $P = \{p_1, \ldots, p_n\}$ and $P' = \{p'_1, \ldots, p'_n\}$ replaced by $B^0 = \{b^0_1, \ldots, b^0_n\}$ and $B^1 = \{b^1_1, \ldots, b^1_n\}$.

Plans of length n are encoded as

$$\iota^0 \land \mathcal{R}_1(P^0, P^1) \land \mathcal{R}_1(P^1, P^2) \land \cdots \land \mathcal{R}_1(P^{n-1}, P^n) \land G^n$$

Here $\iota^0 = \bigwedge \{p^0 | p \in P, I(p) = 1\} \cup \{\neg p^0 | p \in P, I(p) = 0\}$ and G^n is G with propositions p replaced by p^n.
Planning as satisfiability: encoding 1, example

\[I \models A \land B, \quad G = (A \land \neg B) \lor (\neg A \land B), \]
\[o_1 = \langle \top, (A \triangleright \neg A) \land (\neg A \triangleright A) \rangle, \quad o_2 = \langle \top, (B \triangleright \neg B) \land (\neg B \triangleright B) \rangle, \]
plan length 3

\[
\begin{align*}
(A^0 \land B^0) \\
\land (((A^0 \leftrightarrow A^1) \land (B^0 \leftrightarrow \neg B^1)) \lor ((A^0 \leftrightarrow \neg A^1) \land (B^0 \leftrightarrow B^1))) \\
\land (((A^1 \leftrightarrow A^2) \land (B^1 \leftrightarrow \neg B^2)) \lor ((A^1 \leftrightarrow \neg A^2) \land (B^1 \leftrightarrow B^2))) \\
\land (((A^2 \leftrightarrow A^3) \land (B^2 \leftrightarrow \neg B^3)) \lor ((A^2 \leftrightarrow \neg A^3) \land (B^2 \leftrightarrow B^3))) \\
\land ((A^3 \land \neg B^3) \lor (\neg A^3 \land B^3))
\end{align*}
\]
Planning as satisfiability: encoding 1, example

One valuation that satisfies the formula:

<table>
<thead>
<tr>
<th>time i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A^i</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B^i</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

1. There are several valuations/plans
2. Also plans of length 1 exists (just ignore time points 2 and 3!)
3. Plans of length 2 do not exist!
Planning as satisfiability: encoding 1, problems

- Many satisfiability algorithms (D-P) require transforming $\bigvee_{o \in O} \tau_o$ to CNF: this can explode the size of the formula.

 Fix: define $\mathcal{R}_1(P, P')$ as $(\bigwedge_{o \in O}(o \rightarrow \tau_o)) \land \bigvee_{o \in O} o$.

- By using propositional variables for every operator, further improvements are possible:

 Allow parallel/simultaneous application of operators: if operators do not interfere, apply them simultaneously.

 Turn off n lamps: all lamps simultaneously, $n!$ not a problem.
Parallel application of operators: interference

o and o' interfere if $\text{app}_o(\text{app}_{o'}(s)) \neq \text{app}_{o'}(\text{app}_o(s))$ for some s.

- Testing interference is NP-hard (see lecture notes for proof!)

- Poly-time sufficient condition: $\langle p, e \rangle$ and $\langle p', e' \rangle$ interfere if
 - a state variable in e occurs in p',
 - a state variable in e' occurs in p,
 - a state variable in e occurs in e',

In the rest of this lecture we use this definition of interference.
Parallel application of operators: interference, example

first enables the second \(\langle A, B \rangle \) and \(\langle B, C \rangle \)
first disables the second \(\langle A, \neg B \rangle \) and \(\langle B, C \rangle \)
effects are contradictory \(\langle A, \neg B \rangle \) and \(\langle C, B \rangle \)
Planning as satisfiability: encoding 2, explanatory frame axioms in $\mathcal{R}_2(P, P')$

Let $p \in P$ be one of the state variables.

Let c_i be the condition that operator $o_i \in O$ makes p true.
Let $\overline{c_i}$ be the condition that operator $o_i \in O$ makes p false.

(operator o_i in normal form; $c_i \triangleright p$ and $\overline{c_i} \triangleright \neg p$ in the effect; or $p/\neg p$ does not occur in the effect and then $c_i = \bot/\overline{c_i} = \bot$.)

\[
\neg p \land p' \rightarrow \left((o_1 \land c_1) \lor \cdots \lor (o_n \land c_n) \right)
\]
\[
p \land \neg p' \rightarrow \left((o_1 \land \overline{c_1}) \lor \cdots \lor (o_n \land \overline{c_n}) \right)
\]
Planning as satisfiability: $\mathcal{R}_2(P, P')$, effect axioms

\[o_i = \langle z, (c_1 \triangleright p_1) \wedge (\overline{c_1} \triangleright \neg p_1) \wedge \cdots \wedge (c_n \triangleright p_n) \wedge (\overline{c_n} \triangleright \neg p_n) \rangle \in O \]

may affect the state variables as follows.

\[
\begin{align*}
(o_i \land c_1) & \rightarrow p'_1 \\
(o_i \land \overline{c_1}) & \rightarrow \neg p'_1 \\
& \vdots \\
(o_i \land c_n) & \rightarrow p'_n \\
(o_i \land \overline{c_n}) & \rightarrow \neg p'_n \\
o_i & \rightarrow z
\end{align*}
\]
Planning as satisfiability: $\mathcal{R}_2(P, P')$, interference

For every $o_i, o_j \in O$, if o_i and o_j interfere and $i \neq j$, then

$$\neg(o_i \land o_j)$$

is included in $\mathcal{R}_2(P, P')$.
Planning as satisfiability: $\mathcal{R}_2(P, P')$, example

$$o_1 = \langle \neg LAMP_1, LAMP_1 \rangle, \quad o_2 = \langle \neg LAMP_2, LAMP_2 \rangle$$

$$\neg LAMP_1 \land LAMP_1' \rightarrow ((o_1 \land \top) \lor (o_2 \land \bot))$$

$$(LAMP_1 \land \neg LAMP_1') \rightarrow ((o_1 \land \bot) \lor (o_2 \land \bot))$$

$$\neg LAMP_2 \land LAMP_2' \rightarrow ((o_1 \land \bot) \lor (o_2 \land \top))$$

$$LAMP_2 \land \neg LAMP_2' \rightarrow ((o_1 \land \bot) \lor (o_2 \land \bot))$$

$$o_1 \rightarrow LAMP_1'$$

$$o_1 \rightarrow \neg LAMP_1$$

$$o_2 \rightarrow LAMP_2'$$

$$o_2 \rightarrow \neg LAMP_2$$
Planning as satisfiability: encoding 2

Plans of length n are encoded exactly like with $\mathcal{R}_1(P, P')$:

$$\iota^0 \land \mathcal{R}_2(P^0, P^1) \land \mathcal{R}_2(P^1, P^2) \land \cdots \land \mathcal{R}_2(P^{n-1}, P^n) \land G^n$$

Reading the plan from a satisfying assignment ν:

o_i is applied at time point t if and only if $\nu(o_i^t) = 1$.
Planning as satisfiability: invariants

- We can extend both $R_1(P, P')$ and $R_2(P, P')$ by adding invariants ϕ as formulae over P'.

- Invariants do not affect the number of valuations, but they help in inferring the truth-values of the propositions earlier, and thereby speed up satisfiability testing.
Planning as satisfiability: What inferences are made by DP?

The Davis-Putnam procedure:

- The most efficient systematic algorithm for satisfiability testing.

- Unit resolution in each node of the search tree: from p and $\neg p \lor p_1 \lor \cdots \lor p_n$ infer $p_1 \lor \cdots \lor p_n$.

- Branching on propositions without value: one subtree with p and one with $\neg p$.
Planning as satisfiability: example

In the initial state the following are true: clear(C), on(C,B), on(B,A), ontable(A), clear(E), on(E,D), ontable(D) (So there are initially two stacks, CBA and ED.)

The goal: on(A,B) \land on(B,C) \land on(C,D) \land on(D,E)

The Davis-Putnam procedure solves the problem quickly:

- Formulae for plan lengths 1 to 4 shown unsatisfiable by unit resolution.

- Formula for plan length 5 is satisfiable: 3 search tree nodes.
Planning as satisfiability: example

v0.9 13/08/1997 19:32:47
30 propositions 100 operators
Length 1
Length 2
Length 3
Length 4
Length 5
branch on ¬clear(b)[1] depth 0
branch on clear(a)[3] depth 1
Found a plan.
 0 totable(e,d)
 1 totable(c,b) fromtable(d,e)
 2 totable(b,a) fromtable(c,d)
 3 fromtable(b,c)
 4 fromtable(a,b)
Branches 2 last 2 failed 0; time 0.0
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>clear(a)</td>
<td>FF</td>
<td>FFF</td>
<td>TT</td>
</tr>
<tr>
<td>clear(b)</td>
<td>F</td>
<td>F</td>
<td>FF</td>
</tr>
<tr>
<td>clear(c)</td>
<td>TT</td>
<td>FF</td>
<td>TTTFF</td>
</tr>
<tr>
<td>clear(d)</td>
<td>FTTFFF</td>
<td>FTTFFF</td>
<td>FTTFFF</td>
</tr>
<tr>
<td>clear(e)</td>
<td>TTTFFF</td>
<td>TTTFFF</td>
<td>TTTFFF</td>
</tr>
<tr>
<td>on(a,b)</td>
<td>FFF</td>
<td>T</td>
<td>FFFFFT</td>
</tr>
<tr>
<td>on(a,c)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(a,d)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(a,e)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(b,a)</td>
<td>TT</td>
<td>FF</td>
<td>TTTFF</td>
</tr>
<tr>
<td>on(b,c)</td>
<td>FF</td>
<td>TT</td>
<td>FFFTT</td>
</tr>
<tr>
<td>on(b,d)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(b,e)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(c,a)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(c,b)</td>
<td>T</td>
<td>FFF</td>
<td>TT</td>
</tr>
<tr>
<td>on(c,d)</td>
<td>FFFTTT</td>
<td>FFFTTT</td>
<td>FFFTTT</td>
</tr>
<tr>
<td>Event</td>
<td>Condition</td>
<td>Condition</td>
<td>Condition</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>on(c,e)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(d,a)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(d,b)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(d,c)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(d,e)</td>
<td>FFTTTT</td>
<td>FFTTTT</td>
<td>FFTTTT</td>
</tr>
<tr>
<td>on(e,a)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(e,b)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(e,c)</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>on(e,d)</td>
<td>TFFFFFFF</td>
<td>TFFFFFFF</td>
<td>TFFFFFFF</td>
</tr>
<tr>
<td>ontable(a)</td>
<td>TTT F</td>
<td>TTTTTTTF</td>
<td>TTTTTTTF</td>
</tr>
<tr>
<td>ontable(b)</td>
<td>FF FF</td>
<td>FFFFFF</td>
<td>FFFFFF</td>
</tr>
<tr>
<td>ontable(c)</td>
<td>F FFF</td>
<td>FF FFF</td>
<td>FF FFF</td>
</tr>
<tr>
<td>ontable(d)</td>
<td>TFFFFFFF</td>
<td>TFFFFFFF</td>
<td>TFFFFFFF</td>
</tr>
<tr>
<td>ontable(e)</td>
<td>FTTTTTTT</td>
<td>FTTTTTT</td>
<td>FTTTTTT</td>
</tr>
</tbody>
</table>
01234
fromtable(a,b)T
fromtable(b,c) ...T.
fromtable(c,d) ..T..
fromtable(d,e) .T...
totable(b,a) ..T..
totable(c,b) .T...
totable(e,d) T....
Formulae as a representation of sets of states

<table>
<thead>
<tr>
<th>operation on sets</th>
<th>operation on formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \cup B$</td>
<td>$A \lor B$</td>
</tr>
<tr>
<td>$A \cap B$</td>
<td>$A \land B$</td>
</tr>
<tr>
<td>$A \setminus B$</td>
<td>$A \land \neg B$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>question about sets</th>
<th>question about formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \subseteq B?$</td>
<td>$\models A \rightarrow B?$</td>
</tr>
<tr>
<td>$A \subset B?$</td>
<td>$\models A \rightarrow B$ and $\not\models B \rightarrow A$?</td>
</tr>
<tr>
<td>$A = B?$</td>
<td>$\models A \leftrightarrow B?$</td>
</tr>
</tbody>
</table>
Formulae as a representation of sets of states

• Many algorithms for deterministic/nondeterministic planning use formulae as the main data structure.

• Type of formulae that are used has a strong impact on the efficiency.
 1. arbitrary propositional formulae
 2. Boolean circuits (with sharing of subformulae)
 3. formulae in normal form like DNF, CNF, DNNF
 4. binary decision diagrams
Normal forms for propositional formulae

<table>
<thead>
<tr>
<th></th>
<th>\lor</th>
<th>\land</th>
<th>\neg</th>
<th>$\phi \in \text{TAUT?}$</th>
<th>$\phi \in \text{SAT?}$</th>
<th>$\phi \equiv \phi'$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>circuits</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>co-NP-hard</td>
<td>NP-hard</td>
<td>co-NP-hard</td>
</tr>
<tr>
<td>formulae</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>co-NP-hard</td>
<td>NP-hard</td>
<td>co-NP-hard</td>
</tr>
<tr>
<td>DNF</td>
<td>P</td>
<td>exp</td>
<td>exp</td>
<td>co-NP-hard</td>
<td>P</td>
<td>co-NP-hard</td>
</tr>
<tr>
<td>CNF</td>
<td>exp</td>
<td>P</td>
<td>exp</td>
<td>P</td>
<td>NP-hard</td>
<td>co-NP-hard</td>
</tr>
<tr>
<td>DNNF</td>
<td>P</td>
<td>exp</td>
<td>exp</td>
<td>co-NP-hard</td>
<td>P</td>
<td>co-NP-hard</td>
</tr>
<tr>
<td>BDD</td>
<td>exp</td>
<td>exp</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>