Lecture 3

- Normal form for operators
- Definition of the deterministic planning problem
- Progression and regression (forward and backward search)
- Planning by heuristic search algorithms
Equivalences on effects

\[c \triangleright (e_1 \land \cdots \land e_n) \equiv (c \triangleright e_1) \land \cdots \land (c \triangleright e_n) \quad (1) \]

\[c \triangleright (c' \triangleright e) \equiv (c \land c') \triangleright e \quad (2) \]

\[(c_1 \triangleright e) \land (c_2 \triangleright e) \equiv (c_1 \lor c_2) \triangleright e \quad (3) \]

\[e \land (c \triangleright e) \equiv e \quad (4) \]

\[e \equiv \top \triangleright e \quad (5) \]

\[e \equiv \top \land e \quad (6) \]

\[e \land e' \equiv e' \land e \quad (7) \]

\[(e_1 \land e_2) \land e_3 \equiv e_1 \land (e_2 \land e_3) \quad (8) \]
Normal form for operators

DEFINITION: An operator \(\langle c, e \rangle \) is in normal form if for all occurrences of \(c' \triangleright e' \) in \(e \) the effect \(e' \) is either \(p \) or \(\neg p \) for some \(p \in P \), and \(e \) contains at most one of \(l \), \(c \triangleright l \) and \(c' \triangleright l \) for any \(l \), \(c \) and \(c' \).

THEOREM: For every operator there is an equivalent one in normal form.

PROOF: We can transform any operator into normal form by using equivalences 1, 2, 3 and 5.
Normal form for operators: example

\[(A \triangleright (B \land \\
(C \triangleright (\neg D \land E)))\)\land \\
(\neg B \triangleright E)\]

transformed to normal form is

\[(A \triangleright B)\land \\
((A \land C) \triangleright \neg D)\land \\
((\neg B \lor (A \land C)) \triangleright E)\]
Transition systems

- Model the dynamics of the world/system/application.

- Are formalized as \(\langle S, \{a_1, \ldots, a_n\} \rangle \) where
 - \(S \) is a finite set of states,
 - every \(a_i \subseteq S \times S \) is a binary relation on \(S \).

- First we restrict to \(a_i \) that are (partial) functions from \(S \) to \(S \): for every \(s \in S \), \((s, s') \in a_i \) for at most one \(s' \in S \).
Sum matrix $M_R + M_G + R_B$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

We use addition $0 + 0 = 0$ and $b + b' = 1$ if $b = 1$ or $b' = 1$.
Sequential composition as matrix multiplication

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
\times
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
\]

E is reachable from B in two steps, because F is reachable from B in one step and also E is reachable from F in one step.
Reachability

Let M be the matrix that is the (Boolean) sum of the matrices of the individual actions. Define

$$
M_0 = \begin{bmatrix} 1 \end{bmatrix} \quad M_i = M_{i-1} + MM_{i-1} \text{ for all } i \geq 1
$$

where n is the number of states, $I_{n \times n}$ is the unit matrix.

For some $i \in \{1, \ldots, n\}$ and all $j \geq i$, $M_i = M_j$.

Matrix $M_i = M^0 \cup M^1 \cup \cdots \cup M^i$ represents reachability by i actions or less.
Reachability: example, M_R

$$
\begin{array}{ccccccc}
 & A & B & C & D & E & F \\
A & 0 & 1 & 0 & 0 & 0 & 0 \\
B & 0 & 0 & 0 & 0 & 0 & 1 \\
C & 0 & 0 & 1 & 0 & 0 & 0 \\
D & 0 & 0 & 1 & 0 & 0 & 0 \\
E & 0 & 1 & 0 & 0 & 0 & 0 \\
F & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
$$
Reachability: example, $M_R + M_R^2$
Reachability: example, $M_R + M_R^2 + M_R^3$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Reachability: example,

\[M_R + M_R^2 + M_R^3 + I_{6\times6} \]

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Reachability: row vectors are sets of states

Row vectors S represent sets.

SM is the set of states reachable from S by M.

$$
\begin{pmatrix}
1 \\
0 \\
1 \\
0 \\
0
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1
\end{pmatrix} =
\begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix}
\begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}
$$
Definition of planning with 1 initial state, deterministic actions

Let the 4-tuple $\langle P, I, O, G \rangle$ consist of a set P of state variables, an initial state I (a valuation of P), a set O of operators, and a propositional formula G over P.

The problem is to find a sequence o_1, \ldots, o_n of operators so that $\text{app}_{o_n}(\text{app}_{o_{n-1}}(\cdots \text{app}_{o_1}(I) \cdots)) \models G$, that is, when applying the operators o_1, \ldots, o_n in this order starting in the initial state, one of the goal states described by G is reached.
A planning algorithm (not a very good one)

1. $n = 2^{|P|}$ is the number of states.

2. Generate the $n \times n$ matrices M_o for every $o \in O$.

3. Compute the $n \times n$ matrix $M = \sum_{o \in O} M_o$.

4. Compute the i-step matrices M_i.

5. Represent the initial state as the row vector $I_{1 \times n}$.

6. Represent the set of goal states as the row vector $G_{1 \times n}$.
A planning algorithm, cont’d

Let i be the least number such that $I_{1 \times n}^T M_i \cdot G_{1 \times n}^T \cdot G_{1 \times n} > 0$. (If there is no such i, there is no plan.)

Read the plan backwards from the matrices:

1. Start from a goal state s in $I_{1 \times n}^T M_i$.
2. Output $o \in O$ such that s is in $I_{1 \times n}^T M_i \cdot M_o$.
3. Set s to a state from which s can be reached with o and that is in $I_{1 \times n}^T M_{i-1}$.
4. $i := i - 1$;
5. Continue from 2.
A planning algorithm: example

\[
\begin{array}{cccccc}
& A & B & C & D & E & F \\
A & 0 & 1 & 0 & 0 & 0 & 0 \\
B & 0 & 0 & 0 & 0 & 0 & 1 \\
C & 0 & 1 & 1 & 0 & 0 & 1 \\
D & 1 & 0 & 1 & 0 & 1 & 0 \\
E & 0 & 1 & 0 & 1 & 0 & 0 \\
F & 1 & 0 & 0 & 0 & 1 & 0
\end{array}
\]
A planning algorithm: example, cont’d

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$M_0 = \begin{bmatrix}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$M_1 = \begin{bmatrix}1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$

$M_2 = \begin{bmatrix}1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$M_3 = \begin{bmatrix}1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$

$M_4 = \begin{bmatrix}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$

$M_5 = \begin{bmatrix}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$

Shortest plan for reaching C from A: A red B red F red E green D red C.
Progression

- Progression is computing the successor state $a_p(o)(s)$ of s with respect to o.

- Used in *forward search* in a transition system: from the initial state toward the goal states.

- Efficient to implement.

- Only for deterministic planning: *nondeterministic operators* may produce a *set of states* from one state.
Search algorithms 1: Search with progression

depth-first search, breadth-first search, iterative deepening

More sophisticated search algorithms follow in a moment...
Regression

- The formula $\text{regr}_o(\phi)$ represents the set of states from which a state in ϕ is reached by operator o.

- Used in *backward search* in a transition system: from the goal states toward the initial states.

- Regression is powerful because it allows handling huge sets of states (progression: only one state at a time.)

- Handling formulae is more complicated than handling states: many questions about regression are NP-hard.
Regression: definition

Let ϕ be a propositional formula describing a set of states.

Let $\langle z, e \rangle$ be an operator in normal form.

First, unconditional effects l are replaced by $\top \triangleright l$.

Let $c_1 \triangleright p_1, \overline{c}_1 \triangleright \neg p_1, \ldots, c_n \triangleright p_n, \overline{c}_n \triangleright \neg p_n$ be the conjuncts of e.

For literals p_i and $\neg p_i$ that do not occur in e as an effect, we define $c_i = \bot$ and $\overline{c}_i = \bot$, respectively.
Regression: definition, cont’d

Regression of ϕ w.r.t. $o = \langle z, e \rangle$ is $\text{regr}_o(\phi) = \phi_o \land z \land f$ where

- ϕ_o is like ϕ but every p_i replaced by $(p_i \land \neg c_i) \lor c_i$, and

- f is conjunction of formulae $\neg (c_i \land \bar{c}_i)$ for all p_i that occur in e both as p_i and as $\neg p_i$.

$(p_i \land \neg \bar{c}_i) \lor c_i$ means: either p_i was true before and did not become false (because of $\bar{c}_i \Rightarrow \neg p_i$) or p_i became true (because of $c_i \Rightarrow p_i$).

$\neg (c_i \land \bar{c}_i)$ means: for $(c_i \Rightarrow p) \land (\bar{c}_i \Rightarrow \neg p)$ one of c_i and \bar{c}_i is false.
Regression: correctness

LEMMA: Let ϕ be a formula over P. Let s and s' be states over P so that $s' = \text{app}_o(s)$. Then $s \models \text{regr}_o(\phi)$ if and only if $s' \models \phi$.

PROOF: This is a consequence of the fact that for every $p \in P$ the formula $(p \land \neg c) \lor c$ has in the predecessor state the same truth-value as p in the successor state. Because $\text{regr}_o(\phi)$ is obtained from ϕ by replacing the latter formulae by the former, the truth-value of $\text{regr}_o(\phi)$ in s equals the truth-value of ϕ in s'. This can be shown by a structural induction over ϕ. Q.E.D.
Regression: examples

\[\text{regr}_{\langle a,b \rangle}(b) = (((b \land \neg \bot) \lor \top) \land a) \equiv a \]

\[\text{regr}_{\langle a,b \rangle}(b \land c \land d) = (((b \land \neg \bot) \lor \top) \land ((c \land \neg \bot) \lor \bot) \land ((d \land \neg \bot) \lor \bot) \land a) \equiv c \land d \land a \]

\[\text{regr}_{\langle a,c \bowtie b \rangle}(b) = (((b \land \neg \bot) \lor c) \land a) \equiv (b \lor c) \land a \]

\[\text{regr}_{\langle a,(c \bowtie b) \land (b \bowtie \neg b) \rangle}(b) = (((b \land \neg b) \lor c) \land a \land \neg (c \land b)) \equiv c \land a \land \neg b \]

\[\text{regr}_{\langle a,(c \bowtie b) \land (d \bowtie \neg b) \rangle}(b) = (((b \land \neg d) \lor c) \land a \land \neg (c \land d)) \equiv (b \lor c) \land (\neg d \lor c) \land a \land (\neg c \lor d) \]
Regression: problems

1. \(\text{regr}_{\langle a, \neg p \rangle}(p) = a \land \bot \equiv \bot \): the new set of states is empty.
 Testing that a formula \(\text{regr}_o(\phi) \) does not represent the empty set (= search is in a blind alley) is NP-hard.

2. \(\text{regr}_{\langle b, c \rangle}(a) = a \land b \): the new set of states is properly smaller.
 Testing that a regression step does not make the set of states smaller (= more difficult to reach) is NP-hard.

These tests would be useful in pruning the search space.
Search algorithms: Planning by heuristic search algorithms

Heuristic search algorithms use a heuristic (= an estimate on the value of the current search state) to guide search in the search space.

Search states with progression: the initial state s_I, states

Search states with regression: the goal formula ϕ_G, formulas
Search algorithms: Heuristic evaluation of states

In the next lecture we will describe how the distance (= number of operators) between a state and a set of states can be estimated. Both backward and forward search can use these estimates.

Forward: Distance between the current state and the goals.
Backward: Distance between the initial state and the current goal.
Search algorithms: systematic, local

Systematic algorithms:

- Keep track of all the states already visited.
- Memory consumption may be high.
- Always find a plan if one exists.
- depth-first, breadth-first, best-first, A*, IDA*, WA*, ...
Search algorithms: systematic, local

Local search algorithms:

- Keep track of only one search state at a time.
- Succeed with a high probability (given enough time).
- Cannot determine that no plans exist.
- Local minima may be a problem.
- hill-climbing, simulated annealing, tabu search, ...