5.4 Description Logics – Reasoning Services and Reductions

Bernhard Nebel

- Motivation
- TBox Services
- Normalizing and Unfolding
- ABox Services
- Outlook
Example TBox & ABox

Male $\equiv \neg$Female
Human \sqsubseteq Living_entity
Woman \equiv Human \sqcap Female
Man \equiv Human \sqcap Male
Mother \equiv Woman \sqcap \existshas-child.Human
Father \equiv Man \sqcap \existshas-child.Human
Parent \equiv Father \sqcup Mother
Grandmother
 \equiv Woman \sqcap \existshas-child.Parent
Mother-without-daughter
 \equiv Mother \sqcap \forallhas-child.Male
Mother-with-many-children
 \equiv Mother \sqcap (\geq 3 has-child)
Example TBox & ABox

```
Male ≡ ¬Female

Human ⊑ Living_entity

Woman ≡ Human ⊓ Female

   Man ≡ Human ⊓ Male

   Mother ⊑ Woman ⊓ ∃has-child.Human

   Father ⊑ Man ⊓ ∃has-child.Human

Parent ≡ Father ⊔ Mother

   Grandmother ⊑ Woman ⊓ ∃has-child.Parent

   Mother-without-daughter ⊑ Woman ⊓ ∀has-child.Male

   Mother-with-many-children ⊑ Mother ⊓ (∃≥3has-child)

DIANA: Woman
ELIZABETH: Woman
CHARLES: Man
EDWARD: Man
ANDREW: Man

DIANA: Mother-without-daughter
(ELIZABETH, CHARLES): has-child
(ELIZABETH, EDWARD): has-child
(ELIZABETH, ANDREW): has-child
(DIANA, WILLIAM): has-child
(CHARLES, WILLIAM): has-child
```
Motivation: Reasoning Services

- What do we want to know?
Motivation: Reasoning Services

- What do we want to know?
- We want to check whether the knowledge base is reasonable
Motivation: Reasoning Services

- What do we want to know?
- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
Motivation: Reasoning Services

- What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
Motivation: Reasoning Services

- What do we want to know?
- We want to check whether the *knowledge base* is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
Motivation: Reasoning Services

• What do we want to know?

• We want to check whether the knowledge base is reasonable:
 ○ Is each defined concept in a TBox satisfiable?
 ○ Is a given TBox satisfiable?
 ○ Is a given ABox satisfiable?

• What can we conclude from the represented knowledge?
Motivation: Reasoning Services

• What do we want to know?

• We want to check whether the knowledge base is reasonable:
 ○ Is each defined concept in a TBox satisfiable?
 ○ Is a given TBox satisfiable?
 ○ Is a given ABox satisfiable?

• What can we conclude from the represented knowledge?
 ○ Is concept X subsumed by concept Y?
Motivation: Reasoning Services

- What do we want to know?

- We want to check whether the *knowledge base* is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we *conclude* from the represented knowledge?
 - Is concept \(X \) *subsumed* by concept \(Y \)?
 - Is an object an *instance* of a concept \(X \)?
Motivation: Reasoning Services

- What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?

\Downarrow These problems can be reduced to logical satisfiability or implication – using the logical semantics.
Motivation: Reasoning Services

- What do we want to know?
- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?

\Rightarrow These problems can be reduced to logical satisfiability or implication – using the logical semantics.

\rightarrow We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Satisfiability of Concept Descriptions in a TBox

- **Motivation**: Given a TBox \mathcal{T} and a concept description C, does C make sense, i.e., is C satisfiable?
Satisfiability of Concept Descriptions in a TBox

- **Motivation**: Given a TBox T and a concept description C, does C make sense, i.e., is C *satisfiable*?

- **Test**:
 - Does there exists a *model* I of T such that $C^I \neq \emptyset$?
Satisfiability of Concept Descriptions in a TBox

• **Motivation**: Given a TBox \mathcal{T} and a concept description C, does C make sense, i.e., is C satisfiable?

• **Test**:
 - Does there exists a *model* \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?
 - Is the formula $\exists x: C(x)$ together with the formulas resulting from the translation of \mathcal{T} satisfiable?
Satisfiability of Concept Descriptions in a TBox

- **Motivation**: Given a TBox T and a concept description C, does C make sense, i.e., is C satisfiable?

- **Test**:
 - Does there exists a *model* I of T such that $C^I \neq \emptyset$?
 - Is the formula $\exists x : C(x)$ together with the formulas resulting from the translation of T satisfiable?

- **Example**: $\text{Mother-without-daughter} \sqcap \forall \text{has-child}. \text{Female}$ is unsatisfiable.
Satisfiability of Concept Descriptions (without a TBox)

• **Motivation**: Given a concept description C in “isolation”, i.e., in an *empty TBox*, does C make sense, i.e., is C *satisfiable*?
Satisfiability of Concept Descriptions (without a TBox)

- **Motivation**: Given a concept description C in “isolation”, i.e., in an empty $TBox$, does C make sense, i.e., is C satisfiable?

- **Test**:
 - Does there exists an interpretation \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$?
Satisfiability of Concept Descriptions (without a TBox)

• **Motivation**: Given a concept description \(C \) in “isolation”, i.e., in an empty \(TBox \), does \(C \) make sense, i.e., is \(C \) satisfiable?

• **Test**:
 - Does there exist an *interpretation* \(\mathcal{I} \) such that \(C^{\mathcal{I}} \neq \emptyset \)?
 - Is the formula \(\exists x : C(x) \) satisfiable?
Satisfiability of Concept Descriptions (without a TBox)

- **Motivation**: Given a concept description C in “isolation”, i.e., in an empty TBox, does C make sense, i.e., is C satisfiable?

- **Test**:
 - Does there exists an interpretation \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$?
 - Is the formula $\exists x: C(x)$ satisfiable?

- **Example**: $\text{Woman} \sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child})$ is unsatisfiable.
Reduction: Getting Rid of the TBox

• We can **reduce** satisfiability in a TBox to simple satisfiability.
Reduction: Getting Rid of the TBox

- We can **reduce** satisfiability in a TBox to simple satisfiability.
- **Idea:**
 - Since TBoxes are *cycle-free*, one can understand a concept definition as a kind of “macro”
 Reduction: Getting Rid of the TBox

• We can **reduce** satisfiability in a TBox to simple satisfiability.

• **Idea:**
 ○ Since TBoxes are *cycle-free*, one can understand a concept definition as a kind of “macro”
 ○ For a given TBox \mathcal{T} and a given concept description \mathcal{C}, all defined concept symbols appearing in \mathcal{C} can be **expanded** until \mathcal{C} contains only undefined concept symbols
We can **reduce** satisfiability in a TBox to simple satisfiability.

Idea:

- Since TBoxes are **cycle-free**, one can understand a concept definition as a kind of “macro”
- For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be **expanded** until C contains only undefined concept symbols
- An **expanded** concept description is then satisfiable iff C is satisfiable in \mathcal{T}
Reduction: Getting Rid of the TBox

- We can **reduce** satisfiability in a TBox to simple satisfiability.

 - **Idea:**
 - Since TBoxes are *cycle-free*, one can understand a concept definition as a kind of “macro”
 - For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be **expanded** until C contains only undefined concept symbols
 - An **expanded** concept description is then satisfiable iff C is satisfiable in \mathcal{T}
 - **Problem:** What do we do with partial definitions (using \sqsubseteq)?
Normalized Terminologies

• A terminology is called **normalized** when it does not contain definitions using ⊑.
A terminology is called **normalized** when it does not contain definitions using \sqsubseteq.

In order to **normalize** a terminology, replace

$$A \sqsubseteq C$$

by

$$A \doteq A^* \sqcap C,$$

where A^* is a **fresh** concept symbol (not appearing elsewhere in T).
Normalized Terminologies

• A terminology is called **normalized** when it does not contain definitions using \sqsubseteq.

• In order to **normalize** a terminology, replace

$$A \sqsubseteq C$$

by

$$A \equiv A^* \sqcap C,$$

where A^* is a **fresh** concept symbol (not appearing elsewhere in T).

• If T is a terminology, the normalized terminology is denoted by \tilde{T}.
Normalizing is Reasonable

Theorem. If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ (and *vice versa*) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^\mathcal{I'}.$$
Normalizing is Reasonable

Theorem. If I is a model of the terminology \mathcal{T}, then there exists a model I' of $\tilde{\mathcal{T}}$ (and *vice versa*) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^I = A^{I'}.$$

Proof. “\Rightarrow”: Let I be a model of \mathcal{T}.
Normalizing is Reasonable

Theorem. If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ (and *vice versa*) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^\mathcal{I}'.$$

Proof. “⇒”: Let \mathcal{I} be a model of \mathcal{T}. This model should be *extended* to \mathcal{I}' so that the freshly introduced concept symbols also get extensions.
Normalizing is Reasonable

Theorem. If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ (and *vice versa*) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^{\mathcal{I}'}.$$

Proof. “\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}. This model should be *extended* to \mathcal{I}' so that the freshly introduced concept symbols also get extensions. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \models A^* \sqcap C) \in \tilde{\mathcal{T}}$.

Normalizing is Reasonable

Theorem. If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ (and vice versa) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^{\mathcal{I}'}.$$

Proof. “⇒”: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get extensions. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \cong A^* \sqcap C) \in \tilde{\mathcal{T}}$. Then set $A^{\mathcal{I}'} = A^\mathcal{I}$.
Normalizing is Reasonable

Theorem. If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ (and vice versa) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^{\mathcal{I}'}.$$

Proof. “\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get extensions. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \equiv A^* \sqcap C) \in \tilde{\mathcal{T}}$. Then set $A^{\mathcal{I}'} = A^\mathcal{I}$. \mathcal{I}' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.
Normalizing is Reasonable

Theorem. If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ (and vice versa) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^{\mathcal{I}} = A^{\mathcal{I}'}.$$

Proof. “\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get extensions. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \models A^* \sqcap C) \in \tilde{\mathcal{T}}$. Then set $A^{*\mathcal{I}'} = A^{\mathcal{I}}$. \mathcal{I}' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

\Leftarrow Given a model \mathcal{I}' of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we looked for.
TBox Unfolding

• We say that a normalized TBox is unfolded by one step when all defined concept symbols on the right sides are replaced by their defining terms.
• We say that a \textit{normalized TBox} is \textbf{unfolded by one step} when all defined concept symbols on the right sides are replaced by their defining terms.

• \textbf{Example}: \textit{Mother} \text{\texttt{\textasciitilde}} \text{\textit{Woman}} \sqcap \ldots \text{\textit{is unfolded to}}
\begin{align*}
\text{Mother} & \text{\texttt{\textasciitilde}} (\text{\textit{Human}} \sqcap \text{\textit{Female}}) \sqcap \ldots
\end{align*}
TBox Unfolding

• We say that a normalized TBox is **unfolded by one step** when all defined concept symbols on the right sides are replaced by their defining terms.

• **Example:** Mother \doteq Woman $\sqcap \ldots$ is unfolded to

 Mother $\doteq (\text{Human} \sqcap \text{Female}) \sqcap \ldots$

• We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an n-step unfolding.
We say that a normalized TBox is **unfolded by one step** when all defined concept symbols on the right sides are replaced by their defining terms.

Example: $\text{Mother} \triangleq \text{Woman} \sqcap \ldots$ is unfolded to
$\text{Mother} \triangleq (\text{Human} \sqcap \text{Female}) \sqcap \ldots$

- We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an *n-step unfolding*.

- We say \mathcal{T} is **unfolded** if $U(\mathcal{T}) = \mathcal{T}$.
TBox Unfolding

• We say that a normalized TBox is **unfolded by one step** when all defined concept symbols on the right sides are replaced by their defining terms.

• **Example**: Mother ≡ Woman □ ... is unfolded to

 Mother ≡ (Human □ Female) □ ...

• We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an n-step unfolding.

• We say T is **unfolded** if $U(T) = T$.

• We say that $U^n(T)$ is the **unfolding** of T if $U^n(T) = U^{n+1}(T)$. If such an unfolding exists, it is denoted by \hat{T}.
Properties of Unfoldings

Theorem. For each normalized terminology \mathcal{T}, there exists its unfolding $\hat{\mathcal{T}}$.
Properties of Unfoldings

Theorem. For each normalized terminology \mathcal{T}, there exists its unfolding $\hat{\mathcal{T}}$.

Proof Idea. The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.
Properties of Unfoldings

Theorem. For each normalized terminology \mathcal{T}, there exists its unfolding $\hat{\mathcal{T}}$.

Proof Idea. The main reason is that terminologies have to be *cycle-free*. The proof can be done by induction of the *definition depth* of concepts.

Theorem. \mathcal{I} is a model of a normalized terminology \mathcal{T} iff it is a model of $\hat{\mathcal{T}}$.
Properties of Unfoldings

Theorem. For each normalized terminology \mathcal{T}, there exists its unfolding $\hat{\mathcal{T}}$.

Proof Idea. The main reason is that terminologies have to be *cycle-free*. The proof can be done by induction of the *definition depth* of concepts.

Theorem. \mathcal{I} is a model of a normalized terminology \mathcal{T} iff it is a model of $\hat{\mathcal{T}}$.

Proof. “\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}.
Properties of Unfoldings

Theorem. For each normalized terminology \mathcal{T}, there exists its unfolding $\hat{\mathcal{T}}$.

Proof Idea. The main reason is that terminologies have to be *cycle-free*. The proof can be done by induction of the *definition depth* of concepts.

Theorem. \mathcal{I} is a model of a normalized terminology \mathcal{T} iff it is a model of $\hat{\mathcal{T}}$.

Proof. “\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}. Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted.
Properties of Unfoldings

Theorem. For each normalized terminology \mathcal{T}, there exists its unfolding $\hat{\mathcal{T}}$.

Proof Idea. The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.

Theorem. \mathcal{I} is a model of a normalized terminology \mathcal{T} iff it is a model of $\hat{\mathcal{T}}$.

Proof. “\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}. Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\hat{\mathcal{T}}$.

Properties of Unfoldings

Theorem. For each normalized terminology \mathcal{T}, there exists its unfolding $\widehat{\mathcal{T}}$.

Proof Idea. The main reason is that terminologies have to be *cycle-free*. The proof can be done by induction of the *definition depth* of concepts.

Theorem. \mathcal{I} is a model of a normalized terminology \mathcal{T} iff it is a model of $\widehat{\mathcal{T}}$.

Proof. “\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}. Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\widehat{\mathcal{T}}$.

“\Leftarrow”: Let \mathcal{I} be a model for $U(\mathcal{T})$.
Properties of Unfoldings

Theorem. For each normalized terminology \mathcal{T}, there exists its unfolding \hat{T}.

Proof Idea. The main reason is that terminologies have to be *cycle-free*. The proof can be done by induction of the *definition depth* of concepts.

Theorem. \mathcal{I} is a model of a normalized terminology \mathcal{T} iff it is a model of \hat{T}.

Proof. “\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}. Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \hat{T}.

“\Leftarrow”: Let \mathcal{I} be a model for $U(\mathcal{T})$. Clearly, this is also a model of \mathcal{T} (with the same argument as above).
Properties of Unfoldings

Theorem. For each normalized terminology \mathcal{T}, there exists its unfolding $\hat{\mathcal{T}}$.

Proof Idea. The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.

Theorem. \mathcal{I} is a model of a normalized terminology \mathcal{T} iff it is a model of $\hat{\mathcal{T}}$.

Proof. “\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}. Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\hat{\mathcal{T}}$.

“\Leftarrow”: Let \mathcal{I} be a model for $U(\mathcal{T})$. Clearly, this is also a model of \mathcal{T} (with the same argument as above). This means that any model $\hat{\mathcal{T}}$ is also a model of \mathcal{T}.
Generating Models

- All concept and role names *not appearing on the left hand side* in a terminology \mathcal{T} are called *primitive components*.
Generating Models

• All concept and role names *not appearing on the left hand side* in a terminology \mathcal{T} are called **primitive components**.

• Interpretations restricted to primitive components are called **initial interpretations**.
Generating Models

• All concept and role names *not appearing on the left hand side* in a terminology \(\mathcal{T} \) are called *primitive components*.

• Interpretations restricted to primitive components are called *initial interpretations*.

Theorem. For each initial interpretation \(\mathcal{J} \) of a normalized TBox, there exists a unique interpretation \(\mathcal{I} \) extending \(\mathcal{J} \) and satisfying \(\mathcal{T} \).
Generating Models

- All concept and role names *not appearing on the left hand side* in a terminology \mathcal{T} are called **primitive components**.

- Interpretations restricted to primitive components are called **initial interpretations**.

Theorem. For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T}.

Proof Idea. Use $\hat{\mathcal{T}}$ and compute ab interpretation for all defined symbols.
Generating Models

- All concept and role names not appearing on the left hand side in a terminology \mathcal{T} are called primitive components.

- Interpretations restricted to primitive components are called initial interpretations.

Theorem. For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T}.

Proof Idea. Use $\hat{\mathcal{T}}$ and compute ab interpretation for all defined symbols.

Corollary. Each TBox has at least one model.
Unfolding of Concept Descriptions

• Similar to the unfolding of TBoxes, we can define **unfolding of concept descriptions**.
Unfolding of Concept Descriptions

• Similar to the unfolding of TBoxes, we can define **unfolding of concept descriptions**.

• We write \hat{C} for the **unfolded version** of C.
Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define **unfolding of concept descriptions**.
- We write \hat{C} for the **unfolded version** of C.

Theorem. An concept description C is satisfiable in a terminology T iff \hat{C} satisfiable in an empty terminology.
Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define unfolding of concept descriptions.

- We write \(\hat{C} \) for the unfolded version of \(C \).

Theorem. An concept description \(C \) is satisfiable in a terminology \(T \) iff \(\hat{C} \) satisfiable in an empty terminology.

Proof. “\(\Rightarrow \)”: trivial.
Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define unfolding of concept descriptions.
- We write \hat{C} for the unfolded version of C.

Theorem. An concept description C is satisfiable in a terminology T iff \hat{C} is satisfiable in an empty terminology.

Proof. “\Rightarrow”: trivial.

“\Leftarrow”: Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T.

Unfolding of Concept Descriptions

• Similar to the unfolding of TBoxes, we can define unfolding of concept descriptions.

• We write \(\hat{C} \) for the unfolded version of \(C \).

Theorem. An concept description \(C \) is satisfiable in a terminology \(\mathcal{T} \) iff \(\hat{C} \) satisfiable in an empty terminology.

Proof. “\(\Rightarrow \)” trivial.

“\(\Leftarrow \)” : Use the interpretation for all the symbols in \(\hat{C} \) to generate an initial interpretation of \(\mathcal{T} \). Then extend it to a full model \(\mathcal{I} \) of \(\mathcal{T} \).
Unfolding of Concept Descriptions

• Similar to the unfolding of TBoxes, we can define unfolding of concept descriptions.

• We write \(\hat{C} \) for the unfolded version of \(C \).

Theorem. An concept description \(C \) is satisfiable in a terminology \(T \) iff \(\hat{C} \) satisfiable in an empty terminology.

Proof. “\(\Rightarrow \)” trivial.

“\(\Leftarrow \)” Use the interpretation for all the symbols in \(\hat{C} \) to generate an initial interpretation of \(T \). Then extend it to a full model \(I \) of \(T \). This satisfies \(T \) as well as \(\hat{C} \). Since \(\hat{C}^I = C^I \), it satisfies also \(C \).
Subsumption in a TBox

• **Motivation**: Given a terminology \mathcal{T} and two concept descriptions C and D, is C a *subsumed by* (or a *sub-concept of*) D in \mathcal{T} ($C \sqsubseteq_{\mathcal{T}} D$)?
Subsumption in a TBox

- **Motivation:** Given a terminology \mathcal{T} and two concept descriptions C and D, is C a *subsumed by* (or a *sub-concept* of) D in \mathcal{T} ($C \sqsubseteq_{\mathcal{T}} D$)?

- **Test:**
 - Is C interpreted as a subset of D for all models \mathcal{I} of \mathcal{T} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
Subsumption in a TBox

- **Motivation**: Given a terminology \mathcal{T} and two concept descriptions C and D, is C a subsumed by (or a sub-concept of) D in \mathcal{T} ($C \sqsubseteq_T D$)?

- **Test**:
 - Is C interpreted as a subset of D for all models \mathcal{I} of \mathcal{T} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} to predicate logic?
Subsumption in a TBox

- **Motivation**: Given a terminology \mathcal{T} and two concept descriptions C and D, is C a subsumed by (or a sub-concept of) D in \mathcal{T} ($C \sqsubseteq_\mathcal{T} D$)?

- **Test**:
 - Is C interpreted as a subset of D for all models \mathcal{I} of \mathcal{T} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} to predicate logic?

- **Example**: Grandmother $\sqsubseteq_\mathcal{T}$ Mother
Subsumption
(Without a TBox)

- **Motivation**: Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an *empty TBox*), written $C \sqsubseteq D$?
Subsumption
(Without a TBox)

- **Motivation**: Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox), written $C \subseteq D$?

- **Test**:
 - Is C interpreted as a subset of D for all interpretations \mathcal{I} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
Subsumption
(Without a TBox)

- **Motivation**: Given two concept descriptions C and D, is C *subsumed by* D regardless of a TBox (or in an *empty TBox*), written $C \subseteq D$?

- **Test**:

 - Is C interpreted as a subset of D for *all interpretations* \mathcal{I} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?

 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ *logically valid*?
Subsumption (Without a TBox)

- **Motivation**: Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox), written $C \sqsubseteq D$?

- **Test**:
 - Is C interpreted as a subset of D for all interpretations \mathcal{I} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ logically valid?

- **Example**: $\text{Human} \cap \text{Female} \sqsubseteq \text{Human}$
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox

\[\leadsto \text{Normalize} \text{ and } \text{unfold} \text{ TBox and concept descriptions.} \]
Reductions

• Subsumption in a TBox can be reduced to subsumption in the empty TBox

\leadsto *Normalize* and *unfold* TBox and concept descriptions.

• Subsumption in the empty TBox can be reduced to unsatisfiability
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox

\[\sim \text{ Normalize and unfold TBox and concept descriptions.} \]

- Subsumption in the empty TBox can be reduced to unsatisfiability

\[\sim \text{ } C \subseteq D \text{ iff } C \sqcap \neg D \text{ is unsatisfiable} \]
Reductions

• Subsumption in a TBox can be reduced to subsumption in the empty TBox

\[\sim \textit{Normalize} \text{ and } \textit{unfold} \text{ TBox and concept descriptions.} \]

• Subsumption in the empty TBox can be reduced to unsatisfiability

\[\sim C \sqsubseteq D \text{ iff } C \sqcap \neg D \text{ is unsatisfiable} \]

• Unsatisfiability can be reduced to subsumption
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox

 \[\sim \text{Normalize and unfold TBox and concept descriptions.} \]

- Subsumption in the empty TBox can be reduced to unsatisfiability

 \[\sim C \sqsubseteq D \text{ iff } C \sqcap \neg D \text{ is unsatisfiable} \]

- Unsatisfiability can be reduced to subsumption

 \[\sim C \text{ is unsatisfiable iff } C \sqsubseteq (C \sqcap \neg C) \]
Classification

- **Motivation**: Compute all subsumption relationships (and represent them using only a minimal number of relationships)
Classification

- **Motivation**: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to
 - check the modeling – does the terminology make sense?
Classification

- **Motivation**: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to
 - check the modeling – does the terminology make sense?
 - use the precomputed relations later when subsumption queries have to be answered
Classification

- **Motivation**: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to
 - check the modeling – does the terminology make sense?
 - use the precomputed relations later when subsumption queries have to be answered
 - reduce to subsumption
Classification

- **Motivation**: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to
 - check the modeling – does the terminology make sense?
 - use the precomputed relations later when subsumption queries have to be answered
 - reduce to subsumption
 - it is a *generalized sorting* problem!
Classification

- **Motivation**: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to
 - check the modeling – does the terminology make sense?
 - use the precomputed relations later when subsumption queries have to be answered

\[\rightsquigarrow \text{ reduce to subsumption} \]

\[\rightarrow \text{ it is a generalized sorting problem!} \]
ABox Satisfiability

- **Motivation**: An ABox should *model* the real world, i.e., it should have a *model*.
ABox Satisfiability

- **Motivation**: An ABox should *model* the real world, i.e., it should have a *model*.

- **Test**: Check for a model
ABox Satisfiability

- **Motivation**: An ABox should model the real world, i.e., it should have a model.
- **Test**: Check for a model
- **Example**:

 \[
 X : (\forall r. \neg C) \\
 Y : C \\
 (X, Y) : r
 \]

 is not satisfiable.
ABox Satisfiability in a TBox

- **Motivation**: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?
ABox Satisfiability in a TBox

- **Motivation**: Is a given ABox A compatible with the terminology introduced in T?

- **Test**: Is $T \cup A$ satisfiable?
ABox Satisfiability in a TBox

- **Motivation**: Is a given ABox A compatible with the terminology introduced in T?

- **Test**: Is $T \cup A$ satisfiable?

- **Example**: If we extend our example with

 MARGRET: Woman
 (DIANA, MARGRET): has-child,

 then the ABox becomes unsatisfiable in the given TBox.
ABox Satisfiability in a TBox

- **Motivation**: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?

- **Test**: Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?

- **Example**: If we extend our example with

 MARGRET: Woman
 (DIANA,MARGRET): has-child,

then the ABox becomes unsatisfiable in the given TBox.

- **Reduction**:
 - to satisfiability of an ABox
ABox Satisfiability in a TBox

- **Motivation**: Is a given ABox A compatible with the terminology introduced in T?

- **Test**: Is $T \cup A$ satisfiable?

- **Example**: If we extend our example with

 MARGRET: Woman

 (DIANA,MARGRET): has-child,

 then the ABox becomes unsatisfiable in the given TBox.

- **Reduction**:

 - to satisfiability of an ABox

 \leadsto **Normalize** terminology, then **unfold** all concept and role descriptions in the ABox
Instance Relations

- **Motivation**: Which additional ABox formulas of the form $a: C$ follow logically from a given ABox and TBox?
Instance Relations

- **Motivation**: Which additional ABox formulas of the form $a: C$ follow logically from a given ABox and TBox?

- **Test**:
 - Is $a^I \in C^I$ true in all models of \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
Instance Relations

- **Motivation**: Which additional ABox formulas of the form $a : C$ follow logically from a given ABox and TBox?

- **Test**:
 - Is $a^\mathcal{I} \in C^\mathcal{I}$ true in all models of \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
 - Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?
Instance Relations

- **Motivation**: Which additional ABox formulas of the form $a : C$ follow logically from a given ABox and TBox?

- **Test**:
 - Is $a^\mathcal{I} \in C^\mathcal{I}$ true in all models of \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
 - Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

- **Reductions**:
 - Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
Instance Relations

- **Motivation**: Which additional ABox formulas of the form $a:C$ follow logically from a given ABox and TBox?

- **Test**:
 - Is $a^I \in C^I$ true in all models of I of $T \cup A$?
 - Does the formula $C(a)$ logically follow from the translation of A and T to predicate logic?

- **Reductions**:
 - Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.

 \rightsquigarrow Use *normalization* and *unfolding*
Instance Relations

- **Motivation**: Which additional ABox formulas of the form $a:C$ follow logically from a given ABox and TBox?

- **Test**:
 - Is $a^I \in C^I$ true in all models of \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
 - Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

- **Reductions**:
 - Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
 - Use *normalization* and *unfolding*
 - Instance relations in an ABox can be reduced to ABox unsatisfiability:

 $$a: C \text{ holds in } \mathcal{A} \iff \mathcal{A} \cup \{a: \neg C\} \text{ is unsatisfiable}$$
Examples

• ELIZABETH: Mother-with-many-children?
Examples

• ELIZABETH: Mother-with-many-children?

AINER yes
Examples

• ELIZABETH: Mother-with-many-children?

∽ yes

• WILLIAM: ¬ Female?
Examples

• ELIZABETH: Mother-with-many-children?
 \[\rightarrow yes\]

• WILLIAM: \neg Female?
 \[\rightarrow yes\]
Examples

• ELIZABETH: Mother-with-many-children?

⇒ yes

• WILLIAM: ¬ Female?

⇒ yes

• ELIZABETH: Mother-without-daughter?
Examples

• ELIZABETH: Mother-with-many-children?
 \(\rightarrow\) yes

• WILLIAM: \(\rightarrow\) Female?
 \(\rightarrow\) yes

• ELIZABETH: Mother-without-daughter?
 \(\rightarrow\) no (no CWA!)
Examples

- **ELIZABETH**: Mother-with-many-children?
 - yes
- **WILLIAM**: ¬ Female?
 - yes
- **ELIZABETH**: Mother-without-daughter?
 - no (no CWA!)
- **ELIZABETH**: Grandmother?
Examples

- ELIZABETH: Mother-with-many-children?
 - yes

- WILLIAM: ¬ Female?
 - yes

- ELIZABETH: Mother-without-daughter?
 - no (no CWA!)

- ELIZABETH: Grandmother?
 - no (only male, but not necessarily human!)
Realization

Idea: For a given object a, determine the **most specialized concept symbols** such that a is an instance of these concepts
• **Idea**: For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts

• **Motivation**:
 - Similar to *classification*
Realization

- **Idea:** For a given object a, determine the **most specialized concept symbols** such that a is an instance of these concepts

- **Motivation:**
 - Similar to *classification*
 - Is the minimal representation of the instance relations (in the set of concept symbols)
Realization

- **Idea**: For a given object a, determine the **most specialized concept symbols** such that a is an instance of these concepts

- **Motivation**:
 - Similar to *classification*
 - Is the minimal representation of the instance relations (in the set of concept symbols)
 - Will give us faster answers for instance queries!
Realization

• **Idea**: For a given object a, determine the **most specialized concept symbols** such that a is an instance of these concepts

• **Motivation**:
 ○ Similar to *classification*
 ○ Is the minimal representation of the instance relations (in the set of concept symbols)
 ○ Will give us faster answers for instance queries!

• **Reduction**
Realization

- **Idea**: For a given object \(a \), determine the most specialized concept symbols such that \(a \) is an instance of these concepts

- **Motivation**:
 - Similar to *classification*
 - Is the minimal representation of the instance relations (in the set of concept symbols)
 - Will give us faster answers for instance queries!

- **Reduction**: Can be reduced to (a sequence of) instance relation tests.
Retrieval

- Motivation: Sometimes, we want to get the set of instances of a concept (as in database queries)
Retrieval

- **Motivation**: Sometimes, we want to get the set of instances of a concept (as in database queries)

- **Example**: Asking for all instances of the concept Male, we will get the answer **CHARLES, ANDREW, EDWARD, WILLIAM**.
Retrieval

- **Motivation**: Sometimes, we want to get the set of instances of a concept (as in database queries)

- **Example**: Asking for all instances of the concept Male, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

- **Reduction**: Compute the set of instances by testing the instance relation for each object
Retrieval

- **Motivation**: Sometimes, we want to get the set of instances of a concept (as in database queries)

- **Example**: Asking for all instances of the concept *Male*, we will get the answer **CHARLES, ANDREW, EDWARD, WILLIAM**.

- **Reduction**: Compute the set of instances by testing the instance relation for each object

- **Implementation**: Realization can be used to speed this up
Reasoning Services – Summary

- Satisfiability of concept descriptions
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
Reasoning Services – Summary

• Satisfiability of concept descriptions
 ○ in a given TBox or in an empty TBox

• Subsumption between concept descriptions
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox

- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox

- Classification
Reasoning Services – Summary

• Satisfiability of concept descriptions
 ○ in a given TBox or in an empty TBox

• Subsumption between concept descriptions
 ○ in a given TBox or in an empty TBox

• Classification

• Satisfiability of an ABox
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox

- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox

- Classification

- Satisfiability of an ABox
 - in a given TBox or in an empty TBox

- Instance relations in an ABox
 - in a given TBox or in an empty TBox
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Outlook

• How to determine *subsumption* between two concept description (in the empty TBox)?
Outlook

• How to determine *subsumption* between two concept description (in the empty TBox)?

• How to determine *instance relations/ABox satisfiability*?
Outlook

• How to determine *subsumption* between two concept description (in the empty TBox)?

• How to determine *instance relations/ABox satisfiability*?

• How to implement the mentioned reductions *efficiently*?
Outlook

• How to determine *subsumption* between two concept description (in the empty TBox)?

• How to determine *instance relations/ABox satisfiability*?

• How to implement the mentioned reductions *efficiently*?

• Does normalization and unfolding introduce another source of *computational complexity*?