5. Semantic Networks and Description Logics

5.1 Introduction

Bernhard Nebel

- Motivation & History
- Semantic Networks
- Frame Systems
- Outlook: The main ideas
Motivation & History

- Knowledge about word meanings and concepts is (probably) organized as a network – similar to the organization of an encyclopedia with a lot of links
Motivation & History

- Knowledge about **word meanings** and **concepts** is (probably) organized as a **network** – similar to the organization of an encyclopedia with a lot of links.

- When one wants to **represent** such a body of knowledge, we need a representation method/scheme/formalism.
Motivation & History

- Knowledge about word meanings and concepts is (probably) organized as a network – similar to the organization of an encyclopedia with a lot of links

- When one wants to represent such a body of knowledge, we need a representation method/scheme/formalism

⇒ Semantic Networks (first proposed by Quillian 67)
Motivation & History

• Knowledge about word meanings and concepts is (probably) organized as a network – similar to the organization of an encyclopedia with a lot of links

• When one wants to represent such a body of knowledge, we need a representation method/scheme/formalism

 ~ Semantic Networks (first proposed by Quillian 67)

 ~ Frame Systems (Minsky 81)
Motivation & History

- Knowledge about **word meanings** and **concepts** is (probably) organized as a **network** – similar to the organization of an encyclopedia with a lot of links

- When one wants to **represent** such a body of knowledge, we need a representation method/scheme/formalism

 - **Semantic Networks** (first proposed by Quillian 67)
 - **Frame Systems** (Minsky 81)
 - **Structural Inheritance Networks** and **Description Logics** (Brachman 78)
Example: Quillian’s Semantic Memory

- **Question:** How is conceptual knowledge organized?
Example: Quillian’s Semantic Memory

- **Question**: How is conceptual knowledge organized?

- **Concrete Task**: Compare and contrast word meanings
Example: Quillian’s Semantic Memory

- **Question:** How is conceptual knowledge organized?

- **Concrete Task:** Compare and contrast word meanings

- **Inferential mechanism:** Spreading activation
Example: Quillian’s Semantic Memory

- **Question:** How is conceptual knowledge organized?

- **Concrete Task:** Compare and contrast word meanings

- **Inferential mechanism:** Spreading activation
Example: Quillian’s Semantic Memory

- **Question:** How is conceptual knowledge organized?

- **Concrete Task:** Compare and contrast word meanings

- **Inferential mechanism:** Spreading activation
Example: Quillian’s Semantic Memory

- **Question:** How is conceptual knowledge organized?

- **Concrete Task:** Compare and contrast word meanings

- **Inferential mechanism:** Spreading activation

Generated sentences:

CRY2 IS AMONG OTHER THINGS TO MAKE A SAD SOUND.
Example: Quillian’s Semantic Memory

- **Question:** How is conceptual knowledge organized?

- **Concrete Task:** Compare and contrast word meanings

- **Inferential mechanism:** Spreading activation

Generated sentences:

CRY2 IS AMONG OTHER THINGS TO MAKE A SAD SOUND.

TO COMFORT3 CAN BE TO MAKE2 SOMETHING LESS2 SAD.
Another Example: Semantic Networks with Inheritance

- **Idea**: Knowledge is organized *hierarchically* using an ISA-link.
Another Example: Semantic Networks with Inheritance

- **Idea:** Knowledge is organized **hierarchically** using an **ISA**-link.

- **Idea:** Economic representation – general attributes are stored at the most general concept.
Another Example: Semantic Networks with Inheritance

- **Idea:** Knowledge is organized **hierarchically** using an **ISA**-link

- **Idea:** Economic representation – general attributes are stored at the most general concept

- **Inheritance:** Attributes are inherited along the hierarchy
Another Example: Semantic Networks with Inheritance

- **Idea:** Knowledge is organized hierarchically using an ISA-link

- **Idea:** Economic representation – general attributes are stored at the most general concept

- **Inheritance:** Attributes are inherited along the hierarchy

- **Overriding:** It is possible to override general attributes
Another Example: Semantic Networks with Inheritance

- **Idea:** Knowledge is organized **hierarchically** using an **ISA-link**

- **Idea:** Economic representation – general attributes are stored at the most general concept

- **Inheritance:** Attributes are inherited along the hierarchy

- **Overriding:** It is possible to override general attributes
Another Example: Semantic Networks with Inheritance

- **Idea:** Knowledge is organized **hierarchically** using an ISA-link.

- **Idea:** Economic representation – general attributes are stored at the most general concept.

- **Inheritance:** Attributes are inherited along the hierarchy.

- **Overriding:** Is is possible to override general attributes.

In psychological experiments, the question *Can canaries sing?* was answered faster than the question *Do canaries have feathers?*.
Semantic Networks – Advantages & Disadvantages

• Claimed advantages
Semantic Networks – Advantages & Disadvantages

- Claimed **advantages**
 - More **natural** representation than logic (using meaning axioms)
Semantic Networks – Advantages & Disadvantages

- Claimed **advantages**
 - More **natural** representation than logic (using meaning axioms)
 - Higher **cognitive adequacy** than logic-based formalisms
Semantic Networks – Advantages & Disadvantages

- Claimed **advantages**
 - More **natural** representation than logic (using meaning axioms)
 - Higher **cognitive adequacy** than logic-based formalisms
 - More **efficient** inference algorithms (graph algorithms instead of resolution)
Semantic Networks – Advantages & Disadvantages

• Claimed advantages
 ○ More natural representation than logic (using meaning axioms)
 ○ Higher cognitive adequacy than logic-based formalisms
 ○ More efficient inference algorithms (graph algorithms instead of resolution)
 ○ Higher expressiveness than logic (because of overriding)
Semantic Networks – Advantages & Disadvantages

• Claimed **advantages**
 ○ More **natural** representation than logic (using meaning axioms)
 ○ Higher **cognitive adequacy** than logic-based formalisms
 ○ More **efficient** inference algorithms (graph algorithms instead of resolution)
 ○ Higher **expressiveness** than logic (because of overriding)

• Possible **disadvantages**
Semantic Networks – Advantages & Disadvantages

● Claimed **advantages**
 ○ More **natural** representation than logic (using meaning axioms)
 ○ Higher **cognitive adequacy** than logic-based formalisms
 ○ More **efficient** inference algorithms (graph algorithms instead of resolution)
 ○ Higher **expressiveness** than logic (because of overriding)

● Possible **disadvantages**
 ○ The meaning of nodes and links is not clear and only defined **procedurally** by the inference algorithms
Semantic Networks – Advantages & Disadvantages

- Claimed advantages
 - More natural representation than logic (using meaning axioms)
 - Higher cognitive adequacy than logic-based formalisms
 - More efficient inference algorithms (graph algorithms instead of resolution)
 - Higher expressiveness than logic (because of overriding)

- Possible disadvantages
 - The meaning of nodes and links is not clear and only defined procedurally by the inference algorithms
 - There is no semantics of semantic networks
Frame Systems: The idea

- In semantic networks everything is distributed
Frame Systems: The idea

- In semantic networks everything is distributed
- Instead, try to cluster all things belonging to a **scenarium** together in a **frame**
Frame Systems: The idea

- In semantic networks everything is distributed
- Instead, try to cluster all things belonging to a *scenarium* together in a **frame**:
 - defining properties
Frame Systems: The idea

- In semantic networks everything is distributed
- Instead, try to cluster all things belonging to a scenarium together in a frame:
 - defining properties
 - default properties
Frame Systems: The idea

- In semantic networks everything is distributed
- Instead, try to cluster all things belonging to a **scenarium** together in a **frame**:
 - defining properties
 - default properties
 - procedural knowledge
Frame Systems: The idea

- In semantic networks everything is distributed
- Instead, try to cluster all things belonging to a *scenarium* together in a **frame**:
 - defining properties
 - default properties
 - procedural knowledge
 - ...
Frame Systems: The idea

- In semantic networks everything is distributed
- Instead, try to cluster all things belonging to a **scenarium** together in a **frame**:
 - defining properties
 - default properties
 - procedural knowledge
 - ...
- Then **match** frame against actual situation
Frame Systems: The idea

- In semantic networks everything is distributed
- Instead, try to cluster all things belonging to a **scenarium** together in a **frame**:
 - defining properties
 - default properties
 - procedural knowledge
 - …
- Then **match** frame against actual situation
 - use information in the frame to fill in missing details
Frame Systems: The idea

- In semantic networks everything is distributed
- Instead, try to cluster all things belonging to a *scenarium* together in a **frame**:
 - defining properties
 - default properties
 - procedural knowledge
 - ...
- Then **match** frame against actual situation
 - use information in the frame to fill in missing details
 - explain differences
Frame Systems: The idea

- In semantic networks everything is distributed
- Instead, try to cluster all things belonging to a *scenarium* together in a **frame**:
 - defining properties
 - default properties
 - procedural knowledge
 - ...
- Then **match** frame against actual situation
 - use information in the frame to fill in missing details
 - explain differences
 - apply procedural knowledge
Example: Birthday party

The meaning of a child’s birthday is very poorly approximated by any dictionary definition like “a party assembled to celebrate a birthday” [...] This lacks all the flavor of the culturally required activities. Children know that the “definition” should include more specifications, the particulars of which can normally be assumed by the way of default assignments (Minsky 81):

Dress: Sunday best
Present: must please host
Games: hide and seek,
 pin tail on donkey
Decor: balloons, favors, crepe-paper
Party-meal: cake, ice-cream, soda, hot dogs
...
How to select Birthday Party?

Child's Birthday Party

Dress:

Present:

Party-Meal:

Games:

Birthday Party

Party-Meal:

Clothes

Sunday Best

Ice Cream

Flavor:

Present

How to select
Semantic Networks and Frames: Important Ideas

- **Hierarchical** organization
Semantic Networks and Frames: Important Ideas

- **Hierarchical** organization
- **Object-centered** organization
Semantic Networks and Frames: Important Ideas

- **Hierarchical** organization
- **Object-centered** organization
- **Restricting the expressiveness** wrt. full first-order logic
Semantic Networks and Frames: Important Ideas

- **Hierarchical** organization
- **Object-centered** organization
- **Restricting the expressiveness** wrt. full first-order logic

\[\text{Inheritance} \quad (\text{strict, non-strict, \ldots}) \]
Semantic Networks and Frames: Important Ideas

- **Hierarchical** organization
- **Object-centered** organization
- **Restricting the expressiveness** wrt. full first-order logic
 - Inheritance (strict, non-strict, ...)
 - Using descriptions in the inference process to recognize things
Semantic Networks and Frames: Important Ideas

- **Hierarchical** organization
- **Object-centered** organization
- **Restricting the expressiveness** wrt. full first-order logic
 - **Inheritance** (strict, non-strict, …)
 - **Using descriptions** in the inference process to recognize things

→ **Note**: Nowadays semantic networks and frames are hardly used anymore
 – but the above ideas are still employed
Literature

Anthologies:

Special papers:

