Principles of Knowledge Representation and Reasoning

4. Nonmonotonic Reasoning

4.8 Belief Revision

Bernhard Nebel

- Motivation
- Updates and Revision
- Postulates
- Revision Schemes
- Base Revision
- Connection to NMR
Belief Change

- A dual approach to nonmonotonic reasoning is belief change
Belief Change

• A dual approach to nonmonotonic reasoning is belief change

• We start with some belief state K. When new information arrives, we change the belief state in order to accommodate the new information.
Belief Change

• A dual approach to nonmonotonic reasoning is belief change

• We start with some belief state K. When new information arrives, we change the belief state in order to accommodate the new information.

• In the general case, the changed belief state may not be a superset of the original belief state.
Belief Change

• A dual approach to nonmonotonic reasoning is belief change

• We start with some belief state \(K \). When new information arrives, we change the belief state in order to accommodate the new information.

• In the general case, the changed belief state may not be a superset of the original belief state.

• Contrary to nonmonotonic reasoning, here we deal with temporal nonmonotonicity, i.e., the nonmonotonic evolution of a knowledge base or belief state over time.
Two Scenarios

- We have a theory about the world, and the new information is meant to *correct* our theory.
Two Scenarios

• We have a theory about the world, and the new information is meant to correct our theory

~ belief revision: change your belief state minimally in order to accommodate the new information
Two Scenarios

- We have a theory about the world, and the new information is meant to *correct* our theory

 \[\text{belief revision} \]: change your belief state minimally in order to accommodate the new information

- We have a correct theory about the current state of the world, and the new information is meant to record a *change* in the world
Two Scenarios

• We have a theory about the world, and the new information is meant to correct our theory

→ belief revision: change your belief state minimally in order to accommodate the new information

• We have a correct theory about the current state of the world, and the new information is meant to record a change in the world

→ belief update: incorporate the change by assuming that the world has changed minimally
Updates and Revision are Different

Assume the new information is consistent with our old beliefs.
Updates and Revision are Different

Assume the new information is consistent with our old beliefs.

- In case of *revision*, we would like to add the new information monotonically to our old beliefs.
Updates and Revision are Different

Assume the new information is consistent with our old beliefs.

- In case of *revision*, we would like to add the new information monotonically to our old beliefs.

- For *belief update* this is not necessarily the case.
Updates and Revision are Different

Assume the new information is consistent with our old beliefs.

- In case of \textit{revision}, we would like to add the new information monotonically to our old beliefs.

- For \textit{belief update} this is not necessarily the case.
 - Assume we know that the \textit{door is open or the window is open}.
Updates and Revision are Different

Assume the new information is consistent with our old beliefs.

- In case of *revision*, we would like to add the new information monotonically to our old beliefs.

- For *belief update* this is not necessarily the case.
 - Assume we know that the *door is open or the window is open*.
 - Assume we get the information that after a change in the world, the *door is now closed*.
Updates and Revision are Different

Assume the new information is consistent with our old beliefs.

- In case of *revision*, we would like to add the new information monotonically to our old beliefs.

- For *belief update* this is not necessarily the case.
 - Assume we know that the *door is open or the window is open*.
 - Assume we get the information that after a change in the world, the *door is now closed*.

 In this case, we do not want to add this information monotonically to our theory, since we would be forced to conclude that *the window is open*.
Belief Change Operations

- General assumption: A belief state is modeled by a deductively closed theory, i.e., $K = C_n(K)$ with C_n the consequence operator.
Belief Change Operations

- General assumption: A **belief state** is modeled by a deductively closed theory, i.e., $K = Cn(K)$ with Cn the consequence operator
- \mathcal{L}: Logical Language (propositional logic)
Belief Change Operations

- General assumption: A belief state is modeled by a deductively closed theory, i.e., $K = Cn(K)$ with Cn the consequence operator.
- \mathcal{L}: Logical Language (propositional logic).
- $Th_{\mathcal{L}}$: Set of deductively closed theories (or belief sets) over \mathcal{L}.
Belief Change Operations

- General assumption: A belief state is modeled by a deductively closed theory, i.e., $K = Cn(K)$ with Cn the consequence operator.

- \mathcal{L}: Logical Language (propositional logic)

- $Th_{\mathcal{L}}$: Set of deductively closed theories (or belief sets) over \mathcal{L}

\leadsto Belief Change Operations:
Belief Change Operations

• General assumption: A belief state is modeled by a deductively closed theory, i.e., $K = Cn(K)$ with Cn the consequence operator

• \mathcal{L}: Logical Language (propositional logic)

• $Th_{\mathcal{L}}$: Set of deductively closed theories (or belief sets) over \mathcal{L}

\leadsto Belief Change Operations:

Monotonic addition: $+: Th_{\mathcal{L}} \times \mathcal{L} \rightarrow Th_{\mathcal{L}}$
Belief Change Operations

• General assumption: A belief state is modeled by a deductively closed theory, i.e., $K = Cn(K)$ with Cn the consequence operator.

• \mathcal{L}: Logical Language (propositional logic).

• $Th_\mathcal{L}$: Set of deductively closed theories (or belief sets) over \mathcal{L}.

Belief Change Operations:

Monotonic addition: $+: Th_\mathcal{L} \times \mathcal{L} \rightarrow Th_\mathcal{L}$

$$K + \psi = Cn(K \cup \{\psi\})$$

Revision: $\vdash: Th_\mathcal{L} \times \mathcal{L} \rightarrow Th_\mathcal{L}$
Belief Change Operations

- General assumption: A **belief state** is modeled by a deductively closed theory, i.e., $K = Cn(K)$ with Cn the consequence operator

- \mathcal{L}: Logical Language (propositional logic)

- $Th_\mathcal{L}$: Set of deductively closed theories (or belief sets) over \mathcal{L}

\[\leadsto \text{Belief Change Operations:} \]

 Monotonic addition: $+: Th_\mathcal{L} \times \mathcal{L} \rightarrow Th_\mathcal{L}$

 $K + \psi = Cn(K \cup \{\psi\}$

 Revision: $\vdash: Th_\mathcal{L} \times \mathcal{L} \rightarrow Th_\mathcal{L}$

- *Reasonable* revision operations?
Belief Change Operations

- General assumption: A belief state is modeled by a deductively closed theory, i.e., \(K = Cn(K) \) with \(Cn \) the consequence operator.

- \(\mathcal{L} \): Logical Language (propositional logic).

- \(Th_{\mathcal{L}} \): Set of deductively closed theories (or belief sets) over \(\mathcal{L} \).

\[\sim \) Belief Change Operations:

- Monotonic addition: \(+: Th_{\mathcal{L}} \times \mathcal{L} \rightarrow Th_{\mathcal{L}} \)
 \[K + \psi = Cn(K \cup \{\psi\}) \]

- Revision: \(\vdash: Th_{\mathcal{L}} \times \mathcal{L} \rightarrow Th_{\mathcal{L}} \)

- *Reasonable* revision operations?

\(\sim \) **AGM Revision Postulates** (Alchourron, Gärdenfors, Makinson)
AGM Postulates: Constraining the space of Revision Operations

(\dag 1) \ K + \varphi \in Th_\mathcal{L};
AGM Postulates:
Constraining the space of Revision Operations

(\(\dagger 1\)) \(K + \varphi \in Th_L\);

(\(\dagger 2\)) \(\varphi \in K \dagger \varphi\);
AGM Postulates: Constraining the space of Revision Operations

(+1) $K + \varphi \in Th_L$;

(+2) $\varphi \in K + \varphi$;

(+3) $K + \varphi \subseteq K + \varphi$;
AGM Postulates: Constraining the space of Revision Operations

(+1) \(K + \varphi \in Th_L; \)
(+2) \(\varphi \in K \hat{+} \varphi; \)
(+3) \(K \hat{+} \varphi \subseteq K + \varphi; \)
(+4) If \(\neg \varphi \notin K, \) then \(K + \varphi \subseteq K \hat{+} \varphi; \)
AGM Postulates: Constraining the space of Revision Operations

(+1) \(K \vdash \phi \in Th_L \);
(+2) \(\phi \in K \vdash \phi \);
(+3) \(K \vdash \phi \subseteq K + \phi \);
(+4) If \(\neg \phi \notin K \), then \(K + \phi \subseteq K \vdash \phi \);
(+5) \(K \vdash \phi = Cn(\bot) \) only if \(\vdash \neg \phi \);
AGM Postulates:
Constraining the space of Revision Operations

(+1) $K + \varphi \in Th_L$;
(+2) $\varphi \in K + \varphi$;
(+3) $K + \varphi \subseteq K + \varphi$;
(+4) If $\neg \varphi \not \in K$, then $K + \varphi \subseteq K + \varphi$;
(+5) $K + \varphi = Cn(\bot)$ only if $\vdash \neg \varphi$;
(+6) If $\vdash \varphi \leftrightarrow \psi$ then $K + \varphi = K + \psi$;
AGM Postulates: Constraining the space of Revision Operations

(\pm 1) \ K \vdash \varphi \in Th_\mathcal{L};
(\pm 2) \ \varphi \in K \vdash \varphi;
(\pm 3) \ K \vdash \varphi \subseteq K + \varphi;
(\pm 4) \text{If } \neg \varphi \notin K, \text{ then } K + \varphi \subseteq K \vdash \varphi;
(\pm 5) \ K \vdash \varphi = \text{Cn}(\bot) \text{ only if } \vdash \neg \varphi;
(\pm 6) \text{If } \vdash \varphi \leftrightarrow \psi \text{ then } K \vdash \varphi = K \vdash \psi;
(\pm 7) \ K \vdash (\varphi \land \psi) \subseteq (K \vdash \varphi) + \psi;
AGM Postulates:
Constraining the space of Revision Operations

(+1) $K + \varphi \in Th_L$;
(+2) $\varphi \in K + \varphi$;
(+3) $K + \varphi \subseteq K + \varphi$;
(+4) If $\neg \varphi \notin K$, then $K + \varphi \subseteq K + \varphi$;
(+5) $K + \varphi = Cn(\bot)$ only if $\vdash \neg \varphi$;
(+6) If $\vdash \varphi \leftrightarrow \psi$ then $K + \varphi = K + \psi$;
(+7) $K + (\varphi \land \psi) \subseteq (K + \varphi) + \psi$;
(+8) If $\neg \psi \notin K + \varphi$,
 then $(K + \varphi) + \psi \subseteq K + (\varphi \land \psi)$.
AGM Postulates:
Constraining the space of Revision Operations

(+1) \(K + \varphi \in Th_L \);
(+2) \(\varphi \in K + \varphi \);
(+3) \(K + \varphi \subseteq K + \varphi \);
(+4) If \(\neg \varphi \notin K \), then \(K + \varphi \subseteq K + \varphi \);
(+5) \(K + \varphi = Cn(\bot) \) only if \(\vdash \neg \varphi \);
(+6) If \(\vdash \varphi \leftrightarrow \psi \) then \(K + \varphi = K + \psi \);
(+7) \(K + (\varphi \land \psi) \subseteq (K + \varphi) + \psi \);
(+8) If \(\neg \psi \notin K + \varphi \),
 then \((K + \varphi) + \psi \subseteq K + (\varphi \land \psi) \).

Note: AGM postulates do not constrain the operation with respect to varying belief sets!
Canonical Revision Operations?

• The postulates *constrain* the space to *fully rational revision operations*, but do not pick a single one.
Canonical Revision Operations?

- The postulates constrain the space to fully rational revision operations, but do not pick a single one.

- Revision operations are closed under intersection, so should we choose the minimum?
Canonical Revision Operations?

• The postulates *constrain* the space to *fully rational revision operations*, but do not pick a single one.

• Revision operations are closed under intersection, so should we choose the minimum?

\[\therefore \text{ NO!} \]. This is *full meet revision*, which is known to be useless since
\[K \triangledown \phi = Cn(\phi) \] for all \(\phi \) that are inconsistent with \(K \).
The postulates constrain the space to fully rational revision operations, but do not pick a single one.

Revision operations are closed under intersection, so should we choose the minimum?

\[\forall \phi \text{ that are inconsistent with } K. \]

\[K \cup \phi = Ch(\phi) \]

\[\rightarrow \text{ NO! This is full meet revision}, \]

\[\text{which is known to be useless since} \]

\[K \cup \phi = Ch(\phi) \text{ for all } \phi \text{ that are inconsistent with } K. \]

\[\rightarrow \text{ What other ways are there to generate a reasonable revision operation?} \]
Belief Revision Schemes

- Preference information (what to keep and what to give up)
Belief Revision Schemes

- Preference information (what to keep and what to give up)

- ... may be different for different K’s but independent from the new information φ
Belief Revision Schemes

- Preference information (what to keep and what to give up)

- ... may be different for different K’s but independent from the new information φ

\leadsto compose revision operation pointwise for each K
Belief Revision Schemes

- Preference information (what to keep and what to give up)

- ... may be different for different K’s but independent from the new information φ

\leadsto compose revision operation pointwise for each K

- A belief revision scheme (BRS) is a “recipe” for deriving a revision operation – restricted to a particular set K – from
 - the belief set and
Belief Revision Schemes

- Preference information (what to keep and what to give up)

- ...may be different for different K’s but independent from the new information φ

\[\leadsto \text{compose revision operation pointwise for each } K \]

- A belief revision scheme (BRS) is a “recipe” for deriving a revision operation – restricted to a particular set K – from
 - the belief set and
 - preference information over this belief set
Examples

Partial Meet Revision (AGM): Preference information is given by a selection function γ over the sets of maximal consistent subtheories $(K \downarrow \varphi)$:

$$K + \varphi \overset{\text{def}}{=} \left(\bigcap \gamma(K \downarrow \neg \varphi) \right) + \varphi$$

where $K + \varphi = Cn(K \cup \{\varphi\})$.
Examples

Partial Meet Revision (AGM): Preference information is given by a selection function γ over the sets of maximal consistent subtheories $(K \downarrow \varphi)$:

$$K \vdash \varphi \overset{\text{def}}{=} \left(\bigcap \gamma(K \downarrow \neg \varphi) \right) + \varphi$$

where $K + \varphi = Cn(K \cup \{\varphi\})$.

Cut Revision (GM): Preference information is given by complete preorder \preceq over all $\psi \in K$:

$$K \vdash \varphi \overset{\text{def}}{=} \{ \psi \in K \mid \neg \varphi \prec \psi \} + \varphi$$
Examples

Partial Meet Revision (AGM): Preference information is given by a selection function γ over the sets of maximal consistent subtheories $(K \downarrow \varphi)$:

$$K + \varphi \overset{\text{def}}{=} \left(\bigcap \gamma(K \downarrow \neg \varphi) \right) + \varphi$$

where $K + \varphi = \text{Cn}(K \cup \{\varphi\})$.

Cut Revision (GM): Preference information is given by complete preorder \preceq over all $\psi \in K$:

$$K + \varphi \overset{\text{def}}{=} \{ \psi \in K \mid \neg \varphi \prec \psi \} + \varphi$$

Provided \preceq satisfies a number of axioms (epistemic entrenchment), cut revisions coincide with the fully rational revision operations.
Revision – Viewed Computationally

- We don’t want to deal with deductively closed theories
Revision – Viewed Computationally

- We don’t want to deal with deductively closed theories

\[\sim\] Consider belief bases (arbitrary set of props.) as representing belief sets.
Revision – Viewed Computationally

- We don’t want to deal with deductively closed theories

\sim \textbf{Consider belief bases} (arbitrary set of props.) as \textit{representing} belief sets.

- We don’t want to specify an arbitrary amount of preference information.
We don’t want to deal with deductively closed theories

Consider belief bases (arbitrary set of props.) as representing belief sets.

We don’t want to specify an arbitrary amount of preference information.

A theory K over the propositional logic \mathcal{L} with n propositional atoms can have as much as

- 2^{2^n} different propositions
Revision – Viewed Computationally

• We don’t want to deal with deductively closed theories

\[\sim \] Consider belief bases (arbitrary set of props.) as representing belief sets.

• We don’t want to specify an arbitrary amount of preference information.

\[\rightarrow \] A theory \(K \) over the propositional logic \(\mathcal{L} \) with \(n \) propositional atoms can have as much as

 - \(2^{2^n} \) different propositions
 - \(2^n \) different models.
• We don’t want to deal with deductively closed theories

\[\leadsto \] Consider belief bases (arbitrary set of props.) as representing belief sets.

• We don’t want to specify an arbitrary amount of preference information.

\[\leadsto \] A theory \(K \) over the propositional logic \(\mathcal{L} \) with \(n \) propositional atoms can have as much as

- \(2^2^n \) different propositions
- \(2^n \) different models.

\[\leadsto \] Consider ways of specifying preference information in a concise way, i.e., polynomial in the size of the belief base.
Base Revision Schemes

- Starting with the finite belief base \(A \) and preference information over the elements of \(A \)
Base Revision Schemes

- Starting with the finite belief base A and preference information over the elements of A

 → we want to generate a revision operation (restricted to $Cn(A)$).
Base Revision Schemes

- Starting with the finite belief base A and preference information over the elements of A

\rightarrow we want to generate a revision operation (restricted to $Cn(A)$).

\sim Assume a partitioning of A into n priority classes A_1, \ldots, A_n such that the elements of A_i are more important or relevant than those of A_j for $j < i$.
Base Revision Schemes

- Starting with the finite belief base A and preference information over the elements of A

 → we want to generate a revision operation (restricted to $Cn(A)$).

 \[\sim \text{ Assume a partitioning of } A \text{ into } n \text{ priority classes } A_1, \ldots A_n \text{ such that the elements of } A_i \text{ are more important or relevant than those of } A_j \text{ for } j < i. \]

 \[\sim \text{ Equivalently, a complete preorder } \preceq \text{ over } A \text{ comparing priorities (epistemic relevance)} \]
Base Revision Schemes

- Starting with the finite belief base A and preference information over the elements of A

 → we want to generate a revision operation (restricted to $Cn(A)$).

→ Assume a partitioning of A into n priority classes A_1, \ldots, A_n such that the elements of A_i are more important or relevant than those of A_j for $j < i$.

→ Equivalently, a complete preorder \preceq over A comparing priorities (epistemic relevance)

→ Define a (base-) revision scheme that keeps as much of the more relevant propositions as possible.
Base Revision Schemes

- Starting with the finite belief base A and preference information over the elements of A

 → we want to generate a revision operation (restricted to $Cn(A)$).

 ~ Assume a partitioning of A into n priority classes $A_1, \ldots A_n$ such that the elements of A_i are more important or relevant than those of A_j for $j < i$.

 ~ Equivalently, a complete preorder \preceq over A comparing priorities (epistemic relevance)

 ~ Define a (base-) revision scheme that keeps as much of the more relevant propositions as possible.

 ⇒ Base revision schemes generate revision operations in the same way as ordinary schemes do.
Prioritized Meet-Base Revision (PMBR)

Let \((A \downarrow \neg \varphi)\) be the maximal subsets of \(A\) that are consistent with \(\varphi\) and maximize relevant propositions.
Prioritized Meet-Base Revision (PMBR)

Let $(A \Downarrow \neg \varphi)$ be the maximal subsets of A that are consistent with φ and maximize relevant propositions.

![Diagram with levels and steps]
Prioritized Meet-Base Revision (PMBR) – Formally

\[A \oplus \varphi \overset{\text{def}}{=} \left(\bigcap_{B \in (A \downarrow \neg \varphi)} Cn(B) \right) + \varphi. \]
Prioritized Meet-Base Revision (PMBR) – Formally

\[A \oplus \varphi \overset{\text{def}}{=} \left(\bigcap_{B \in (A \downarrow \neg \varphi)} Cn(B) \right) + \varphi. \]

Define a revision operation \(+ \) on \(Cn(A) \) (that depends on \(A \) and the priority information) by

\[Cn(A) \dot{+} \varphi \overset{\text{def}}{=} A \oplus \varphi. \]
Properties of PMBRs

- Generates partial meet revision, but does not satisfy $(\vee 8)$ in general.
Properties of PMBRs

• Generates *partial meet revision*, but does not satisfy \((\vdash 8)\) in general.
• Deciding whether \(A \oplus \varphi \vdash \psi \) is \(\Pi^p_2 \)-complete, even for one priority class.
Properties of PMBRs

- Generates *partial meet revision*, but does not satisfy $(\vdash 8)$ in general.
- Deciding whether $A \oplus \varphi \vdash \psi$ is Π^p_2-complete, even for one priority class.
- A revised base can be represented by

$$A \oplus \varphi = Cn\left(\bigvee (A \downarrow \neg \varphi) \land \varphi\right).$$
Properties of PMBRs

- Generates *partial meet revision*, but does not satisfy \bigoplus^8 in general.
- Deciding whether $A \oplus \varphi \vdash \psi$ is Π^p_2-complete, even for one priority class.
- A revised base can be represented by
 \[
 A \oplus \varphi = C_n\left(\bigvee (A \downarrow \neg \varphi)\right) \land \varphi.
 \]
- A revised base can become *exponentially large*
Properties of PMBRs

• Generates *partial meet revision*, but does not satisfy \((+8) \) in general.

• Deciding whether \(A \oplus \varphi \vdash \psi \) is \(\Pi^p_2 \)-complete, even for one priority class.

• A revised base can be represented by

\[
A \oplus \varphi = Cn\left((\bigvee (A \downarrow \neg \varphi)) \land \varphi \right).
\]

• A revised base can become *exponentially large*:

\[
\begin{align*}
A &= \{p_1, \ldots, p_m, q_1, \ldots, q_m\} \\
\varphi &= \bigwedge_{i=1}^{m} (p_i \leftrightarrow \neg q_i)
\end{align*}
\]
Properties of PMBRs

- Generates *partial meet revision*, but does not satisfy \((\vdash 8)\) in general.
- Deciding whether \(A \oplus \varphi \vdash \psi\) is \(\Pi^p_2\)-complete, even for one priority class.
- A revised base can be represented by
 \[
 A \oplus \varphi = Cn\left(\bigvee (A \downarrow \neg \varphi) \land \varphi \right).
 \]
- A revised base can become *exponentially large*:
 \[
 A = \{p_1, \ldots, p_m, q_1, \ldots, q_m\} \\
 \varphi = \bigwedge_{i=1}^{m} (p_i \leftrightarrow \neg q_i)
 \]
 \((A \downarrow \varphi)\) has size exponential in \(|A|\).
Properties of PMBRs

• Generates *partial meet revision*, but does not satisfy \((\vdash 8)\) in general.

• Deciding whether \(A \oplus \varphi \vdash \psi\) is \(\Pi^p_2\)-complete, even for one priority class.

• A revised base can be represented by

\[
A \oplus \varphi = Cn\left(\bigvee (A \Downarrow \neg \varphi) \land \varphi\right).
\]

• A revised base can become *exponentially large*:

\[
A = \{p_1, \ldots, p_m, q_1, \ldots, q_m\} \\
\varphi = \bigwedge_{i=1}^{m} (p_i \leftrightarrow \neg q_i)
\]

\((A \Downarrow \varphi)\) has size exponential in \(|A|\).

• Worse, in some cases there exist no *concise* representation of the revised base (provided the polynomial hierarchy does not collapse [Cadoli et al 94]).
Let $\widehat{A}_j \overset{\text{def}}{=} \bigcup_{i=j}^n A_i$, then cut base-revision \otimes is defined as:

$$A \otimes \varphi \overset{\text{def}}{=} \text{Cn}(\{\psi \in A \mid \psi \in A_j, \widehat{A}_j \not\vdash \neg \varphi\}) + \varphi.$$
Let $\widehat{A}_j \overset{\text{def}}{=} \bigcup_{i=j}^n A_i$, then cut base-revision \otimes is defined as:

$$A \otimes \varphi \overset{\text{def}}{=} Cn(\{\psi \in A \mid \psi \in A_j, \widehat{A}_j \not\models \neg \varphi\}) + \varphi.$$
Let \(\hat{A}_j \overset{\text{def}}{=} \bigcup_{i=j}^n A_i \), then **cut base-revision** \(\otimes \) is defined as:

\[
A \otimes \varphi \overset{\text{def}}{=} \mathcal{C}_n(\{\psi \in A \mid \psi \in A_j, \hat{A}_j \not\vdash \neg \varphi\}) + \varphi.
\]

- **Natural representation** of revised base.
Cut Base-Revision

Let $\widehat{A}_j \overset{\text{def}}{=} \bigcup_{i=j}^n A_i$, then cut base-revision \otimes is defined as:

$$A \otimes \varphi \overset{\text{def}}{=} Cn(\{\psi \in A \mid \psi \in A_j, \widehat{A}_j \nvdash \neg \varphi\}) + \varphi.$$

- **Natural representation** of revised base.
- **Easy** to compute: in $P^{NP}[O(\log n)]$.

```
<table>
<thead>
<tr>
<th>Level n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level n-1</td>
</tr>
<tr>
<td>Level n-2</td>
</tr>
<tr>
<td>Level n-3</td>
</tr>
<tr>
<td>Level 1</td>
</tr>
</tbody>
</table>
```

- go downwards
- as long as ϕ
- is consistent with
- Level $n - Level i$
- cut
- Inconsistency with ϕ
Let $\widehat{A}_j \overset{\text{def}}{=} \bigcup_{i=j}^n A_i$, then cut base-revision \otimes is defined as:

$$A \otimes \varphi \overset{\text{def}}{=} Cn\left(\{\psi \in A \mid \psi \in A_j, \widehat{A}_j \not\models \neg \varphi\}\right) + \varphi.$$

- Natural representation of revised base.
- Easy to compute: in $P^{NP}[O(\log n)]$.
- Restriction to Horn logic leads to $O(n \log n)$.
Being less conservative . . .

Idea: Throw away an entire priority class only if it would lead to a contradiction which cannot be blamed on a lower classes \leadsto *linear* (or *unambiguous*) base-revision \odot.
Being less conservative . . .

Idea: Throw away an entire priority class only if it would lead to a contradiction which cannot be blamed on a lower classes \leadsto linear (or unambiguous) base-revision \circ.
Being less conservative …

Idea: Throw away an entire priority class only if it would lead to a contradiction which cannot be blamed on a lower classes \sim *linear* (or *unambiguous*) base-revision \otimes.

- Generates *fully rational* revision operations.
Being less conservative . . .

Idea: Throw away an entire priority class only if it would lead to a contradiction which cannot be blamed on a lower classes \(\sim \) **linear** (or **unambiguous**) base-revision \(\circ \).

- Generates **fully rational** revision operations.
- **Complexity:** \(\Delta^p_2 \)-complete; \(O(n^2) \) for Horn logic.
Being less conservative . . .

Idea: Throw away an entire priority class only if it would lead to a contradiction which cannot be blamed on a lower classes \leadsto **linear** (or **unambiguous**) base-revision \odot.

- Generates **fully rational** revision operations.
- **Complexity:** Δ^p_2-complete; $O(n^2)$ for Horn logic.
- $LBR \approx CBR$, but a CBR realizing an LBR requires exponentially more priority classes.
Belief Revision and Nonmonotonic Reasoning seem to be of different nature, but there exists a tight connection.
Revision vs. Nonmonotonic Reasoning

Belief Revision and Nonmonotonic Reasoning seem to be of different nature, but there exists a tight connection:

- Given K and a revision operation $\dot{\cup}$

\sim a nonmonotonic consequence relation can be defined as follows:

$\phi \sim \psi$ iff $\psi \in K \dot{\cup} \phi$.
Belief Revision and Nonmonotonic Reasoning seem to be of different nature, but there exists a tight connection:

- Given K and a revision operation \vdash

$\phi \vdash \psi$ iff $\psi \in K \vdash \phi$.

In this case,

- the rationality postulates correspond to principles of NMR (such as cautious monotony etc.);
Revision vs. Nonmonotonic Reasoning

Belief Revision and Nonmonotonic Reasoning seem to be of different nature, but there exists a tight connection:

- Given K and a revision operation \vdash

\rightsquigarrow a nonmonotonic consequence relation can be defined as follows:

$$\phi \rightsquigarrow \psi \text{ iff } \psi \in K \vdash \phi.$$

In this case,

- the rationality postulates correspond to principles of NMR (such as cautious monotony etc.);

- in the case of prerequisite-free, normal defaults D (Theorist), the cautious conclusions from (W, D) are simply $D \oplus W$ with one priority level;
Revision vs. Nonmonotonic Reasoning

Belief Revision and Nonmonotonic Reasoning seem to be of different nature, but there exists a tight connection:

- Given K and a revision operation \vdash

\[\phi \not\sim \psi \text{ iff } \psi \in K + \phi. \]

In this case,

- the rationality postulates correspond to principles of NMR (such as cautious monotony etc.);
- in the case of prerequisite-free, normal defaults D (Theorist), the cautious conclusions from (W, D) are simply $D \oplus W$ with one priority level;
- similar relationship between Brewka's level default theories and PMBRs.
NMR Principles and Rationality Postulates

(2) \(\varphi \in K \vdash \varphi; \)
NMR Principles and Rationality Postulates

(\textastrel{\textdagger}{2}) \varphi \in K \dagger \varphi;

\sim \textbf{Reflexivity}
NMR Principles and Rationality Postulates

(★2) \(\varphi \in K \vdash \varphi; \)

\(\rightsquigarrow \textbf{Reflexivity} \)

(★3) \(K \vdash \varphi \subseteq K + \varphi; \)
NMR Principles and Rationality Postulates

(\#2) \(\varphi \in K \uparrow \varphi; \)

\(\therefore \text{ Reflexivity} \)

(\#3) \(K \uparrow \varphi \subseteq K + \varphi; \)

\(\therefore \text{ Super Classicality} \)
NMR Principles and Rationality Postulates

(\(\ddagger 2\)) \(\varphi \in K \vdash \varphi\);

\(\sim\) Reflexivity

(\(\ddagger 3\)) \(K \vdash \varphi \subseteq K + \varphi\);

\(\sim\) Super Classicality

(\(\ddagger 6\)) If \(\vdash \varphi \leftrightarrow \psi\) then \(K \vdash \varphi = K \vdash \psi\);
NMR Principles and Rationality Postulates

(\(\dagger 2\)) \(\varphi \in K \vdash \varphi;\)

\[\sim Reflexivity\]

(\(\dagger 3\)) \(K \vdash \varphi \subseteq K + \varphi;\)

\[\sim Super\ Classicality\]

(\(\dagger 6\)) If \(\vdash \varphi \leftrightarrow \psi\) then \(K \vdash \varphi = K \vdash \psi;\)

\[\sim Left\ Logical\ Equivalence\]
NMR Principles and Rationality Postulates

(+</sup>2) \(\varphi \in K \vdash \varphi; \)

\sim \textbf{Reflexivity}

(</sup>3) \(K \vdash \varphi \subseteq K \vdash \varphi; \)

\sim \textbf{Super Classicality}

(</sup>6) If \(\vdash \varphi \leftrightarrow \psi \) then \(K \vdash \varphi = K \vdash \psi; \)

\sim \textbf{Left Logical Equivalence}

(</sup>8) If \(\neg \psi \notin K \vdash \varphi, \)

then \((K \vdash \varphi) + \psi \subseteq K \vdash (\varphi \land \psi). \)
NMR Principles and Rationality Postulates

(2) \(\varphi \in K \vdash \varphi; \)

\(\leadsto \text{Reflexivity} \)

(3) \(K \vdash \varphi \subseteq K + \varphi; \)

\(\leadsto \text{Super Classicality} \)

(6) If \(\vdash \varphi \leftrightarrow \psi \) then \(K \vdash \varphi = K \vdash \psi; \)

\(\leadsto \text{Left Logical Equivalence} \)

(8) If \(\neg \psi \notin K \vdash \varphi, \)

then \((K \vdash \varphi) + \psi \subseteq K \vdash (\varphi \land \psi). \)

\(\leadsto \text{Rational Monotonicity} \)
Conclusions from the Correspondence

- NMR can be thought of as the other side of the same coin.
Conclusions from the Correspondence

- NMR can be thought of as the other side of the same coin.
- NMR (at least for default logic) is as hard as revision.
Conclusions from the Correspondence

- NMR can be thought of as the other side of the same coin.
- NMR (at least for default logic) is as hard as revision.
- Representing the conclusions from a propositional default theory using classical propositional logic cannot be done in polynomial space, provided the polynomial hierarchy does not collapse.
Conclusions from the Correspondence

- NMR can be thought of as the other side of the same coin.
- NMR (at least for default logic) is as hard as revision.
- Representing the conclusions from a propositional default theory using classical propositional logic cannot be done in polynomial space, provided the polynomial hierarchy does not collapse.
- In other words, nonmonotonic logics can be thought of representing (some) information in a denser way than classical logic, and with that come higher computational costs.
Outlook & Summary

• While NMR and belief revision seem to be the two sides of the same coin, there are notable **pragmatic differences**
Outlook & Summary

- While NMR and belief revision seem to be the two sides of the same coin, there are notable **pragmatic differences**:
 - Belief revision seems to require that we can easily represent the changed belief base, while for NMR it makes sense to use **dense representations**.
Outlook & Summary

- While NMR and belief revision seem to be the two sides of the same coin, there are notable **pragmatic differences**:
 - Belief revision seems to require that we can easily represent the changed belief base, while for NMR it makes sense to use dense representations.
 - A similar argument could be made for the **computational complexity**.
Outlook & Summary

• While NMR and belief revision seem to be the two sides of the same coin, there are notable pragmatic differences:
 ○ Belief revision seems to require that we can easily represent the changed belief base, while for NMR it makes sense to use dense representations.
 ○ A similar argument could be made for the computational complexity.

• NMR and Belief Revision can be thought of as qualitative ways of dealing with uncertainty in a purely logical setting
Outlook & Summary

• While NMR and belief revision seem to be the two sides of the same coin, there are notable **pragmatic differences**:
 ○ Belief revision seems to require that we can easily represent the changed belief base, while for NMR it makes sense to use **dense representations**.
 ○ A similar argument could be made for the **computational complexity**.

• NMR and Belief Revision can be thought of as **qualitative ways** of dealing with uncertainty in a purely logical setting

• There exists a strong **correspondence** between NMR and BR
Outlook & Summary

• While NMR and belief revision seem to be the two sides of the same coin, there are notable pragmatic differences:
 ○ Belief revision seems to require that we can easily represent the changed belief base, while for NMR it makes sense to use dense representations.
 ○ A similar argument could be made for the computational complexity.
• NMR and Belief Revision can be thought of as qualitative ways of dealing with uncertainty in a purely logical setting
• There exists a strong correspondence between NMR and BR
• Both are computationally expensive and representational problematic
Outlook & Summary

- While NMR and belief revision seem to be the two sides of the same coin, there are notable pragmatic differences:
 - Belief revision seems to require that we can easily represent the changed belief base, while for NMR it makes sense to use dense representations.
 - A similar argument could be made for the computational complexity.
- NMR and Belief Revision can be thought of as qualitative ways of dealing with uncertainty in a purely logical setting.
- There exists a strong correspondence between NMR and BR.
- Both are computationally expensive and representational problematic.
- There are cases, though, that are tractable and practical.

P. Gärdenfors, Belief Revision and Nonmonotonic Logic: Two Sides of the Same Coin?, In *ECAI-90*, 768-773.