4. Nonmonotonic Reasoning

4.5 Cumulative and Preferential Logics

Bernhard Nebel

- Cumulativity
- Monotonic Consequence Relations
- Cumulative Models
- A Representation Theorem
- Preferential Consequence Relations
1. **Reflexivity**

 \[\alpha \vdash \alpha \]

2. **Left Logical Equivalence**

 \[\models \alpha \leftrightarrow \beta, \ \alpha \vdash \gamma \\
 \beta \vdash \gamma \]

3. **Right Weakening**

 \[\models \alpha \rightarrow \beta, \ \gamma \vdash \alpha \\
 \gamma \vdash \beta \]

4. **Cut**

 \[\alpha \land \beta \vdash \gamma, \ \alpha \vdash \beta \\
 \alpha \vdash \gamma \]

5. **Cautious Monotonicity**

 \[\alpha \vdash \beta, \ \alpha \vdash \gamma \\
 \alpha \land \beta \vdash \gamma \]
Cumulativity

Lemma. The rules 4 & 5 can be equivalently characterized by

If $\alpha \models \beta$, then the sets of plausible conclusions from α and $\alpha \land \beta$ are identical (**cumulativity**).
Cumulativity

Lemma. The rules 4 & 5 can be equivalently characterized by

If $\alpha \not\sim \beta$, then the sets of plausible conclusions from α and $\alpha \land \beta$ are identical (*cumulativity*).

Proof.

\Rightarrow: Assume that 4 & 5 hold and assume that we have $\alpha \not\sim \beta$.
Lemma. The rules 4 & 5 can be equivalently characterized by

If $\alpha \models \beta$, then the sets of plausible conclusions from α and $\alpha \land \beta$ are identical (cumulativity).

Proof.

\Rightarrow: Assume that 4 & 5 hold and assume that we have $\alpha \models \beta$. Now let γ be a plausible consequence of α.
Cumulativity

Lemma. The rules 4 & 5 can be equivalently characterized by

If $\alpha \not\models \beta$, then the sets of plausible conclusions from α and $\alpha \land \beta$ are identical (cumulativity).

Proof.

\Rightarrow: Assume that 4 & 5 hold and assume that we have $\alpha \not\models \beta$. Now let γ be a plausible consequence of α. With rule 5 (CM), we have $\alpha \land \beta \not\models \gamma$. Similarly, from $\alpha \land \beta \not\models \gamma$ it follows with rule 4 (Cut) that $\alpha \not\models \gamma$.
Lemma. The rules 4 & 5 can be equivalently characterized by

If $\alpha \models \sim \beta$, then the sets of plausible conclusions from α and $\alpha \land \beta$ are identical (cumulativity).

Proof.

\Rightarrow: Assume that 4 & 5 hold and assume that we have $\alpha \models \sim \beta$. Now let γ be a plausible consequence of α. With rule 5 (CM), we have $\alpha \land \beta \models \sim \gamma$. Similarly, from $\alpha \land \beta \models \sim \gamma$ it follows with rule 4 (Cut) that $\alpha \models \sim \gamma$. This means that the sets of plausible conclusions from α and $\alpha \land \beta$ are identical.
Lemma. The rules 4 & 5 can be equivalently characterized by

If $\alpha \not\vdash \beta$, then the sets of plausible conclusions from α and $\alpha \land \beta$ are identical (cumulativity).

Proof.

\Rightarrow: Assume that 4 & 5 hold and assume that we have $\alpha \not\vdash \beta$. Now let γ be a plausible consequence of α. With rule 5 (CM), we have $\alpha \land \beta \not\vdash \gamma$. Similarly, from $\alpha \land \beta \not\vdash \gamma$ it follows with rule 4 (Cut) that $\alpha \not\vdash \gamma$. This means that the sets of plausible conclusions from α and $\alpha \land \beta$ are identical.

\Leftarrow: Assume the cumulativity principle and assume that we have $\alpha \not\vdash \beta$.
Cumulativity

Lemma. The rules 4 & 5 can be equivalently characterized by

If $\alpha \not\vdash \beta$, then the sets of plausible conclusions from α and $\alpha \land \beta$ are identical (cumulativity).

Proof.

\Rightarrow: Assume that 4 & 5 hold and assume that we have $\alpha \not\vdash \beta$. Now let γ be a plausible consequence of α. With rule 5 (CM), we have $\alpha \land \beta \not\vdash \gamma$. Similarly, from $\alpha \land \beta \not\vdash \gamma$ it follows with rule 4 (Cut) that $\alpha \not\vdash \gamma$. This means that the sets of plausible conclusions from α and $\alpha \land \beta$ are identical.

\Leftarrow. Assume the cumulativity principle and assume that we have $\alpha \not\vdash \beta$. From that we can derive rule 4 and 5.
Cumulativity

Lemma. The rules 4 & 5 can be equivalently characterized by

If $\alpha \not\models \beta$, then the sets of plausible conclusions from α and $\alpha \land \beta$ are identical (cumulativity).

Proof.

\Rightarrow: Assume that 4 & 5 hold and assume that we have $\alpha \not\models \beta$. Now let γ be a plausible consequence of α. With rule 5 (CM), we have $\alpha \land \beta \not\models \gamma$. Similarly, from $\alpha \land \beta \not\models \gamma$ it follows with rule 4 (Cut) that $\alpha \not\models \gamma$. This means that the sets of plausible conclusions from α and $\alpha \land \beta$ are identical.

\Leftarrow. Assume the cumulativity principle and assume that we have $\alpha \not\models \beta$. From that we can derive rule 4 and 5.

Note: In the presence of rules 1 and 3, it follows that $\alpha \not\models \beta$, provided the sets of plausible conclusions from α and $\alpha \land \beta$ are identical.
Undesirable Properties (1)

- **Monotonicity:**

\[
\models \alpha \rightarrow \beta, \; \beta \sim \gamma \\
\therefore \alpha \sim \gamma
\]
Undesirable Properties (1)

- **Monotonicity:**

 \[
 \models \alpha \rightarrow \beta, \beta \sim \gamma \\
 \frac{}{\alpha \sim \gamma}
 \]

- **Example:** Let us assume that John goes to the party *normally* implies Mary goes to the party.
Undesirable Properties (1)

- Monotonicity:

\[\models \alpha \rightarrow \beta, \beta \models \gamma \]

\[\alpha \models \gamma \]

- Example: Let us assume that John goes to the party *normally implies* Mary goes to the party. Now we will probably not expect that John goes to the party *and* Joan goes to the party *normally implies* that Mary goes to the party.
Undesirable Properties (1)

- **Monotonicity:**

 \[\models \alpha \rightarrow \beta, \beta \not\models \gamma \]

 \[\alpha \not\models \gamma \]

 - **Example:** Let us assume that *John goes to the party normally implies Mary goes to the party*. Now we will probably not expect that *John goes to the party and Joan goes to the party normally implies that Mary goes to the party*.

- **Contraposition:**

 \[\alpha \not\models \beta \]

 \[\not\beta \not\models \not\alpha \]
• **Monotonicity:**

\[\models \alpha \rightarrow \beta, \beta \not\models \gamma \]

\[\alpha \not\models \gamma \]

○ **Example:** Let us assume that John goes to the party *normally implies* Mary goes to the party. Now we will probably not expect that John goes to the party *and* Joan goes to the party *normally implies* that Mary goes to the party.

• **Contraposition:**

\[\alpha \not\models \beta \]

\[\neg \beta \not\models \neg \alpha \]

○ **Example:** Let us assume that John goes to the party *normally implies* Mary goes to the party.
Undesirable Properties (1)

• **Monotonicity:**

\[\models \alpha \rightarrow \beta, \beta \not\models \gamma \]
\[\therefore \alpha \not\models \gamma \]

○ **Example:** Let us assume that John goes to the party *normally implies* Mary goes to the party. Now we will probably not expect that John goes to the party *and* Joan goes to the party *normally implies* that Mary goes to the party.

• **Contraposition:**

\[\alpha \not\models \beta \]
\[\therefore \neg \beta \not\models \neg \alpha \]

○ **Example:** Let us assume that John goes to the party *normally implies* Mary goes to the party. Now we will probably not expect that *not* Mary goes to the party *normally implies* that *not* John goes to the party.
Undesirable Properties (2)

- Transitivity:

\[
\alpha \sim \beta, \, \beta \sim \gamma \\
\hline
\alpha \sim \gamma
\]
Undesirable Properties (2)

- Transitivity:

\[
\frac{\alpha \sim \beta, \beta \sim \gamma}{\alpha \sim \gamma}
\]

- Example: Let us assume that John goes to the party normally implies Mary goes to the party and that Mary goes to the party normally implies Jack goes to the party.
Undesirable Properties (2)

- **Transitivity:**

 \[
 \frac{\alpha \sim \beta, \beta \sim \gamma}{\alpha \sim \gamma}
 \]

 - **Example:** Let us assume that John goes to the party *normally implies* Mary goes to the party and that Mary goes to the party *normally implies* Jack goes to the party. Now, should John goes to the party *normally imply* that Jack goes to the party?
Undesirable Properties (2)

- **Transitivity**:
 \[
 \frac{\alpha \nvdash \beta, \beta \nvdash \gamma}{\alpha \nvdash \gamma}
 \]

 - **Example**: Let us assume that John goes to the party *normally* implies Mary goes to the party and that Mary goes to the party *normally implies* Jack goes to the party. Now, should John goes to the party *normally imply* that Jack goes to the party?

- **Easy Half of Deduction Theorem (EHD)**:
 \[
 \frac{\alpha \nvdash \beta \rightarrow \gamma}{\alpha \land \beta \nvdash \gamma}
 \]
Undesirable Properties (3)

Theorem. In the presence of the rules in system C, *monotonicity* and *EHD* are equivalent.
Undesirable Properties (3)

Theorem. In the presence of the rules in system C, *monotonicity* and *EHD* are equivalent.

Proof.

Monotonicity \Rightarrow EHD:
Undesirable Properties (3)

Theorem. In the presence of the rules in system C, *monotonicity* and *EHD* are equivalent.

Proof.

Monotonicity ⇒ EHD:

- $\alpha \models \beta \rightarrow \gamma$ (assumption)
Theorem. In the presence of the rules in system C, *monotonicity* and *EHD* are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $\alpha \vdash \beta \rightarrow \gamma$ (assumption)
- $\alpha \land \beta \vdash \beta \rightarrow \gamma$ (monotonicity)
Theorem. In the presence of the rules in system C, *monotonicity* and *EHD* are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $\alpha \vdash \beta \rightarrow \gamma$ (assumption)
- $\alpha \land \beta \vdash \beta \rightarrow \gamma$ (monotonicity)
- $\alpha \land \beta \vdash \alpha \land \beta$ (reflexivity)
Undesirable Properties (3)

Theorem. In the presence of the rules in system C, *monotonicity* and *EHD* are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $\alpha \vdash \beta \rightarrow \gamma$ (assumption)
- $\alpha \land \beta \vdash \beta \rightarrow \gamma$ (monotonicity)
- $\alpha \land \beta \vdash \alpha \land \beta$ (reflexivity)
- $\alpha \land \beta \vdash \beta$ (right weakening)
Undesirable Properties (3)

Theorem. In the presence of the rules in system C, monotonicity and EHD are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

• $\alpha \vdash \beta \rightarrow \gamma$ (assumption)
• $\alpha \land \beta \vdash \beta \rightarrow \gamma$ (monotonicity)
• $\alpha \land \beta \vdash \alpha \land \beta$ (reflexivity)
• $\alpha \land \beta \vdash \beta$ (right weakening)
• $\alpha \land \beta \vdash \gamma$ (MPC)
Undesirable Properties (3)

Theorem. In the presence of the rules in system C, *monotonicity* and *EHD* are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $\alpha \models \beta \rightarrow \gamma$ (assumption)
- $\alpha \land \beta \not\models \beta \rightarrow \gamma$ (monotonicity)
- $\alpha \land \beta \not\models \beta$ (reflexivity)
- $\alpha \land \beta \not\models \gamma$ (right weakening)
- $\alpha \land \beta \not\models \gamma$ (MPC)

Monotonicity \Leftarrow EHD:

- $\alpha \models \beta \rightarrow \gamma$ (assumption)
- $\alpha \land \beta \models \beta \rightarrow \gamma$ (monotonicity)
- $\alpha \land \beta \models \alpha \land \beta$ (reflexivity)
- $\alpha \land \beta \models \beta$ (right weakening)
- $\alpha \land \beta \models \gamma$ (MPC)
Undesirable Properties (3)

Theorem. In the presence of the rules in system C, *monotonicity* and *EHD* are equivalent.

Proof.

Monotonicity ⇒ EHD:

- \(\alpha \not\vdash \beta \to \gamma \) (assumption)
- \(\alpha \land \beta \not\vdash \beta \to \gamma \) (monotonicity)
- \(\alpha \land \beta \not\vdash \alpha \land \beta \) (reflexivity)
- \(\alpha \land \beta \not\vdash \beta \) (right weakening)
- \(\alpha \land \beta \not\vdash \gamma \) (MPC)

Monotonicity ⇔ EHD:

- \(\models \alpha \to \beta, \beta \not\vdash \gamma \) (assumption)
Undesirable Properties (3)

Theorem. In the presence of the rules in system C, *monotonicity* and *EHD* are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $\alpha \vdash \beta \to \gamma$ (assumption)
- $\alpha \land \beta \vdash \beta \to \gamma$ (monotonicity)
- $\alpha \land \beta \vdash \alpha \land \beta$ (reflexivity)
- $\alpha \land \beta \vdash \beta$ (right weakening)
- $\alpha \land \beta \vdash \gamma$ (MPC)

Monotonicity \Leftarrow EHD:

- $\models \alpha \to \beta, \beta \vdash \gamma$ (assumption)
- $\beta \vdash \alpha \to \gamma$ (right weakening)
Undesirable Properties (3)

Theorem. In the presence of the rules in system C, *monotonicity* and *EHD* are equivalent.

Proof.

Monotonicity \Rightarrow EHD:

- $\alpha \not\vdash \beta \rightarrow \gamma$ (assumption)
- $\alpha \land \beta \not\vdash \beta \rightarrow \gamma$ (monotonicity)
- $\alpha \land \beta \not\vdash \alpha \land \beta$ (reflexivity)
- $\alpha \land \beta \not\vdash \beta$ (right weakening)
- $\alpha \land \beta \not\vdash \gamma$ (MPC)

Monotonicity \Leftarrow EHD:

- $\models \alpha \rightarrow \beta, \beta \not\vdash \gamma$ (assumption)
- $\beta \not\vdash \alpha \rightarrow \gamma$ (right weakening)
- $\beta \land \alpha \not\vdash \gamma$ (EHD)
Undesirable Properties (3)

Theorem. In the presence of the rules in system C, *monotonicity* and *EHD* are equivalent.

Proof.

Monotonicity ⇒ EHD:

- \(\alpha \vdash \beta \rightarrow \gamma \) (assumption)
- \(\alpha \land \beta \vdash \beta \rightarrow \gamma \) (monotonicity)
- \(\alpha \land \beta \vdash \alpha \land \beta \) (reflexivity)
- \(\alpha \land \beta \vdash \beta \) (right weakening)
- \(\alpha \land \beta \vdash \gamma \) (MPC)

Monotonicity ⇐ EHD:

- \(\models \alpha \rightarrow \beta, \beta \vdash \gamma \) (assumption)
- \(\beta \vdash \alpha \rightarrow \gamma \) (right weakening)
- \(\beta \land \alpha \vdash \gamma \) (EHD)
- \(\alpha \vdash \gamma \) (left logical equivalence)
Undesirable Properties (4)

Theorem. In the presence of the rules in system C, *monotonicity* and *transitivity* are equivalent.
Undesirable Properties (4)

Theorem. In the presence of the rules in system C, *monotonicity* and *transitivity* are equivalent.

Proof.

Monotonicity \Rightarrow transitivity:
Theorem. In the presence of the rules in system C, *monotonicity* and *transitivity* are equivalent.

Proof.

Monotonicity \Rightarrow *transitivity*:

- $\alpha \sim \beta, \beta \sim \gamma$ (assumption)
Theorem. In the presence of the rules in system C, *monotonicity* and *transitivity* are equivalent.

Proof.

Monotonicity ⇒ *transitivity*:

- $\alpha \not\sim \beta, \beta \not\sim \gamma$ (assumption)
- $\alpha \land \beta \not\sim \gamma$ (monotonicity)
Undesirable Properties (4)

Theorem. In the presence of the rules in system C, *monotonicity* and *transitivity* are equivalent.

Proof.

Monotonicity \Rightarrow transitivity:

- $\alpha \models \beta, \beta \models \gamma$ (assumption)
- $\alpha \land \beta \models \gamma$ (monotonicity)
- $\alpha \models \gamma$ (cut)
Theorem. In the presence of the rules in system C, *monotonicity* and *transitivity* are equivalent.

Proof.

Monotonicity \Rightarrow transitivity:

- $\alpha \not\sim \beta, \beta \not\sim \gamma$ (assumption)
- $\alpha \land \beta \not\sim \gamma$ (monotonicity)
- $\alpha \not\sim \gamma$ (cut)

Monotonicity \Leftarrow transitivity:

- $\alpha \not\sim \gamma$ (assumption)
Theorem. In the presence of the rules in system C, *monotonicity* and *transitivity* are equivalent.

Proof.

\[
\begin{align*}
\text{Monotonicity } \Rightarrow \text{ transitivity:} & & \text{Monotonicity } \Leftarrow \text{ transitivity:} \\
\bullet & \alpha \vdash \beta, \beta \vdash \gamma \text{ (assumption)} & \bullet & \vdash \alpha \rightarrow \beta, \beta \vdash \gamma \text{ (assumption)} \\
\bullet & \alpha \land \beta \vdash \gamma \text{ (monotonicity)} & \bullet & \vdash \alpha \rightarrow \beta, \beta \vdash \gamma \text{ (assumption)} \\
\bullet & \alpha \vdash \gamma \text{ (cut)} & \bullet & \vdash \alpha \rightarrow \beta, \beta \vdash \gamma \text{ (assumption)}
\end{align*}
\]
Undesirable Properties (4)

Theorem. In the presence of the rules in system C, monotonicity and transitivity are equivalent.

Proof.

Monotonicity \Rightarrow transitivity:

- $\alpha \not\rightarrow \beta, \beta \not\rightarrow \gamma$ (assumption)
- $\alpha \land \beta \not\rightarrow \gamma$ (monotonicity)
- $\alpha \not\rightarrow \gamma$ (cut)

Monotonicity \Leftrightarrow transitivity:

- $\models \alpha \rightarrow \beta, \beta \not\rightarrow \gamma$ (assumption)
- $\alpha \models \beta$ (classical deduction theorem)
Undesirable Properties (4)

Theorem. In the presence of the rules in system C, *monotonicity* and *transitivity* are equivalent.

Proof.

\[\text{Monotonicity } \Rightarrow \text{ transitivity:}\]

- \(\alpha \not\sim \beta, \beta \not\sim \gamma\) (assumption)
- \(\alpha \land \beta \not\sim \gamma\) (monotonicity)
- \(\alpha \not\sim \gamma\) (cut)

\[\text{Monotonicity } \Leftarrow \text{ transitivity:}\]

- \(\models \alpha \rightarrow \beta, \beta \not\sim \gamma\) (assumption)
- \(\alpha \models \beta\) (classical deduction theorem)
- \(\alpha \not\sim \beta\) (super classicality)
Theorem. In the presence of the rules in system C, monotonicity and transitivity are equivalent.

Proof.

Monotonicity \Rightarrow transitivity:

1. $\alpha \not\sim \beta, \beta \not\sim \gamma$ (assumption)
2. $\alpha \land \beta \not\sim \gamma$ (monotonicity)
3. $\alpha \not\sim \gamma$ (cut)

Monotonicity \Leftrightarrow transitivity:

1. $\models \alpha \rightarrow \beta, \beta \not\sim \gamma$ (assumption)
2. $\alpha \models \beta$ (classical deduction theorem)
3. $\alpha \not\sim \beta$ (super classicality)
4. $\alpha \not\sim \gamma$ (transitivity)
Theorem. In the presence of *right weakening, contraposition* implies *monotonicity*.
Theorem. In the presence of *right weakening*, *contraposition* implies *monotonicity*.

Proof.

- $\models \alpha \rightarrow \beta, \beta \vdash \gamma$ (assumption)
Theorem. In the presence of *right weakening*, *contraposition* implies *monotonicity*.

Proof.

- $\models \alpha \rightarrow \beta, \beta \not\models \gamma$ (assumption)
- $\neg \gamma \models \neg \beta$ (contraposition)
Theorem. In the presence of right weakening, contraposition implies monotonicity.

Proof.

- $\models \alpha \rightarrow \beta, \beta \not\models \gamma$ (assumption)
- $\neg \gamma \not\models \neg \beta$ (contraposition)
- $\models \neg \beta \rightarrow \neg \alpha$ (classical contraposition)
Theorem. In the presence of right weakening, contraposition implies monotonicity.

Proof.

- $\models \alpha \rightarrow \beta, \beta \not\models \gamma$ (assumption)
- $\neg \gamma \not\models \neg \beta$ (contraposition)
- $\models \neg \beta \rightarrow \neg \alpha$ (classical contraposition)
- $\neg \gamma \not\models \neg \alpha$ (right weakening)
Undesirable Properties (5)

Theorem. In the presence of right weakening, contraposition implies monotonicity.

Proof.

- $\models \alpha \rightarrow \beta, \beta \not\models \gamma$ (assumption)
- $\not\models \gamma \not\models \neg \beta$ (contraposition)
- $\models \neg \beta \rightarrow \neg \alpha$ (classical contraposition)
- $\not\models \neg \gamma \not\models \neg \alpha$ (right weakening)
- $\alpha \not\models \gamma$ (contraposition)
Theorem. In the presence of right weakening, contraposition implies monotonicity.

Proof.

• $\models \alpha \rightarrow \beta, \beta \not\models \gamma$ (assumption)

• $\neg \gamma \not\models \neg \beta$ (contraposition)

• $\models \neg \beta \rightarrow \neg \alpha$ (classical contraposition)

• $\neg \gamma \not\models \neg \alpha$ (right weakening)

• $\alpha \not\models \gamma$ (contraposition)

Note: Contraposition does not imply monotonicity, even in the presence of all rules of system C!
• Until now, we have only studied properties of \sim.
Cumulative Closure (1)

- Until now, we have only studied properties of \sim.
- How do we reason from φ to ψ?
Cumulative Closure (1)

- Until now, we have only studied properties of \sim.
- How do we reason from φ to ψ?
- **Assumption**: We have a set K of conditional statements of the form $\alpha_i \sim \beta_i$. The question is now: If we take rules in K as granted, will it then be plausible to conclude ψ if φ is given?
Cumulative Closure (1)

- Until now, we have only studied properties of ϕ.
- How do we reason from φ to ψ?
- **Assumption**: We have a set K of conditional statements of the form $\alpha_i \models \beta_i$. The question is now: If we take rules in K as granted, will it then be plausible to conclude ψ if φ is given?
- **Idea**: We consider all cumulative consequence relations which contain K.
Until now, we have only studied properties of \sim.

How do we reason from φ to ψ?

Assumption: We have a set K of conditional statements of the form $\alpha_i \sim \beta_i$. The question is now: If we take rules in K as granted, will it then be plausible to conclude ψ if φ is given?

Idea: We consider all cumulative consequence relations which contain K.

Further Idea: We need to consider only the *minimal* cumulative consequence relations containing K.
Lemma. Cumulative consequence relations are closed under intersection.
Lemma. Cumulative consequence relations are closed under intersection.

Proof. Assume two cumulative consequence relations \sim_1 and \sim_2. If we now have the precondition of a rule satisfied by both relations, then the consequence must of course also be satisfied in both relations (since they are cumulative).
Lemma. Cumulative consequence relations are closed under intersection.

Proof. Assume two cumulative consequence relations $\mid\sim_1$ and $\mid\sim_2$. If we now have the precondition of a rule satisfied by both relations, then the consequence must of course also be satisfied in both relations (since they are cumulative).

Theorem. For each finite set of conditional statements K, there exists a unique smallest cumulative consequence relation containing K.
Lemma. Cumulative consequence relations are closed under intersection.

Proof. Assume two cumulative consequence relations \sim_1 and \sim_2. If we now have the precondition of a rule satisfied by both relations, then the consequence must of course also be satisfied in both relations (since they are cumulative).

Theorem. For each finite set of conditional statements K, there exists a unique smallest cumulative consequence relation containing K.

Proof. Assume the contrary, i.e., there are incomparable minimal sets K_1, \ldots, K_m. Then $K = K_1 \cap \ldots \cap K_m$ is a unique smallest cumulative consequence relation containing K: contradiction.
Lemma. Cumulative consequence relations are closed under intersection.

Proof. Assume two cumulative consequence relations $\mathord\sim_1$ and $\mathord\sim_2$. If we now have the precondition of a rule satisfied by both relations, then the consequence must of course also be satisfied in both relations (since they are cumulative).

Theorem. For each finite set of conditional statements \mathbf{K}, there exists a unique smallest cumulative consequence relation containing \mathbf{K}.

Proof. Assume the contrary, i.e., there are incomparable minimal sets $\mathbf{K}_1, \ldots, \mathbf{K}_m$. Then $\mathbf{K} = \mathbf{K}_1 \cap \ldots \cap \mathbf{K}_m$ is a unique smallest cumulative consequence relation containing \mathbf{K}: contradiction.

This relation is called cumulative closure of \mathbf{K}, in symbols \mathbf{K}^C.
Cumulative Models – informal

- We will now try to characterize cumulative reasoning model theoretically.
Cumulative Models – informal

- We will now try to characterize cumulative reasoning model theoretically.
- **Idea:** *Cumulative models* consists of *states*, which are ordered by a *preference relation*.
We will now try to characterize cumulative reasoning model theoretically.

Idea: *Cumulative models* consists of *states*, which are ordered by a *preference relation*.

States characterize beliefs
We will now try to characterize cumulative reasoning model theoretically.

Idea: Cumulative models consists of states, which are ordered by a preference relation.

States characterize beliefs

The preference relation tries to capture the normality.
Cumulative Models – informal

• We will now try to characterize cumulative reasoning model theoretically.

• **Idea:** *Cumulative models* consists of *states*, which are ordered by a *preference relation*.

• *States* characterize beliefs

• The *preference relation* tries to capture the normality.

• We then will say: \(\alpha \models \beta \) is *accepted* in a model if in all most preferred states in which \(\alpha \) is true, also \(\beta \) is true.
• Let \(\prec \) be an arbitrary binary relation on the set \(U \). \(\prec \) is called **asymmetric** iff

\[
\forall s, t \in U.
\]

\[
s \prec t \text{ implies } t \not\prec s.
\]
Preference Relation

- Let \prec be an arbitrary binary relation on the set U. \prec is called **asymmetric** iff
 \[s \prec t \implies t \not\prec s \quad \forall s, t, \in U. \]

- Let $V \subseteq U$ and \prec be a binary relation on U.
 - $t \in V$ is **minimal** in V iff $\forall s \in V : s \not\prec t$.

Preference Relation

- Let \(\prec \) be an arbitrary binary relation on the set \(U \). \(\prec \) is called **asymmetric** iff

 \[s \prec t \text{ implies } t \not\prec s \quad \forall s, t, \in U. \]

- Let \(V \subseteq U \) and \(\prec \) be a binary relation on \(U \).

 o \(t \in V \) is **minimal** in \(V \) iff \(\forall s \in V : s \not\prec t \).

 o \(t \in V \) is a **minimum** of \(V \) (**smallest element** in \(V \)) iff \(\forall s \in V \) such that \(s \neq t : t \prec s \).
• Let \prec be an arbitrary binary relation on the set U. \prec is called **asymmetric** iff

$$s \prec t \text{ implies } t \not\prec s \ \forall s,t, \in U.$$

• Let $V \subseteq U$ and \prec be a binary relation on U.

 o $t \in V$ is **minimal** in V iff $\forall s \in V : s \not\prec t$.

 o $t \in V$ is a **minimum** of V (**smallest element** in V) iff $\forall s \in V$ such that $s \neq t : t \prec s$.

• Let $P \subseteq U$ and \prec be a binary relation on U. P is **smooth** iff $\forall t \in P :$

 Either t is minimal in P or $\exists s \in P : s$ is minimal in P and $s \prec t$.

Preference Relation
Preference Relation

• Let \(\prec \) be an arbitrary binary relation on the set \(U \). \(\prec \) is called **asymmetric** iff

\[
\text{s \prec t implies } t \not\prec s \quad \forall s, t, \in U.
\]

• Let \(V \subseteq U \) and \(\prec \) be a binary relation on \(U \).

 o \(t \in V \) is **minimal** in \(V \) iff \(\forall s \in V : s \not\prec t \).

 o \(t \in V \) is a **minimum** of \(V \) (**smallest element** in \(V \)) iff \(\forall s \in V \) such that \(s \neq t : t \prec s \).

• Let \(P \subseteq U \) and \(\prec \) be a binary relation on \(U \). \(P \) is **smooth** iff \(\forall t \in P : \) Either \(t \) is minimal in \(P \) or \(\exists s \in P : s \) is minimal in \(P \) and \(s \prec t \).

• **Note:** \(\prec \) is not partial order, but an arbitrary relation!
Cumulative Models – formal

- Let \mathcal{U} be the set of all possible worlds (propositional interpretations).
Cumulative Models – formal

• Let \mathcal{U} be the set of all possible worlds (propositional interpretations).

• A cumulative model W is a tuple $\langle S, l, \prec \rangle$
Cumulative Models – formal

• Let \mathcal{U} be the set of all possible worlds (propositional interpretations).

• A **cumulative model** W is a tuple $\langle S, l, \prec \rangle$, where
 - S is a set of **states**
Let \mathcal{U} be the set of all possible worlds (propositional interpretations).

A cumulative model W is a tuple $\langle S, l, \prec \rangle$, where

- S is a set of states,
- l is a mapping $l : S \rightarrow 2^\mathcal{U}$
Cumulative Models – formal

• Let \mathcal{U} be the set of all possible worlds (propositional interpretations).

• A cumulative model W is a tuple $\langle S, l, \prec \rangle$, where
 ○ S is a set of states,
 ○ l is a mapping $l : S \rightarrow 2^\mathcal{U}$,
 ○ \prec is an arbitrary binary relation, such that the smoothness condition is satisfied (see below).
Cumulative Models – formal

- Let \mathcal{U} be the set of all possible worlds (propositional interpretations).
- A cumulative model W is a tuple $\langle S, l, \prec \rangle$, where
 - S is a set of states,
 - l is a mapping $l : S \rightarrow 2^\mathcal{U}$,
 - \prec is an arbitrary binary relation, such that the smoothness condition is satisfied (see below).
- A state $s \in S$ satisfies a formula α ($s \models \alpha$) iff for all propositional interpretations $m \in l(s)$: $m \models \alpha$.
Cumulative Models – formal

- Let \mathcal{U} be the set of all possible worlds (propositional interpretations).

- A **cumulative model** W is a tuple $\langle S, l, \prec \rangle$, where
 - S is a set of states,
 - l is a mapping $l : S \rightarrow 2^{\mathcal{U}}$,
 - \prec is an arbitrary binary relation, such that the smoothness condition is satisfied (see below).

- A state $s \in S$ **satisfies** a formula α ($s \models \alpha$) iff for all propositional interpretations $m \in l(s)$: $m \models \alpha$.

- The set of states satisfying α is denoted by $\hat{\alpha}$.
Cumulative Models – formal

- Let \mathcal{U} be the set of all possible worlds (propositional interpretations).
- A **cumulative model** \mathcal{W} is a tuple $\langle S, l, \prec \rangle$, where
 - S is a set of **states**,
 - l is a mapping $l : S \rightarrow 2^\mathcal{U}$,
 - \prec is an arbitrary **binary relation**, such that the **smoothness condition** is satisfied (see below).
- A state $s \in S$ **satisfies** a formula α ($s \models \alpha$) iff for all propositional interpretations $m \in l(s)$: $m \models \alpha$.
- The set of states satisfying α is denoted by $\hat{\alpha}$.
- **Smoothness condition:** A cumulative model satisfies this condition iff $\forall \alpha : \hat{\alpha}$ is smooth.
Consequence relation induced by a cumulative model

A cumulative model W induces a consequence relation \sim_W as follows:

$$\alpha \sim_W \beta \iff \text{for each minimal } s \text{ in } \hat{\alpha}: s \models \beta$$

Example: Model $W = \langle \{s_0, s_1, s_2, s_3\}, l, \prec \rangle$ with $s_0 \prec s_1 \prec s_2 \prec s_3$ (transitive!)
A cumulative model W induces a consequence relation \vdash_W as follows:

$\alpha \vdash_W \beta$ iff for each minimal s in $\hat{\alpha}$: $s \models \beta$

Example: Model $W = \langle \{s_0, s_1, s_2, s_3 \}, l, \prec \rangle$ with $s_0 \prec s_1 \prec s_2 \prec s_3$ (transitive!)

$$l(s_0) = \{ \{\neg p, \neg b, \neg f \}, \{\neg p, \neg b, f \}, \{\neg p, b, \neg f \}, \{\neg p, b, f \} \}$$
Consequence relation induced by a cumulative model

A cumulative model W induces a consequence relation \sim_W as follows:

$$\alpha \sim_W \beta \quad \text{iff} \quad \text{for each minimal } s \text{ in } \hat{\alpha}: s \models \beta$$

Example: Model $W = \langle \{s_0, s_1, s_2, s_3\}, l, \prec \rangle$ with $s_0 \prec s_1 \prec s_2 \prec s_3$ (transitive!)

$$l(s_0) = \{\{\neg p, \neg b, \neg f\}, \{\neg p, \neg b, f\}, \{\neg p, b, \neg f\}, \{\neg p, b, f\}\}$$

$$l(s_1) = \{\{\neg p, b, f\}\}$$
Consequence relation induced by a cumulative model

A cumulative model W induces a consequence relation \sim_W as follows:

$$\alpha \sim_W \beta \quad \text{iff} \quad \text{for each minimal } s \text{ in } \hat{\alpha}: s \models \beta$$

Example: Model $W = \langle \{s_0, s_1, s_2, s_3\}, l, \prec \rangle$ with $s_0 \prec s_1 \prec s_2 \prec s_3$ (transitive!)

$$l(s_0) = \{\{-p, \neg b, \neg f\}, \{-p, b, \neg f\}, \{-p, b, f\}\}$$
$$l(s_1) = \{\{-p, b, f\}\}$$
$$l(s_2) = \{\{p, b, \neg f\}\}$$
A cumulative model W induces a consequence relation \sim_W as follows:

$$\alpha \sim_W \beta \iff \text{for each minimal } s \text{ in } \hat{\alpha}: s \models \beta$$

Example: Model $W = \langle \{s_0, s_1, s_2, s_3\}, l, \prec \rangle$ with $s_0 \prec s_1 \prec s_2 \prec s_3$ (transitive!)

- $l(s_0) = \{\{-p, \neg b, \neg f\}, \{-p, \neg b, f\}, \{-p, b, \neg f\}, \{-p, b, f\}\}$
- $l(s_1) = \{\{-p, b, f\}\}$
- $l(s_2) = \{\{p, b, \neg f\}\}$
- $l(s_3) = \{\{-p, \neg b, f\}, \{-p, \neg b, \neg f\}\}$
Consequence relation induced by a cumulative model

A cumulative model W induces a consequence relation \sim_W as follows:

$$\alpha \sim_W \beta \iff \text{for each minimal } s \text{ in } \hat{\alpha}: s \models \beta$$

Example: Model $W = \langle \{s_0, s_1, s_2, s_3\}, l, \prec \rangle$ with $s_0 \prec s_1 \prec s_2 \prec s_3$ (transitive!)

- $l(s_0) = \{\{\neg p, \neg b, \neg f\}, \{\neg p, \neg b, f\},$ \{\neg p, b, \neg f\}, \{\neg p, b, f\}\}$
- $l(s_1) = \{\{\neg p, b, f\}\}$
- $l(s_2) = \{\{p, b, \neg f\}\}$
- $l(s_3) = \{\{\neg p, \neg b, f\}, \{\neg p, \neg b, \neg f\}\}$

- Does W satisfy the smoothness condition?
Consequence relation induced by a cumulative model

A cumulative model W induces a consequence relation \sim_W as follows:

$$\alpha \sim_W \beta \quad \text{iff} \quad \text{for each minimal } s \text{ in } \hat{\alpha}: s \models \beta$$

Example: Model $W = \langle \{s_0, s_1, s_2, s_3\}, l, \prec \rangle$ with $s_0 \prec s_1 \prec s_2 \prec s_3$ (transitive!)

$$
l(s_0) = \{\{\neg p, \neg b, \neg f\}, \{\neg p, \neg b, f\},$
$$\quad \{\neg p, b, \neg f\}, \{\neg p, b, f\}\}$$

$$l(s_1) = \{\{\neg p, b, f\}\}$$

$$l(s_2) = \{\{p, b, \neg f\}\}$$

$$l(s_3) = \{\{\neg p, \neg b, f\}, \{\neg p, \neg b, \neg f\}\}$$

- Does W satisfy the smoothness condition?
- Which pairs are in \sim_W?
Soundness (1)

Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.
Soundness (1)

Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- Reflexivity:
Soundness (1)

Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- *Reflexivity*: satisfied $\sqrt{\text{.}}$.
Soundness (1)

Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- Reflexivity: satisfied √.

- Left logical equivalence:
Soundness (1)

Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- **Reflexivity:** satisfied $\sqrt{\cdot}$.

- **Left logical equivalence:** satisfied $\sqrt{\cdot}$.
Soundness (1)

Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- **Reflexivity:** satisfied \checkmark.

- **Left logical equivalence:** satisfied \checkmark.

- **Right weakening:**
Soundness (1)

Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- **Reflexivity:** satisfied \checkmark.

- **Left logical equivalence:** satisfied \checkmark.

- **Right weakening:** satisfied \checkmark.
Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- **Reflexivity**: satisfied $\sqrt{\cdot}$.

 - **Left logical equivalence**: satisfied $\sqrt{\cdot}$.

 - **Right weakening**: satisfied $\sqrt{\cdot}$.

 - **Cut:**
Soundness (1)

Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- **Reflexivity:** satisfied ✓
- **Left logical equivalence:** satisfied ✓
- **Right weakening:** satisfied ✓
- **Cut:** $\alpha \land \beta \vdash \gamma$, $\alpha \vdash \beta \Rightarrow \alpha \vdash \gamma$.
Soundness (1)

Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- **Reflexivity:** satisfied $\sqrt{}$.

- **Left logical equivalence:** satisfied $\sqrt{}$.

- **Right weakening:** satisfied $\sqrt{}$.

- **Cut:** $\alpha \land \beta \models \gamma$, $\alpha \models \beta \Rightarrow \alpha \models \gamma$. Assume, all minimal elements of $\hat{\alpha}$ satisfy β.

Soundness (1)

Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- *Reflexivity:* satisfied \checkmark.

- *Left logical equivalence:* satisfied \checkmark.

- *Right weakening:* satisfied \checkmark.

- *Cut:* $\alpha \land \beta \sim \gamma$, $\alpha \sim \beta \Rightarrow \alpha \sim \gamma$. Assume, all minimal elements of $\hat{\alpha}$ satisfy β, and all minimal elements of $\hat{\alpha} \land \hat{\beta}$ satisfy γ.
Soundness (1)

Theorem. If W is a cumulative model, then $|\sim W$ is a cumulative consequence relation.

Proof.

- **Reflexivity:** satisfied $\sqrt{\cdot}$.

- **Left logical equivalence:** satisfied $\sqrt{\cdot}$.

- **Right weakening:** satisfied $\sqrt{\cdot}$.

- **Cut:** $\alpha \land \beta \vdash (\alpha \vdash \beta \Rightarrow \alpha \vdash \gamma)$. Assume, all minimal elements of $\hat{\alpha}$ satisfy β, and all minimal elements of $\hat{\alpha} \land \hat{\beta}$ satisfy γ. Each minimal element of $\hat{\alpha}$ satisfies $\alpha \land \beta$.
Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

• **Reflexivity:** satisfied $\sqrt{\ }$.

• **Left logical equivalence:** satisfied $\sqrt{\ }$.

• **Right weakening:** satisfied $\sqrt{\ }$.

• **Cut:** $\alpha \land \beta \mid \sim \gamma, \alpha \mid \sim \beta \Rightarrow \alpha \mid \sim \gamma$. Assume, all minimal elements of $\hat{\alpha}$ satisfy β, and all minimal elements of $\hat{\alpha} \land \hat{\beta}$ satisfy γ. Each minimal element of $\hat{\alpha}$ satisfies $\alpha \land \beta$. Since $\hat{\alpha} \land \hat{\beta} \subseteq \hat{\alpha}$
Soundness (1)

Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

• **Reflexivity:** satisfied \checkmark.

• **Left logical equivalence:** satisfied \checkmark.

• **Right weakening:** satisfied \checkmark.

• **Cut:** $\alpha \land \beta \sim \gamma, \alpha \sim \beta \Rightarrow \alpha \sim \gamma$. Assume, all minimal elements of $\hat{\alpha}$ satisfy β, and all minimal elements of $\hat{\alpha} \land \hat{\beta}$ satisfy γ. Each minimal element of $\hat{\alpha}$ satisfies $\alpha \land \beta$. Since $\hat{\alpha} \land \hat{\beta} \subseteq \hat{\alpha}$, all minimal elements of $\hat{\alpha}$ are also minimal elements of $\hat{\alpha} \land \hat{\beta}$.
Theorem. If W is a cumulative model, then \sim_W is a cumulative consequence relation.

Proof.

- **Reflexivity:** satisfied $\sqrt{}$.

- **Left logical equivalence:** satisfied $\sqrt{}$.

- **Right weakening:** satisfied $\sqrt{}$.

- **Cut:** $\alpha \land \beta \sim \gamma$, $\alpha \sim \beta \Rightarrow \alpha \sim \gamma$. Assume, all minimal elements of $\hat{\alpha}$ satisfy β, and all minimal elements of $\hat{\alpha} \land \hat{\beta}$ satisfy γ. Each minimal element of $\hat{\alpha}$ satisfies $\alpha \land \beta$. Since $\hat{\alpha} \land \hat{\beta} \subseteq \hat{\alpha}$, all minimal elements of $\hat{\alpha}$ are also minimal elements of $\hat{\alpha} \land \hat{\beta}$. This means $\alpha \sim_W \gamma$.

Soundness (2)

- **Cautious Monotonicity**: To show: $\alpha \vdash \beta$, $\alpha \vdash \gamma \Rightarrow \alpha \land \beta \vdash \gamma$.
Soundness (2)

- **Cautious Monotonicity**: To show: $\alpha \not\models \beta, \alpha \not\models \gamma \Rightarrow \alpha \land \beta \not\models \gamma$.

 Assume $\alpha \not\models_W \beta$ and $\alpha \not\models_W \gamma$.

Soundness (2)

- **Cautious Monotonicity**: To show: \(\alpha \not\models \beta, \alpha \not\models \gamma \Rightarrow \alpha \land \beta \not\models \gamma \).

 Assume \(\alpha \not\models W \beta \) and \(\alpha \not\models W \gamma \). We have to show: \(\alpha \land \beta \not\models W \gamma \), i.e., for all minimal \(s \in \overline{\alpha \land \beta} \), \(s \models W \gamma \).
Soundness (2)

- **Cautious Monotonicity:** To show: $\alpha \models \beta$, $\alpha \models \gamma \Rightarrow \alpha \wedge \beta \models \gamma$.

 Assume $\alpha \models_W \beta$ and $\alpha \models_W \gamma$. We have to show: $\alpha \wedge \beta \models_W \gamma$, i.e., for all minimal $s \in \hat{\alpha} \wedge \beta$, $s \models \gamma$.

 We know that all minimal $s \in \hat{\alpha} \wedge \beta$ are in $\hat{\alpha}$.
• **Cautious Monotonicity:** To show: \(\alpha \not\models \beta, \alpha \not\models \gamma \Rightarrow \alpha \land \beta \not\models \gamma \).

Assume \(\alpha \not\models_w \beta \) and \(\alpha \not\models_w \gamma \). We have to show: \(\alpha \land \beta \not\models_w \gamma \), i.e., for all minimal \(s \in \overline{\alpha \land \beta} \), \(s \models \gamma \).

We know that all minimal \(s \in \overline{\alpha \land \beta} \) are in \(\hat{\alpha} \). We will show that they are all minimal in \(\hat{\alpha} \).
Soundness (2)

- **Cautious Monotonicity**: To show: $\alpha \not\models \beta$, $\alpha \not\models \gamma \Rightarrow \alpha \land \beta \not\models \gamma$.

 Assume $\alpha \not\models_W \beta$ and $\alpha \not\models_W \gamma$. We have to show: $\alpha \land \beta \not\models_W \gamma$, i.e., for all minimal $s \in \widehat{\alpha \land \beta}$, $s \models \gamma$.

 We know that all minimal $s \in \widehat{\alpha \land \beta}$ are in $\hat{\alpha}$. We will show that they are all minimal in $\hat{\alpha}$.

 Assumption: There exists an s minimal in $\widehat{\alpha \land \beta}$ that is not minimal in $\hat{\alpha}$.
Soundness (2)

• **Cautious Monotonicity:** To show: $\alpha \vdash \beta$, $\alpha \vdash \gamma \Rightarrow \alpha \land \beta \vdash \gamma$.

Assume $\alpha \vdash_W \beta$ and $\alpha \vdash_W \gamma$. We have to show: $\alpha \land \beta \vdash_W \gamma$, i.e., for all minimal $s \in \widehat{\alpha \land \beta}$, $s \equiv \gamma$.

We know that all minimal $s \in \widehat{\alpha \land \beta}$ are in $\widehat{\alpha}$. We will show that they are all minimal in $\widehat{\alpha}$.

Assumption: There exists an s minimal in $\widehat{\alpha \land \beta}$ that is not minimal in $\widehat{\alpha}$. Because of the **smoothness condition** there exists $s' \in \widehat{\alpha}$, such that $s' \prec s$.
Soundness (2)

- **Cautious Monotonicity**: To show: \(\alpha \not\leadsto \beta, \alpha \not\leadsto \gamma \Rightarrow \alpha \land \beta \not\leadsto \gamma. \)

 Assume \(\alpha \not\leadsto_W \beta \) and \(\alpha \not\leadsto_W \gamma \). We have to show: \(\alpha \land \beta \not\leadsto_W \gamma \), i.e., for all minimal \(s \in \widehat{\alpha \land \beta} \), \(s \models \gamma \).

 We know that all minimal \(s \in \widehat{\alpha \land \beta} \) are in \(\hat{\alpha} \). We will show that they are all minimal in \(\hat{\alpha} \).

 Assumption: There exists an \(s \) minimal in \(\widehat{\alpha \land \beta} \) that is not minimal in \(\hat{\alpha} \). Because of the *smoothness condition* there exists \(s' \in \hat{\alpha} \), such that \(s' \prec s \). We know, however, that \(s' \models \beta \), which means \(s' \in \widehat{\alpha \land \beta} \).
Soundness (2)

- **Cautious Monotonicity**: To show: $\alpha \not\leq \beta, \alpha \not\leq \gamma \Rightarrow \alpha \land \beta \not\leq \gamma$.

Assume $\alpha \not\leq W \beta$ and $\alpha \not\leq W \gamma$. We have to show: $\alpha \land \beta \not\leq W \gamma$, i.e., for all minimal $s \in \alpha \land \beta$, $s \equiv \gamma$.

We know that all minimal $s \in \alpha \land \beta$ are in $\hat{\alpha}$. We will show that they are all minimal in $\hat{\alpha}$.

Assumption: There exists an s minimal in $\alpha \land \beta$ that is not minimal in $\hat{\alpha}$. Because of the *smoothness condition* there exists $s' \in \hat{\alpha}$, such that $s' \prec s$. We know, however, that $s' \equiv \beta$, which means $s' \in \alpha \land \beta$. This implies that s is not minimal in $\alpha \land \beta$.
Soundness (2)

- **Cautious Monotonicity**: To show: $\alpha \models \beta$, $\alpha \models \gamma \Rightarrow \alpha \land \beta \models \gamma$.

 Assume $\alpha \models_W \beta$ and $\alpha \models_W \gamma$. We have to show: $\alpha \land \beta \models_W \gamma$, i.e., for all minimal $s \in \hat{\alpha} \land \beta$, $s \models \gamma$.

 We know that all minimal $s \in \hat{\alpha} \land \beta$ are in $\hat{\alpha}$. We will show that they are all minimal in $\hat{\alpha}$.

 Assumption: There exists an s minimal in $\hat{\alpha} \land \beta$ that is not minimal in $\hat{\alpha}$. Because of the smoothness condition there exists $s' \in \hat{\alpha}$, such that $s' \prec s$. We know, however, that $s' \models \beta$, which means $s' \in \hat{\alpha} \land \beta$. This implies that s is not minimal in $\hat{\alpha} \land \beta$. **Contradiction!**
Soundness (2)

- **Cautious Monotonicity:** To show: \(\alpha \vdash \beta, \alpha \vdash \gamma \Rightarrow \alpha \land \beta \vdash \gamma. \)

Assume \(\alpha \vdash_W \beta \) and \(\alpha \vdash_W \gamma \). We have to show: \(\alpha \land \beta \vdash_W \gamma \), i.e., for all minimal \(s \in \widehat{\alpha \land \beta} \), \(s \models \gamma \).

We know that all minimal \(s \in \widehat{\alpha \land \beta} \) are in \(\widehat{\alpha} \). We will show that they are all minimal in \(\widehat{\alpha} \).

Assumption: There exists an \(s \) minimal in \(\widehat{\alpha \land \beta} \) that is not minimal in \(\widehat{\alpha} \). Because of the **smoothness condition** there exists \(s' \in \widehat{\alpha} \), such that \(s' \prec s \). We know, however, that \(s' \models \beta \), which means \(s' \in \widehat{\alpha \land \beta} \). This implies that \(s \) is not minimal in \(\widehat{\alpha \land \beta} \). **Contradiction!** This means that \(s \) must be minimal in \(\widehat{\alpha} \),
• **Cautious Monotonicity**: To show: $\alpha \not\sim_\beta$, $\alpha \not\sim_\gamma \Rightarrow \alpha \land \beta \not\sim_\gamma$.

Assume $\alpha \not\sim_W \beta$ and $\alpha \not\sim_W \gamma$. We have to show: $\alpha \land \beta \not\sim_W \gamma$, i.e., for all minimal $s \in \hat{\alpha} \land \hat{\beta}$, $s \equiv \gamma$.

We know that all minimal $s \in \hat{\alpha} \land \hat{\beta}$ are in $\hat{\alpha}$. We will show that they are all minimal in $\hat{\alpha}$.

Assumption: There exists an s minimal in $\hat{\alpha} \land \hat{\beta}$ that is not minimal in $\hat{\alpha}$. Because of the *smoothness condition* there exists $s' \in \hat{\alpha}$, such that $s' \prec s$. We know, however, that $s' \equiv \beta$, which means $s' \in \hat{\alpha} \land \hat{\beta}$. This implies that s is not minimal in $\hat{\alpha} \land \hat{\beta}$. **Contradiction!** This means that s must be minimal in $\hat{\alpha}$, i.e. $s \equiv \gamma$.

Soundness (2)
Soundness (2)

- **Cautious Monotonicity:** To show: $\alpha \vdash \beta$, $\alpha \vdash \gamma \Rightarrow \alpha \land \beta \vdash \gamma$.

 Assume $\alpha \vdash_W \beta$ and $\alpha \vdash_W \gamma$. We have to show: $\alpha \land \beta \vdash_W \gamma$, i.e., for all minimal $s \in \widehat{\alpha \land \beta}$, $s \equiv \gamma$.

 We know that all minimal $s \in \widehat{\alpha \land \beta}$ are in $\hat{\alpha}$. We will show that they are all minimal in $\hat{\alpha}$.

 Assumption: There exists an s minimal in $\widehat{\alpha \land \beta}$ that is not minimal in $\hat{\alpha}$. Because of the *smoothness condition* there exists $s' \in \hat{\alpha}$, such that $s' \prec s$. We know, however, that $s' \equiv \beta$, which means $s' \in \widehat{\alpha \land \beta}$. This implies that s is not minimal in $\widehat{\alpha \land \beta}$. **Contradiction!** This means that s must be minimal in $\hat{\alpha}$, i.e. $s \equiv \gamma$. Because this is true for all minimal elements in $\widehat{\alpha \land \beta}$, it follows that $\alpha \land \beta \vdash_W \gamma$.