Principles of Knowledge Representation and Reasoning

4. Nonmonotonic Reasoning

4.4 Argumentation Theoretic Approaches

Bernhard Nebel

- Motivation
- Stable Extensions
- DL and Poole’s THEORIST
- Admissible and Preferred Extensions
- Upper Bounds for Nonmonotonic Reasoning
- THEORIST: Completeness Results
- DL: Completeness Results
Motivation

• With conventional, “stable” extensions, one always has to consider all assumptions, when a particular formula should be proven.
Motivation

• With conventional, “stable” extensions, one always has to consider all assumptions, when a particular formula should be proven.

• An assumption can only be “rejected” if it is in conflict with the conventional extension.
Motivation

• With conventional, “stable” extensions, one always has to consider all assumptions, when a particular formula should be proven.

• An assumption can only be “rejected” if it is in conflict with the conventional extension.

• Instead more “local” approaches:
 – create extension in a way such that it supports the formula we want to prove.
Motivation

- With conventional, “stable” extensions, one always has to consider all assumptions, when a particular formula should be proven.

- An assumption can only be “rejected” if it is in conflict with the conventional extension.

- Instead more “local” approaches:
 - create extension in a way such that it supports the formula we want to prove.
 - if there are “counter-arguments” to the created partial extension, try to reject these counter-arguments.
Motivation

- With conventional, “stable” extensions, one always has to consider all assumptions, when a particular formula should be proven.

- An assumption can only be “rejected” if it is in conflict with the conventional extension.

- Instead more “local” approaches:
 - create extension in a way such that it supports the formula we want to prove.
 - if there are “counter-arguments” to the created partial extension, try to reject these counter-arguments.

~ Hopefully, such approaches are “more natural” and computationally simpler than ordinary NM logics.
Terminology

- *Background theory* T – set of formulae from some logical language \mathcal{L}
Terminology

- **Background theory** T – set of formulae from some logical language \mathcal{L}
- **monotonic derivability relation** \vdash
Terminology

- **Background theory** T – set of formulae from some logical language \mathcal{L}
- **monotonic derivability relation** \vdash
- $\text{Th}(\cdot)$ is the *deductive closure*
Terminology

• *Background theory* T – set of formulae from some logical language \mathcal{L}
• *monotonic derivability relation* \vdash
• $\text{Th}(\cdot)$ is the *deductive closure*
• Set of *possible assumptions* $A \subseteq \mathcal{L}$
• **Background theory** T – set of formulae from some logical language \mathcal{L}
• **monotonic derivability relation** \vdash
• $\text{Th}(\cdot)$ is the **deductive closure**
• Set of **possible assumptions** $A \subseteq \mathcal{L}$
• For each assumption α there exists a **contrary** $\bar{\alpha}$
Terminology

- **Background theory** T – set of formulae from some logical language \mathcal{L}
- **monotonic derivability relation** \vdash
- $\text{Th}(\cdot)$ is the **deductive closure**
- Set of **possible assumptions** $A \subseteq \mathcal{L}$
- For each assumption α there exists a **contrary** $\overline{\alpha}$

\Rightarrow **Argumentation-Theoretic Frame**: (T, A, \vdash)
Terminology

- **Background theory** T – set of formulae from some logical language \mathcal{L}
- **monotonic derivability relation** \vdash
- $\text{Th}(\cdot)$ is the *deductive closure*
- Set of *possible assumptions* $A \subseteq \mathcal{L}$
- For each assumption α there exists a *contrary* $\bar{\alpha}$

\sim **Argumentation-Theoretic Frame**: (T, A, \vdash)

- A *possible extension* of T and A is $\text{Th}(T \cup \Delta)$, if $\Delta \subseteq A$. Δ is called *argument*
Terminology

- **Background theory** T – set of formulae from some logical language \mathcal{L}
- **monotonic derivability relation** \vdash
- $\text{Th}(\cdot)$ is the *deductive closure*
- Set of *possible assumptions* $A \subseteq \mathcal{L}$
- For each assumption α there exists a *contrary* $\overline{\alpha}$

\leadsto **Argumentation-Theoretic Frame**: (T, A, \vdash)

- A possible extension of T and A is $\text{Th}(T \cup \Delta)$, if $\Delta \subseteq A$. Δ is called *argument*
- $\Delta \subseteq A$ attacks $\alpha \in A$ iff $\overline{\alpha} \in \text{Th}(T \cup \Delta)$
Terminology

- **Background theory** T – set of formulae from some logical language \mathcal{L}
- **monotonic derivability relation** \vdash
- $\text{Th}(\cdot)$ is the *deductive closure*
- Set of *possible assumptions* $A \subseteq \mathcal{L}$
- For each assumption α there exists a *contrary* $\overline{\alpha}$

\[\sim \text{ Argumentation-Theoretic Frame: } (T, A, \vdash) \]

- A *possible extension* of T and A is $\text{Th}(T \cup \Delta)$, if $\Delta \subseteq A$. Δ is called *argument*
- $\Delta \subseteq A$ *attacks* $\alpha \in A$ iff $\overline{\alpha} \in \text{Th}(T \cup \Delta)$
- $\Delta \subseteq A$ *attacks* $\Delta' \subseteq A$ iff Δ attacks a $\alpha \in \Delta'$
- Δ is *closed* iff $\Delta = A \cap \text{Th}(T \cup \Delta)$
Stable Extensions

• For an argumentation-theoretic frame \((T, A, \vdash)\), \(Th(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a stable extension (and \(\Delta\) is called a stable argument) iff

1. \(\Delta\) is closed
Stable Extensions

• For a argumentation-theoretic frame \((T, A, \mathcal{\tau})\), \(Th(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a stable extension (and \(\Delta\) is called stable argument) iff

1. \(\Delta\) is closed,

2. \(\Delta\) does not attack itself
Stable Extensions

- For a argumentation-theoretic frame \((T, A, \vdash)\), \(Th(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a stable extension (and \(\Delta\) is called stable argument) iff
 1. \(\Delta\) is closed,
 2. \(\Delta\) does not attack itself,
 3. \(\Delta\) attacks all \(\alpha \in A - \Delta\).
Stable Extensions

• For a argumentation-theoretic frame \((T, A, \cdot)\), \(Th(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a **stable extension** (and \(\Delta\) is called **stable argument**) iff

1. \(\Delta\) is **closed**,
2. \(\Delta\) does not **attack** itself,
3. \(\Delta\) attacks all \(\alpha \in A - \Delta\).

• **Note:** If \(Th(T \cup \Delta)\) is a **stable extension** of \((T, A, \cdot)\), then all proper subsets and all proper supersets of \(Th(T \cup \Delta)\) cannot be stable extensions.
Stable Extensions

- For an argumentation-theoretic frame \((T, A, \mathcal{\cdot})\), \(Th(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a stable extension (and \(\Delta\) is called stable argument) iff
 1. \(\Delta\) is closed,
 2. \(\Delta\) does not attack itself,
 3. \(\Delta\) attacks all \(\alpha \in A - \Delta\).

- **Note**: If \(Th(T \cup \Delta)\) is a stable extension of \((T, A, \mathcal{\cdot})\), then all proper subsets and all proper supersets of \(Th(T \cup \Delta)\) cannot be stable extensions.

- All “conventional” semantics of NM logics (DL, THEORIST, Circumscription, AEL, NML, LP, . . .) are based on stable extensions.
Stable Extensions

- For a argumentation-theoretic frame \((T, A, \cdot)\), \(Th(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a **stable extension** (and \(\Delta\) is called **stable argument**) iff
 1. \(\Delta\) is **closed**,
 2. \(\Delta\) does not **attack** itself,
 3. \(\Delta\) attacks all \(\alpha \in A - \Delta\).

- **Note**: If \(Th(T \cup \Delta)\) is a **stable extension** of \((T, A, \cdot)\), then all proper subsets and all proper supersets of \(Th(T \cup \Delta)\) cannot be stable extensions.

- All “conventional” semantics of NM logics (DL, THEORIST, Circumscription, AEL, NML, LP, ...) are based on stable extensions.

- Name comes from von **stable expansions** (AEL) and **stable model semantics** (LP).
Let (W, D) be a DL theory with $D = \{\frac{\alpha_i \cdot \beta_i}{\gamma_i}\}$.
DL and Stable Extensions

• Let \((W, D)\) be a DL theory with \(D = \{\frac{\alpha_i : \beta_i}{\gamma_i}\}\)

• The background theory \(T = W\)
DL and Stable Extensions

- Let \((W, D)\) be a DL theory with \(D = \{\frac{\alpha_i:\beta_i}{\gamma_i}\}\)
- The background theory \(T = W\)
- The monotonic derivability relation is classical derivability extended by the inference rules \(\{\frac{\alpha_i,M\beta_i}{\gamma_i} | \frac{\alpha_i:\beta_i}{\gamma_i} \in D\}\)
• Let \((W, D)\) be a DL theory with \(D = \{ \frac{\alpha_i:\beta_i}{\gamma_i} \}\).

• The background theory \(T = W\).

• The monotonic derivability relation is classical derivability extended by the inference rules \(\{ \frac{\alpha_i, M\beta_i}{\gamma_i} \mid \frac{\alpha_i:\beta_i}{\gamma_i} \in D \}\). Here we interpret \(M\beta_i\) as a fresh atom!
Let \((W, D)\) be a DL theory with \(D = \{\frac{\alpha_i; \beta_i}{\gamma_i}\}\).

The background theory \(T = W\).

The monotonic derivability relation is classical derivability extended by the inference rules \(\frac{\alpha_i; M\beta_i}{\gamma_i} : \frac{\alpha_i; \beta_i}{\gamma_i} \in D\). Here we interpret \(M\beta_i\) as a fresh atom!

\(A = \{M\beta_i \mid \frac{\alpha_i; \beta_i}{\gamma_i} \in D\}\).
DL and Stable Extensions

- Let (W, D) be a DL theory with $D = \left\{ \frac{\alpha_i : \beta_i}{\gamma_i} \right\}$
- The background theory $T = W$
- The monotonic derivability relation is classical derivability extended by the inference rules $\left\{ \frac{\alpha_i, M\beta_i}{\gamma_i} \mid \frac{\alpha_i : \beta_i}{\gamma_i} \in D \right\}$. Here we interpret $M\beta_i$ as a fresh atom!
- $A = \{ M\beta_i \mid \frac{\alpha_i : \beta_i}{\gamma_i} \in D \}$
- $M\beta_i = \neg\beta_i$
Let \((W, D)\) be a DL theory with
\[D = \{ \frac{\alpha_i}{\gamma_i}, \beta_i, \gamma_i \} \]

The background theory \(T = W\)

The monotonic derivability relation is classical derivability extended by the inference rules \(\{ \frac{\alpha_i, M\beta_i}{\gamma_i}, \frac{\alpha_i, \beta_i}{\gamma_i} \in D \}\). Here we interpret \(M\beta_i\) as a fresh atom!

\[A = \{ M\beta_i | \frac{\alpha_i, \beta_i}{\gamma_i} \in D \} \]

\[\overline{M\beta_i} = \neg \beta_i \]

Claim: \(S = Th(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a stable extension iff \(E = S - \Delta\) is a Reiter extension of \((W, D)\).
THEORIST and Stable Extensions

- **THEORIST** is a nonmonotonic system corresponding to *super-normal* DLs.
THEORIST and Stable Extensions

- **THEORIST** is a nonmonotonic system corresponding to *super-normal* DLs.
- Let \mathcal{L} be classical logic.
THEORIST and Stable Extensions

- **THEORIST** is a nonmonotonic system corresponding to *super-normal* DLs.
- Let \mathcal{L} be classical logic.
- $T \subseteq \mathcal{L}$ is the background and $A \subseteq \mathcal{L}$ is a set of assumptions.
THEORIST and Stable Extensions

- **THEORIST** is a nonmonotonic system corresponding to *super-normal* DLs.
- Let \mathcal{L} be classical logic.
- $T \subseteq \mathcal{L}$ is the background and $A \subseteq \mathcal{L}$ is a set of assumptions.
- E is a THEORIST-Extension iff E is a Reiter extension of the DL theory $(T, \{ \frac{\beta_i}{\beta_i} | \beta_i \in A \})$.
THEORIST and Stable Extensions

- **THEORIST** is a nonmonotonic system corresponding to *super-normal* DLs.
- Let \mathcal{L} be classical logic.
- $T \subseteq \mathcal{L}$ is the background and $A \subseteq \mathcal{L}$ is a set of assumptions.
- E is a THEORIST-Extension iff E is a Reiter extension of the DL theory $(T, \{ \not\beta_i \mid \beta_i \in A \})$.
- Let $\overline{\beta} = \neg \beta$ and take classical logical derivability as the monotonic derivability relation.
THEORIST and Stable Extensions

- **THEORIST** is a nonmonotonic system corresponding to *super-normal* DLs.

- Let \mathcal{L} be classical logic.

- $T \subseteq \mathcal{L}$ is the background and $A \subseteq \mathcal{L}$ is a set of assumptions.

- E is a THEORIST-Extension iff E is a Reiter extension of the DL theory $(T, \{ \beta_i \mid \beta_i \in A \})$.

- Let $\overline{\beta} = \neg \beta$ and take classical logical derivability as the monotonic derivability relation.

- Then E is a **stable extension** of $(T, A, \overline{\cdot})$ iff E is a **THEORIST extension**.
Admissible and Preferred Extensions

- For a argumentation theoretic frame \((T, A, \vdash) \), \(Th(T \cup \Delta) \) (with \(\Delta \subseteq A \)) is an **admissible extension** (and \(\Delta \) is called **admissible argument** iff
 1. \(\Delta \) is closed
Admissible and Preferred Extensions

- For an argumentation theoretic frame \((T, A, \vdash)\), \(Th(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is an admissible extension (and \(\Delta\) is called an admissible argument) iff
 1. \(\Delta\) is closed,
 2. \(\Delta\) does not attack itself
Admissible and Preferred Extensions

• For a argumentation theoretic frame \((T, A, \vdash)\), \(Th(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is an admissible extension (and \(\Delta\) is called admissible argument) iff
 1. \(\Delta\) is closed,
 2. \(\Delta\) does not attack itself, and
 3. each closed set \(\Delta' \subseteq A\) that attacks \(\Delta\) is attacked by \(\Delta\).
Admissible and Preferred Extensions

- For an argumentation theoretic frame (T, A, \vdash), $Th(T \cup \Delta)$ (with $\Delta \subseteq A$) is an **admissible extension** (and Δ is called **admissible argument**) iff
 1. Δ is closed,
 2. Δ does not attack itself, and
 3. each closed set $\Delta' \subseteq A$ that attacks Δ is attacked by Δ.

- $Th(T \cup \Delta)$ is a **preferred extension** iff it is **admissible** and **set-inclusion maximal**. Then Δ is called **preferred argument**
Admissible and Preferred Extensions

• For a argumentation theoretic frame \((T, A, \tilde{\cdot})\), \(Th(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is an admissible extension (and \(\Delta\) is called admissible argument) iff
 1. \(\Delta\) is closed,
 2. \(\Delta\) does not attack itself, and
 3. each closed set \(\Delta' \subseteq A\) that attacks \(\Delta\) is attacked by \(\Delta\).

• \(Th(T \cup \Delta)\) is a preferred extension iff it is admissible and set-inclusion maximal. Then \(\Delta\) is called preferred argument

• Corresponds to admissible model semantics [Dung 91] and preferred model semantics [Dung 91] or partial stable model semantics [Sacca and Zaniolo 90] in nonmonotonic logic programming (LP)
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions?
Examples

\[W = \emptyset, \]
\[D = \{-p, -q, -r, \neg r\}. \]

1. Reiter extensions = stable extensions? (0)
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)

2. Admissible extensions?
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions?(0)

2. Admissible extensions?(3)
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)
2. Admissible extensions? (3)
3. Preferred extensions?
Examples

\[W = \emptyset, \]

\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)

2. Admissible extensions? (3)

3. Preferred extensions? (2)
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions?(0)
2. Admissible extensions?(3)
3. Preferred extensions?(2)
4. What happens if we delete \[\frac{\neg p}{p} \]?
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)

2. Admissible extensions? (3)

3. Preferred extensions? (2)

4. What happens if we delete \(\frac{\neg p}{p} \)?

\[\neg \text{ Admissible and preferred extensions are more } \textit{liberal} \]
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)

2. Admissible extensions? (3)

3. Preferred extensions? (2)

4. What happens if we delete \(\frac{\neg p}{p} \)?

\[\rightsquigarrow \text{Admissible and preferred extensions are more } \textit{liberal}: \text{ There are extensions even if there is no stable extension} \]
Examples

\[W = \emptyset, \]
\[D = \left\{ : \neg p, : \neg q, : \neg r, : \neg r \right\}. \]

1. Reiter extensions = stable extensions? (0)
2. Admissible extensions? (3)
3. Preferred extensions? (2)
4. What happens if we delete \(\frac{\neg p}{p} \)?

\[\leadsto \] Admissible and preferred extensions are more *liberal*: There are extensions even if there is no stable extension

\[\leadsto \] More *general* . . . stable implies preferred
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let \(E = Th(A \cup \Delta) \) be a stable extension.
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = Th(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions)
Theorem. Stable extensions are preferred.

Proof. Let $E = Th(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)).
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = Th(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ.
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = Th(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = Th(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).

Since E is stable, all $\alpha \in A - \Delta$ are attacked by Δ.
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = Th(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).

Since E is stable, all $\alpha \in A - \Delta$ are attacked by Δ. This implies that Δ attacks Δ'.
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = Th(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).

Since E is stable, all $\alpha \in A - \Delta$ are attacked by Δ. This implies that Δ attacks Δ', hence Δ is admissible.
Theorem. Stable extensions are preferred.

Proof. Let $E = Th(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).

Since E is stable, all $\alpha \in A - \Delta$ are attacked by Δ. This implies that Δ attacks Δ', hence Δ is admissible.

Moreover, Δ is set-inclusion maximal because adding any element from $A - \Delta$ leads to a self-attack!
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = Th(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).

Since E is stable, all $\alpha \in A - \Delta$ are attacked by Δ. This implies that Δ attacks Δ', hence Δ is admissible.

Moreover, Δ is set-inclusion maximal because adding any element from $A - \Delta$ leads to a self-attack! Hence Δ is a preferred argument.
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = Th(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).

Since E is stable, all $\alpha \in A - \Delta$ are attacked by Δ. This implies that Δ attacks Δ', hence Δ is admissible.

Moreover, Δ is set-inclusion maximal because adding any element from $A - \Delta$ leads to a self-attack! Hence Δ is a preferred argument and for this reason E must be preferred extension.