Principles of Knowledge Representation and Reasoning

4. Nonmonotonic Reasoning

4.4 Argumentation Theoretic Approaches

Bernhard Nebel

- Motivation
- Stable Extensions
- DL and Poole’s THEORIST
- Admissible and Preferred Extensions
- Upper Bounds for Nonmonotonic Reasoning
- THEORIST: Completeness Results
- DL: Completeness Results
Motivation

- With conventional, “stable” extensions, one always has to consider all assumptions, when a particular formula should be proven.
Motivation

• With conventional, “stable” extensions, one always has to consider all assumptions, when a particular formula should be proven.

• An assumption can only be “rejected” if it is in conflict with the conventional extension.
Motivation

• With conventional, “stable” extensions, one always has to consider all assumptions, when a particular formula should be proven.

• An assumption can only be “rejected” if it is in conflict with the conventional extension.

• Instead more “local” approaches:
 – create extension in a way such that it supports the formula we want to prove.
Motivation

• With conventional, “stable” extensions, one always has to consider all assumptions, when a particular formula should be proven.

• An assumption can only be “rejected” if it is in conflict with the conventional extension.

• Instead more “local” approaches:
 – create extension in a way such that it supports the formula we want to prove.
 – if there are “counter-arguments” to the created partial extension, try to reject these counter-arguments.
Motivation

• With conventional, “stable” extensions, one always has to consider all assumptions, when a particular formula should be proven.

• An assumption can only be “rejected” if it is in conflict with the conventional extension.

• Instead more “local” approaches:
 – create extension in a way such that it supports the formula we want to prove.
 – if there are “counter-arguments” to the created partial extension, try to reject these counter-arguments.

→ Hopefully, such approaches are “more natural” and computationally simpler than ordinary NM logics.
Terminology

- **Background theory** T – set of formulae from some logical language \mathcal{L}
Terminology

- *Background theory* T – set of formulae from some logical language \mathcal{L}
- *monotonic derivability relation* \vdash
Terminology

• **Background theory** T – set of formulae from some logical language \mathcal{L}

• **monotonic derivability relation** \vdash

• $\text{Th}(\cdot)$ is the *deductive closure*
Terminology

- **Background theory** T – set of formulae from some logical language \mathcal{L}
- **monotonic derivability relation** \vdash
- $\text{Th}(\cdot)$ is the *deductive closure*
- Set of *possible assumptions* $A \subseteq \mathcal{L}$
Terminology

- *Background theory* T – set of formulae from some logical language \mathcal{L}
- *monotonic derivability relation* \vdash
- $\text{Th}(\cdot)$ is the *deductive closure*
- Set of *possible assumptions* $A \subseteq \mathcal{L}$
- For each assumption α there exists a *contrary* $\overline{\alpha}$
Terminology

- **Background theory** T – set of formulae from some logical language \mathcal{L}
- **monotonic derivability relation** \vdash
- $\text{Th}(\cdot)$ is the *deductive closure*
- Set of *possible assumptions* $A \subseteq \mathcal{L}$
- For each assumption α there exists a *contrary* $\overline{\alpha}$

\sim **Argumentation-Theoretic Frame**: (T, A, \vdash)
Terminology

- **Background theory** T – set of formulae from some logical language \mathcal{L}
- **monotonic derivability relation** \vdash
- $\text{Th}(\cdot)$ is the **deductive closure**
- Set of **possible assumptions** $A \subseteq \mathcal{L}$
- For each assumption α there exists a **contrary** $\overline{\alpha}$

\sim **Argumentation-Theoretic Frame**: (T, A, \vdash)

- A **possible extension** of T and A is $\text{Th}(T \cup \Delta)$, if $\Delta \subseteq A$. Δ is called **argument**
Terminology

- **Background theory** T – set of formulae from some logical language \mathcal{L}
- **monotonic derivability relation** \vdash
- $\text{Th}(\cdot)$ is the *deductive closure*
- Set of *possible assumptions* $A \subseteq \mathcal{L}$
- For each assumption α there exists a *contrary* $\overline{\alpha}$

\sim **Argumentation-Theoretic Frame**: (T, A, \vdash)

- A *possible extension* of T and A is $\text{Th}(T \cup \Delta)$, if $\Delta \subseteq A$. Δ is called *argument*
- $\Delta \subseteq A$ *attacks* $\alpha \in A$ iff $\overline{\alpha} \in \text{Th}(T \cup \Delta)$
Terminology

- **Background theory** T – set of formulae from some logical language \mathcal{L}
- **monotonic derivability relation** \vdash
- $\text{Th}(\cdot)$ is the **deductive closure**
- Set of **possible assumptions** $A \subseteq \mathcal{L}$
- For each assumption α there exists a **contrary** $\overline{\alpha}$

\bowtie **Argumentation-Theoretic Frame**: (T, A, \vdash)

- A possible extension of T and A is $\text{Th}(T \cup \Delta)$, if $\Delta \subseteq A$. Δ is called **argument**
- $\Delta \subseteq A$ **attacks** $\alpha \in A$ iff $\overline{\alpha} \in \text{Th}(T \cup \Delta)$
- $\Delta \subseteq A$ **attacks** $\Delta' \subseteq A$ iff Δ attacks a $\alpha \in \Delta'$
- Δ is **closed** iff $\Delta = A \cap \text{Th}(T \cup \Delta)$
Stable Extensions

- For a argumentation-theoretic frame \((T, A, \bar{\cdot})\), \(\text{Th}(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a stable extension (and \(\Delta\) is called stable argument) iff

1. \(\Delta\) is closed
Stable Extensions

• For a argumentation-theoretic frame \((T, A, \vdash)\), \(\text{Th}(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a stable extension (and \(\Delta\) is called stable argument) iff
 1. \(\Delta\) is closed,
 2. \(\Delta\) does not attack itself
Stable Extensions

- For a argumentation-theoretic frame \((T, A, \vdash)\), \(\text{Th}(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a stable extension (and \(\Delta\) is called stable argument) iff
 1. \(\Delta\) is closed,
 2. \(\Delta\) does not attack itself,
 3. \(\Delta\) attacks all \(\alpha \in A - \Delta\).
Stable Extensions

• For a argumentation-theoretic frame \((T, A, \cdot)\), \(\text{Th}(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a stable extension (and \(\Delta\) is called stable argument) iff

1. \(\Delta\) is closed,
2. \(\Delta\) does not attack itself,
3. \(\Delta\) attacks all \(\alpha \in A - \Delta\).

• Note: If \(\text{Th}(T \cup \Delta)\) is a stable extension of \((T, A, \cdot)\), then all proper subsets and all proper supersets of \(\text{Th}(T \cup \Delta)\) cannot be stable extensions.
Stable Extensions

• For a argumentation-theoretic frame \((T, A, \neg)\), \(\text{Th}(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a stable extension (and \(\Delta\) is called stable argument) iff
 1. \(\Delta\) is closed,
 2. \(\Delta\) does not attack itself,
 3. \(\Delta\) attacks all \(\alpha \in A - \Delta\).

• Note: If \(\text{Th}(T \cup \Delta)\) is a stable extension of \((T, A, \neg)\), then all proper subsets and all proper supersets of \(\text{Th}(T \cup \Delta)\) cannot be stable extensions

• All “conventional” semantics of NM logics (DL, THEORIST, Circumscription, AEL, NML, LP, ...) are based on stable extensions
Stable Extensions

- For an argumentation-theoretic frame \((T, A, \vdash)\), \(\text{Th}(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a stable extension (and \(\Delta\) is called stable argument) iff
 1. \(\Delta\) is closed,
 2. \(\Delta\) does not attack itself,
 3. \(\Delta\) attacks all \(\alpha \in A - \Delta\).

- Note: If \(\text{Th}(T \cup \Delta)\) is a stable extension of \((T, A, \vdash)\), then all proper subsets and all proper supersets of \(\text{Th}(T \cup \Delta)\) cannot be stable extensions.

- All “conventional” semantics of NM logics (DL, THEORIST, Circumscription, AEL, NML, LP, ...) are based on stable extensions.

- Name comes from von stable expansions (AEL) and stable model semantics (LP).
• Let \((W, D)\) be a DL theory with \(D = \left\{ \frac{\alpha_i \cdot \beta_i}{\gamma_i} \right\}\)
DL and Stable Extensions

• Let \((W, D)\) be a DL theory with
 \[D = \left\{ \frac{\alpha_i \beta_i}{\gamma_i} \right\} \]

• The background theory \(T = W\)
• Let \((W, D)\) be a DL theory with \(D = \{\frac{\alpha_i;\beta_i}{\gamma_i}\}\)

• The background theory \(T = W\)

• The monotonic derivability relation is classical derivability extended by the inference rules \(\{\frac{\alpha_i;M\beta_i}{\gamma_i} \mid \frac{\alpha_i;\beta_i}{\gamma_i} \in D\}\)
Let \((W, D)\) be a DL theory with \(D = \{ \frac{\alpha_i \beta_i}{\gamma_i} \}\).

The background theory \(T = W\).

The monotonic derivability relation is classical derivability extended by the inference rules \(\{ \frac{\alpha_i, M\beta_i}{\gamma_i} \mid \frac{\alpha_i \beta_i}{\gamma_i} \in D \}\). Here we interpret \(M\beta_i\) as a fresh atom!
Let \((W, D)\) be a DL theory with \(D = \{\frac{\alpha_i \cdot \beta_i}{\gamma_i}\}\)

The background theory \(T = W\)

The monotonic derivability relation is classical derivability extended by the inference rules \(\{\frac{\alpha_i \cdot M \beta_i}{\gamma_i} \mid \frac{\alpha_i \cdot \beta_i}{\gamma_i} \in D\}\). Here we interpret \(M \beta_i\) as a fresh atom!

\[A = \{M \beta_i \mid \frac{\alpha_i \cdot \beta_i}{\gamma_i} \in D\}\]
DL and Stable Extensions

• Let \((W, D)\) be a DL theory with \(D = \{\frac{\alpha_i:\beta_i}{\gamma_i}\}\)

• The background theory \(T = W\)

• The monotonic derivability relation is classical derivability extended by the inference rules \(\{\frac{\alpha_i,M\beta_i}{\gamma_i}, \frac{\alpha_i:\beta_i}{\gamma_i} \in D\}\). Here we interpret \(M\beta_i\) as a fresh atom!

• \(A = \{M\beta_i \mid \frac{\alpha_i:\beta_i}{\gamma_i} \in D\}\)

• \(\overline{M\beta_i} = \neg\beta_i\)
Let \((W, D)\) be a DL theory with \(D = \{\frac{\alpha_i; \beta_i}{\gamma_i}\}\).

The background theory \(T = W\).

The monotonic derivability relation is classical derivability extended by the inference rules \(\frac{\alpha_i, M\beta_i}{\gamma_i} | \frac{\alpha_i; \beta_i}{\gamma_i} \in D}\). Here we interpret \(M\beta_i\) as a fresh atom!

\(A = \{M\beta_i | \frac{\alpha_i; \beta_i}{\gamma_i} \in D\}\)

\(M\beta_i = \neg\beta_i\)

Claim: \(S = \text{Th}(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is a **stable extension** iff \(E = S - \Delta\) is a **Reiter extension** of \((W, D)\).
THEORIST and Stable Extensions

- THEORIST is a nonmonotonic system corresponding to super-normal DLs.
THEORIST and Stable Extensions

- THEORIST is a nonmonotonic system corresponding to super-normal DLs.
- Let \mathcal{L} be classical logic.
THEORIST and Stable Extensions

- **THEORIST** is a nonmonotonic system corresponding to *super-normal* DLs.
- Let \mathcal{L} by classical logic.
- $T \subseteq \mathcal{L}$ is the background and $A \subseteq \mathcal{L}$ is a set of assumptions.
THEORIST and Stable Extensions

- **THEORIST** is a nonmonotonic system corresponding to *super-normal* DLs.
- Let \(\mathcal{L} \) be classical logic.
- \(T \subseteq \mathcal{L} \) is the background and \(A \subseteq \mathcal{L} \) is a set of assumptions.
- \(E \) is a THEORIST-Extension iff \(E \) is a Reiter extension of the DL theory \((T, \{\frac{\beta_i}{\beta_i} \mid \beta_i \in A\})\).
THEORIST and Stable Extensions

• **THEORIST** is a nonmonotonic system corresponding to *super-normal* DLs.

• Let \mathcal{L} be classical logic.

• $T \subseteq \mathcal{L}$ is the background and $A \subseteq \mathcal{L}$ is a set of assumptions

• E is a THEORIST-Extension iff E is a Reiter extension of the DL theory $(T, \{ \frac{\beta_i}{\neg \beta_i} \mid \beta_i \in A \})$

• Let $\overline{\beta} = \neg \beta$ and take classical logical derivability as the monotonic derivability relation
THEORIST and Stable Extensions

- **THEORIST** is a nonmonotonic system corresponding to *super-normal* DLs.
- Let \mathcal{L} by classical logic.
- $T \subseteq \mathcal{L}$ is the background and $A \subseteq \mathcal{L}$ is a set of assumptions
- E is a THEORIST-Extension iff E is a Reiter extension of the DL theory $(T, \{ \beta_i \mid \beta_i \in A \})$
- Let $\overline{\beta} = \neg \beta$ and take classical logical derivability as the monotonic derivability relation

\Rightarrow Then E is a *stable extension* of $(T, A, \overline{\beta})$ iff E is a **THEORIST extension**
Admissible and Preferred Extensions

- For an argumentation theoretic frame \((T, A, \cdot)\), \(E = \text{Th}(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is an **admissible extension** (and \(\Delta\) is called **admissible argument**) iff

 1. \(\Delta\) is closed
Admissible and Preferred Extensions

• For an argumentation theoretic frame \((T, A, \cdot)\), \(E = \text{Th}(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is an admissible extension (and \(\Delta\) is called admissible argument) iff
 1. \(\Delta\) is closed,
 2. \(\Delta\) does not attack itself
Admissible and Preferred Extensions

For an argumentation theoretic frame \((T, A, \cdot)\), \(E = \text{Th}(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is an **admissible extension** (and \(\Delta\) is called **admissible argument**) iff

1. \(\Delta\) is closed,
2. \(\Delta\) does not attack itself, and
3. each closed set \(\Delta' \subseteq A\) that attacks \(\Delta\) is attacked by \(\Delta\).
Admissible and Preferred Extensions

- For an argumentation theoretic frame \((T, A, \cdot)\), \(E = \text{Th}(T \cup \Delta)\) (with \(\Delta \subseteq A\)) is an **admissible extension** (and \(\Delta\) is called **admissible argument**) iff
 1. \(\Delta\) is closed,
 2. \(\Delta\) does not attack itself, and
 3. each closed set \(\Delta' \subseteq A\) that attacks \(\Delta\) is attacked by \(\Delta\).

- \(\text{Th}(T \cup \Delta)\) is a **preferred extension** iff it is **admissible** and **set-inclusion maximal**. Then \(\Delta\) is called **preferred argument**.
Admissible and Preferred Extensions

• For an argumentation theoretic frame $\langle T, A, \cdot \rangle$, $E = \text{Th}(T \cup \Delta)$ (with $\Delta \subseteq A$) is an admissible extension (and Δ is called admissible argument) iff
 1. Δ is closed,
 2. Δ does not attack itself, and
 3. each closed set $\Delta' \subseteq A$ that attacks Δ is attacked by Δ.

• $\text{Th}(T \cup \Delta)$ is a preferred extension iff it is admissible and set-inclusion maximal. Then Δ is called preferred argument.

• Corresponds to admissible model semantics [Dung 91] and preferred model semantics [Dung 91] or partial stable model semantics [Sacca and Zaniolo 90] in nonmonotonic logic programming (LP).
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions?
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)

2. Admissible extensions?
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions?(0)

2. Admissible extensions?(3)
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)
2. Admissible extensions? (3)
3. Preferred extensions?
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)

2. Admissible extensions? (3)

3. Preferred extensions? (2)
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)
2. Admissible extensions? (3)
3. Preferred extensions? (2)
4. What happens if we delete \(\frac{\neg p}{p} \) ?
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)

2. Admissible extensions? (3)

3. Preferred extensions? (2)

4. What happens if we delete \(\frac{\neg p}{p} \)?

\(\Rightarrow \) Admissible and preferred extensions are more liberal
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)

2. Admissible extensions? (3)

3. Preferred extensions? (2)

4. What happens if we delete \(\frac{\neg p}{p} \) ?

\(\leadsto \) Admissible and preferred extensions are more liberal: There are admissible extensions even if there is no stable extension.
Examples

\[W = \emptyset, \]
\[D = \left\{ \frac{\neg p}{p}, \frac{\neg q}{r}, \frac{\neg r}{q}, \frac{\neg r}{s} \right\}. \]

1. Reiter extensions = stable extensions? (0)

2. Admissible extensions? (3)

3. Preferred extensions? (2)

4. What happens if we delete \(\frac{\neg p}{p} \)?

\(\rightsquigarrow \) Admissible and preferred extensions are more liberal: There are admissible extensions even if there is no stable extension

\(\rightsquigarrow \) More general \(\ldots \) stable implies preferred
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.
Theorem. Stable extensions are preferred.

Proof. Let $E = \text{Th}(A \cup \Delta)$ be a stable extension.
Theorem. Stable extensions are preferred.

Proof. Let $E = \text{Th}(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions)
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = \text{Th}(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)).
Theorem. Stable extensions are preferred.

Proof. Let $E = \text{Th}(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ.
Theorem. Stable extensions are preferred.

Proof. Let $E = \text{Th}(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = \text{Th}(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).

Since E is stable, all $\alpha \in A - \Delta$ are attacked by Δ.
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = \text{Th}(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)).

Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).

Since E is stable, all $\alpha \in A - \Delta$ are attacked by Δ. This implies that Δ attacks Δ'.
Theorem. Stable extensions are preferred.

Proof. Let $E = \text{Th}(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).

Since E is stable, all $\alpha \in A - \Delta$ are attacked by Δ. This implies that Δ attacks Δ', hence Δ is admissible.
Theorem. Stable extensions are preferred.

Proof. Let $E = \text{Th}(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).

Since E is stable, all $\alpha \in A - \Delta$ are attacked by Δ. This implies that Δ attacks Δ', hence Δ is admissible.

Moreover, Δ is set-inclusion maximal because adding any element from $A - \Delta$ leads to a self-attack!
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = \text{Th}(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).

Since E is stable, all $\alpha \in A - \Delta$ are attacked by Δ. This implies that Δ attacks Δ', hence Δ is admissible.

Moreover, Δ is set-inclusion maximal because adding any element from $A - \Delta$ leads to a self-attack! Hence Δ is a preferred argument.
Stable and Preferred Extensions

Theorem. Stable extensions are preferred.

Proof. Let $E = \text{Th}(A \cup \Delta)$ be a stable extension. Then Δ is closed (because of Cond. (1) for stable extensions) and does not attack itself (Cond. (2)). Assume there exists a closed set $\Delta' \subseteq A$ that attacks Δ. Then Δ' must contain at least one element from $A - \Delta$ (because Δ is not self-attacking).

Since E is stable, all $\alpha \in A - \Delta$ are attacked by Δ. This implies that Δ attacks Δ', hence Δ is admissible.

Moreover, Δ is set-inclusion maximal because adding any element from $A - \Delta$ leads to a self-attack! Hence Δ is a preferred argument and for this reason E must be a preferred extension.
Normal, and Flat Frameworks

An argumentation theoretic framework is called normal if all preferred extensions are stable.
An argumentation theoretic framework is called **normal** if all preferred extensions are stable.

Theorem. THEORIST frameworks are normal.
Normal, and Flat Frameworks

An argumentation theoretic framework is called **normal** if all preferred extensions are stable.

Theorem. THEORIST frameworks are normal.

No proof.
Normal, and Flat Frameworks

An argumentation theoretic framework is called **normal** if all preferred extensions are stable.

Theorem. THEORIST frameworks are normal.

No proof.

An argumentation theoretic framework is called **flat** if all arguments are closed.
Normal, and Flat Frameworks

An argumentation theoretic framework is called **normal** if all preferred extensions are stable.

Theorem. THEORIST frameworks are normal.

No proof.

An argumentation theoretic framework is called **flat** if all arguments are closed.

Theorem. DL frameworks are flat.
Normal, and Flat Frameworks

An argumentation theoretic framework is called **normal** if all preferred extensions are stable.

Theorem. THEORIST frameworks are normal.

No proof.

An argumentation theoretic framework is called **flat** if all arguments are closed.

Theorem. DL frameworks are flat.

Proof idea. Since we never can derive new propositions of the kind $M \beta$, all arguments are closed.
Normal, and Flat Frameworks

An argumentation theoretic framework is called **normal** if all preferred extensions are stable.

Theorem. THEORIST frameworks are normal.

No proof.

An argumentation theoretic framework is called **flat** if all arguments are closed.

Theorem. DL frameworks are flat.

Proof idea. Since we never can derive new propositions of the kind M/β, all arguments are closed.

Proposition. In flat frameworks there exists at least one admissible (and one preferred) argument: \emptyset.
Simple Frameworks

- Flat Frameworks can simplify life a lot.
Simple Frameworks

- Flat Frameworks can simplify life a lot. For instance, sceptical reasoning under the admissibility semantics reduces to the monotonic background logic.
Simple Frameworks

• **Flat Frameworks** can simplify life a lot. For instance, **sceptical reasoning** under the **admissibility semantics** reduces to the **monotonic background logic**... because the empty argument is always admissible
Simple Frameworks

- Flat Frameworks can simplify life a lot. For instance, sceptical reasoning under the admissibility semantics reduces to the monotonic background logic... because the empty argument is always admissible.

- Some frameworks are not flat, but almost flat.
Simple Frameworks

- Flat Frameworks can simplify life a lot. For instance, sceptical reasoning under the admissibility semantics reduces to the monotonic background logic... because the empty argument is always admissible.

- Some frameworks are not flat, but almost flat.

- For instance, THEORIST is not flat.
Simple Frameworks

- Flat Frameworks can simplify life a lot. For instance, sceptical reasoning under the admissibility semantics reduces to the monotonic background logic... because the empty argument is always admissible.

- Some frameworks are not flat, but almost flat.

- For instance, THEORIST is not flat.

- However, there exists always a set-inclusion minimal admissible argument, provided that the background theory is consistent.
Simple Frameworks

- Flat Frameworks can simplify life a lot. For instance, sceptical reasoning under the admissibility semantics reduces to the monotonic background logic... because the empty argument is always admissible.

- Some frameworks are not flat, but almost flat.

- For instance, THEORIST is not flat.

- However, there exists always a set-inclusion minimal admissible argument, provided that the background theory is consistent.
Simple Frameworks

• Flat Frameworks can simplify life a lot. For instance, sceptical reasoning under the admissibility semantics reduces to the monotonic background logic... because the empty argument is always admissible.

• Some frameworks are not flat, but almost flat.

• For instance, THEORIST is not flat.

• However, there exists always a set-inclusion minimal admissible argument, provided that the background theory is consistent.

→ Simple Frameworks

→ Same as flat for sceptical reasoning under the admissibility semantics.
Computational Complexity

We consider the following problems:

- **Credulous reasoning**: Is there an extension that contains a given formula α?
We consider the following problems:

- **Credulous reasoning**: Is there an extension that contains a given formula α?

- **sceptical reasoning**: Do all extensions contain a given formula α?
Computational Complexity

We consider the following problems:

- **Credulous reasoning**: Is there an extension that contains a given formula α?

- **sceptical reasoning**: Do all extensions contain a given formula α?

- **Co-sceptical reasoning**: Is there an extension that does not contain a given formula α?
Computational Complexity

We consider the following problems:

- **Credulous reasoning**: Is there an extension that contains a given formula α?
- **Sceptical reasoning**: Do all extensions contain a given formula α?
- **Co-sceptical reasoning**: Is there an extension that does not contain a given formula α?
- **Argument verification**: Is a given argument Δ stable, admissible, or preferred?
We consider the following problems:

- **Credulous reasoning**: Is there an extension that contains a given formula α?

- **sceptical reasoning**: Do all extensions contain a given formula α?

- **Co-sceptical reasoning**: Is there an extension that does not contain a given formula α?

- **Argument verification**: Is a given argument Δ stable, admissible, or preferred?

Note: Different NM approaches and different background logics.
Computational Complexity

We consider the following problems:

- **Credulous reasoning**: Is there an extension that contains a given formula α?
- **sceptical reasoning**: Do all extensions contain a given formula α?
- **Co-sceptical reasoning**: Is there an extension that does not contain a given formula α?
- **Argument verification**: Is a given argument Δ stable, admissible, or preferred?

Note: Different NM approaches and different background logics.

\sim Generic Results?
We consider the following problems:

- **Credulous reasoning**: Is there an extension that contains a given formula α?
- **sceptical reasoning**: Do all extensions contain a given formula α?
- **Co-sceptical reasoning**: Is there an extension that does not contain a given formula α?
- **Argument verification**: Is a given argument Δ stable, admissible, or preferred?

Note: Different NM approaches and different background logics.

⇒ Generic Results? Unfortunately only upper bounds.
Upper Bounds

Let C be the complexity class of the entailment problem of the underlying monotonic logic.
Let C be the complexity class of the entailment problem of the underlying monotonic logic.

<table>
<thead>
<tr>
<th></th>
<th>Credulous Reasoning</th>
<th>Sceptical Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>stable</td>
<td>admissible</td>
</tr>
<tr>
<td>general</td>
<td>NP^C</td>
<td>NP^{NP^C}</td>
</tr>
<tr>
<td>normal</td>
<td>NP^C</td>
<td>NP^C</td>
</tr>
<tr>
<td>flat</td>
<td>NP^C</td>
<td>NP^{NP^C}</td>
</tr>
<tr>
<td>simple</td>
<td>NP^C</td>
<td>NP^{NP^C}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sceptical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stable</td>
<td>admissible</td>
</tr>
<tr>
<td>general</td>
<td>co-NP^C</td>
<td>co-NP^{NP^C}</td>
</tr>
<tr>
<td>normal</td>
<td>co-NP^C</td>
<td>co-NP^{NP^C}</td>
</tr>
<tr>
<td>flat</td>
<td>co-NP^C</td>
<td>co-NP^{NP^C}</td>
</tr>
<tr>
<td>simple</td>
<td>co-NP^C</td>
<td>co-NP^{NP^C}</td>
</tr>
</tbody>
</table>

Results for stable semantics are also lower bounds.
Upper Bounds for Argument Verification

Theorem. For general argumentation theoretic frameworks, argumentation verification is in the following complexity classes:

1. P^c for stable semantics
Upper Bounds for Argument Verification

Theorem. For general argumentation theoretic frameworks, argumentation verification is in the following complexity classes:

1. P^{C} for **stable** semantics
2. co-NP^{C} for **admissibility** semantics
Theorem. For general argumentation theoretic frameworks, argumentation verification is in the following complexity classes:

1. P^C for stable semantics
2. co-NPC for admissibility semantics
3. co-NP$^{NP^C}$ for preferred semantics
Theorem. For general argumentation theoretic frameworks, argumentation verification is in the following complexity classes:

1. P^C for stable semantics
2. co-NP^C for admissibility semantics
3. co-NP^NP^C for preferred semantics

Proof:

(1) Obvious.
Theorem. For general argumentation theoretic frameworks, argumentation verification is in the following complexity classes:

1. P^C for stable semantics
2. co-NP^C for admissibility semantics
3. co-NP^{NP^C} for preferred semantics

Proof:

(1) Obvious.

(2) Algorithm for complementary problem
Upper Bounds for Argument Verification

Theorem. For general argumentation theoretic frameworks, argumentation verification is in the following complexity classes:

1. \(P^C \) for **stable** semantics
2. \(\text{co-NP}^C \) for **admissibility** semantics
3. \(\text{co-NP}^{\text{NP}^C} \) for **preferred** semantics

Proof:

(1) Obvious.

(2) Algorithm for complementary problem: **Check** (a) **closedness** \(|A - \Delta| \in C\) oracle calls) [if this fails, then success]
Upper Bounds for Argument Verification

Theorem. For general argumentation theoretic frameworks, argumentation verification is in the following complexity classes:

1. P^C for **stable** semantics
2. co-NP^C for **admissibility** semantics
3. $\text{co-NP}^{\text{NP}}^C$ for **preferred** semantics

Proof:

(1) Obvious.

(2) Algorithm for complementary problem: Check (a) **closedness** ($|A - \Delta| \leq C$ oracle calls) [if this fails, then success], (b) **no self-attack** ($|\Delta| \leq C$ oracle calls) [if this fails, then success]
Theorem. For general argumentation theoretic frameworks, argumentation verification is in the following complexity classes:

1. P^C for stable semantics
2. co-NP^C for admissibility semantics
3. $\text{co-NP}^{\text{NP}^C}$ for preferred semantics

Proof:

(1) Obvious.

(2) Algorithm for complementary problem: Check (a) closedness ($|A - \Delta| C$ oracle calls) [if this fails, then success], (b) no self-attack ($|\Delta| C$ oracle calls) [if this fails, then success], (c) then guess $\Delta' \subseteq A$ and verify that Δ' is closed and that Δ' attacks Δ (using C oracle calls) but not vice versa.
Theorem. For general argumentation theoretic frameworks, argumentation verification is in the following complexity classes:

1. P^C for stable semantics
2. $co-NP^C$ for admissibility semantics
3. $co-NP^{NP^C}$ for preferred semantics

Proof:

(1) Obvious.

(2) Algorithm for complementary problem: Check (a) closedness ($|A - \Delta| \leq C$ oracle calls) [if this fails, then success], (b) no self-attack ($|\Delta| \leq C$ oracle calls) [if this fails, then success], (c) then guess $\Delta' \subseteq A$ and verify that Δ' is closed and that Δ' attacks Δ (using C oracle calls) but not vice versa.

(3) Algorithm for complementary problem
Upper Bounds for Argument Verification

Theorem. For general argumentation theoretic frameworks, argumentation verification is in the following complexity classes:

1. P^C for stable semantics
2. co-NP^C for admissibility semantics
3. $\text{co-NP}^{\text{NP}^C}$ for preferred semantics

Proof:

(1) Obvious.

(2) Algorithm for complementary problem: Check (a) closedness ($|A - \Delta| \leq C$ oracle calls) [if this fails, then success], (b) no self-attack ($|\Delta| \leq C$ oracle calls) [if this fails, then success], (c) then guess $\Delta' \subseteq A$ and verify that Δ' is closed and that Δ' attacks Δ (using C oracle calls) but not vice versa.

(3) Algorithm for complementary problem: (a) Check that Δ is admissible using an NP^C oracle [otherwise success].
Upper Bounds for Argument Verification

Theorem. For general argumentation theoretic frameworks, argumentation verification is in the following complexity classes:

1. P^C for stable semantics
2. co-NP^C for admissibility semantics
3. $\text{co-NP}^{\text{NP}^C}$ for preferred semantics

Proof:

(1) Obvious.

(2) Algorithm for complementary problem: Check (a) closedness ($|A - \Delta| \leq |\Delta| \leq C$ oracle calls) [if this fails, then success], (b) no self-attack ($|\Delta| \leq |\Delta| \leq C$ oracle calls) [if this fails, then success], (c) then guess $\Delta' \subseteq A$ and verify that Δ' is closed and that Δ' attacks Δ (using C oracle calls) but not vice versa.

(3) Algorithm for complementary problem: (a) Check that Δ is admissible using an NP^C oracle [otherwise success]. Guess $\Delta' \supset \Delta$ and verify that Δ' is admissible (NPC oracle).
Upper Bounds for Reasoning

- Credulous reasoning:
 - Admissibility Semantics:
 - For general and simple frameworks, a simple guess & check algorithm and the result of the previous theorem are enough.
Upper Bounds for Reasoning

- Credulous reasoning:
 - Admissibility Semantics:
 - For general and simple frameworks, a simple guess & check algorithm and the result of the previous theorem are enough
 - For normal frameworks, we get, of course, the same complexity as for the stable semantics
Upper Bounds for Reasoning

- Credulous reasoning:
 - Admissibility Semantics:
 - For general and simple frameworks, a simple guess & check algorithm and the result of the previous theorem are enough.
 - For normal frameworks, we get, of course, the same complexity as for the stable semantics.
 - For flat frameworks, we just have to consider one possible attacking set (because all arguments are closed).
Upper Bounds for Reasoning

- Credulous reasoning:
 - Admissibility Semantics:
 - For general and simple frameworks, a simple guess & check algorithm and the result of the previous theorem are enough.
 - For normal frameworks, we get, of course, the same complexity as for the stable semantics.
 - For flat frameworks, we just have to consider one possible attacking set (because all arguments are closed).
 - Preferred semantics is identical to the admissibility semantics in the case of credulous reasoning.
Upper Bounds for Reasoning

• Credulous reasoning:
 ○ Admissibility Semantics:
 ∗ For general and simple frameworks, a simple guess & check algorithm and the result of the previous theorem are enough
 ∗ For normal frameworks, we get, of course, the same complexity as for the stable semantics
 ∗ For flat frameworks, we just have to consider one possible attacking set (because all arguments are closed)
 ○ Preferred semantics is identical to the admissibility semantics in the case of credulous reasoning
 • ...
Completeness Results for THEORIST

THEORIST is normal and simple.
Completeness Results for THEORIST

THEORIST is normal and simple.

Since for credulous reasoning, admissibility semantics and preferred semantics are identical.
Completeness Results for THEORIST

THEORIST is normal and simple.

Since for credulous reasoning, admissibility semantics and preferred semantics are identical, and because stable and preferred semantics are identical for normal frameworks.
Completeness Results for THEORIST

THEORIST is normal and simple.

Since for credulous reasoning, admissibility semantics and preferred semantics are identical, and because stable and preferred semantics are identical for normal frameworks, we can borrow the results for stable semantics ($\rightarrow \Sigma^P_2$).
Completeness Results for THEORIST

THEORIST is normal and simple.

Since for credulous reasoning, admissibility semantics and preferred semantics are identical, and because stable and preferred semantics are identical for normal frameworks, we can borrow the results for stable semantics (\sim_2^P).

For sceptical reasoning:
Completeness Results for THEORIST

THEORIST is normal and simple.

Since for credulous reasoning, admissibility semantics and preferred semantics are identical, and because stable and preferred semantics are identical for normal frameworks, we can borrow the results for stable semantics ($\sim \Sigma^p_2$).

For sceptical reasoning:

- co-NP-completeness for admissibility semantics, since THEORIST is simple
Completeness Results for THEORIST

THEORIST is normal and simple.

Since for credulous reasoning, admissibility semantics and preferred semantics are identical, and because stable and preferred semantics are identical for normal frameworks, we can borrow the results for stable semantics ($\to \sum P_2$).

For sceptical reasoning:

- **co-NP-completeness** for admissibility semantics, since THEORIST is simple, and therefore everything reduces to the monotonic base logic case.
Completeness Results for THEORIST

THEORIST is normal and simple.

Since for credulous reasoning, admissibility semantics and preferred semantics are identical, and because stable and preferred semantics are identical for normal frameworks, we can borrow the results for stable semantics ($\sim \Sigma^P_2$).

For sceptical reasoning:

- co-NP-completeness for admissibility semantics, since THEORIST is simple, and therefore everything reduces to the monotonic base logic case

- Π^P_2-completeness for the sceptical reasoning because of normality.
Completeness Results for DL

- Admissibility and preferred semantics are identical for credulous reasoning.
Completeness Results for DL

- Admissibility and preferred semantics are identical for credulous reasoning.
- Flatness implies that the problem is indeed in Σ^P_2.
Completeness Results for DL

- Admissibility and preferred semantics are identical for credulous reasoning.
- **Flatness** implies that the problem is indeed in Σ^p_2.
- The hardness proof is identical to the stable semantics.
Completeness Results for DL

- Admissibility and preferred semantics are identical for credulous reasoning.

- **Flatness** implies that the problem is indeed in Σ^P_2.

- The hardness proof is identical to the stable semantics.

- For sceptical reasoning under the admissibility semantics, NP-completeness follows from flatness.
Completeness Results for DL

- Admissibility and preferred semantics are identical for credulous reasoning.
- **Flatness** implies that the problem is indeed in Σ^P_2.
- The hardness proof is identical to the stable semantics.
- For sceptical reasoning under the admissibility semantics, NP-completeness follows from flatness.
- For the preferred semantics, we indeed end up with the worst case: the 3rd level of the polynomial hierarchy (reduction from 3-QBF)
Completeness Results for DL

- Admissibility and preferred semantics are identical for credulous reasoning.

- **Flatness** implies that the problem is indeed in Σ^P_2.

- The hardness proof is identical to the stable semantics.

- For sceptical reasoning under the admissibility semantics, NP-completeness follows from flatness.

- For the preferred semantics, we indeed end up with the worst case: the 3rd level of the polynomial hierarchy (reduction from 3-QBF)

 we simply cannot avoid the problem of being forced to consider all supersets of an admissible set.
Argumentation theoretic approaches have been conjectured to be
- more natural, e.g., for legal reasoning
• Argumentation theoretic approaches have been conjectured to be
 – more natural, e.g., for legal reasoning
 – less computational demanding
Summary and Outlook

- Argumentation theoretic approaches have been conjectured to be
 - more natural, e.g., for legal reasoning
 - less computational demanding
- However, in most cases the same complexity is reached
Summary and Outlook

- Argumentation theoretic approaches have been conjectured to be
 - more *natural*, e.g., for legal reasoning
 - less computational demanding
- However, in most cases the same complexity is reached
- Sometimes it is *easier*, but then it is also *trivial*
Summary and Outlook

- Argumentation theoretic approaches have been conjectured to be
 - more natural, e.g., for legal reasoning
 - less computational demanding
- However, in most cases the same complexity is reached
- Sometimes it is easier, but then it is also trivial
- In some cases it can become more difficult, i.e., in DL we reach the 3rd level of the polynomial hierarchy
Argumentation theoretic approaches have been conjectured to be
- more natural, e.g., for legal reasoning
- less computational demanding

However, in most cases the same complexity is reached

Sometimes it is easier, but then it is also trivial

In some cases it can become more difficult, i.e., in DL we reach the 3rd level of the polynomial hierarchy

In some case (AEL), we can even reach the 4th level of PH!
Summary and Outlook

- Argumentation theoretic approaches have been conjectured to be
 - more natural, e.g., for legal reasoning
 - less computational demanding
- However, in most cases the same complexity is reached
- Sometimes it is easier, but then it is also trivial
- In some cases it can become more difficult, i.e., in DL we reach the 3rd level of the polynomial hierarchy
- In some case (AEL), we can even reach the 4th level of PH!
- Nevertheless, the argumentation theoretic approach seems to be reasonable for some applications in an LP context
Literature

