4. Nonmonotonic Reasoning

4.1 Introduction

Bernhard Nebel

- Motivation
- Different Kinds of Nonmonotonic Reasoning
- Different Formal Approaches
A Motivating Example: Common Sense Reasoning

1. Tweety was a bird like other birds.
A Motivating Example: Common Sense Reasoning

1. **Tweety** was a **bird** like other birds.

2. He enjoyed his life and built a nest every summer.
A Motivating Example: Common Sense Reasoning

1. **Tweety** was a *bird* like other birds.

2. He enjoyed his life and built a nest every summer.

3. During the summer he stayed in the *northern hemisphere*, in the winter he stayed in *Africa*.
A Motivating Example: Common Sense Reasoning

1. Tweety was a bird like other birds.

2. He enjoyed his life and built a nest every summer.

3. During the summer he stayed in the northern hemisphere, in the winter he stayed in Africa.

Would you expect that Tweety is able to fly?
A Motivating Example: Common Sense Reasoning

1. Tweety was a bird like other birds.

2. He enjoyed his life and built a nest every summer.

3. During the summer he stayed in the northern hemisphere, in the winter he stayed in Africa.

~ Would you expect that Tweety is able to fly?

~ How is Tweety getting from the northern hemisphere to Africa?
A Motivating Example: Common Sense Reasoning

1. Tweety was a bird like other birds.
2. He enjoyed his life and built a nest every summer.
3. During the summer he stayed in the northern hemisphere, in the winter he stayed in Africa.

Would you expect that Tweety is able to fly?

How is Tweety getting from the northern hemisphere to Africa?

How would you formalize the example in formal logic so that you get the expected answers?
A Formalization . . .

1. bird(tweety)
A Formalization . . .

1. bird(tweety)
2. enjoys(tweety,life) ∧ builds(tweety,nest)
1. bird(tweety)
2. enjoys(tweety,life) ∧ builds(tweety,nest)
3. stay-in-summer(tweety,norther-hemisphere) ∧ stay-in-winter(tweety,africa)
A Formalization . . .

1. bird(tweety)
2. enjoys(tweety,life) \land builds(tweety,nest)
3. stay-in-summer(tweety,norther-hemisphere) \land
 stay-in-winter(tweety,africa)
4. \forall x: \text{bird}(x) \rightarrow \text{can-fly}(x)
1. bird(tweety)
2. enjoys(tweety,life) \land builds(tweety,nest)
3. stay-in-summer(tweety,norther-hemisphere) \land stay-in-winter(tweety,africa)
4. \forall x: bird(x) \rightarrow can-fly(x)
5. far-away(northern-hemisphere,africa)
A Formalization . . .

1. bird(tweety)
2. enjoys(tweety, life) ∧ builds(tweety, nest)
3. stay-in-summer(tweety, norther-hemisphere) ∧ stay-in-winter(tweety, africa)
4. ∀x: bird(x) → can-fly(x)
5. far-away(northern-hemisphere, africa)
6. ∀x, y, z: can-fly(x) ∧ far-away(y, z) ∧ stay-in-summer(x, y) ∧ stay-in-winter(x, z) → flies(x, y, z)
A Formalization . . .

1. bird(tweety)

2. enjoys(tweety,life) ∧ builds(tweety,nest)

3. stay-in-summer(tweety,norther-hemisphere) ∧
 stay-in-winter(tweety,africa)

4. ∀x: bird(x) → can-fly(x)

5. far-away(northern-hemisphere,africa)

6. ∀x, y, z: can-fly(x) ∧ far-away(y, z) ∧ stay-in-summer(x, y) ∧
 stay-in-winter(x, z) → flies(x, y, z)

→ The implication (4) is just a reasonable assumption
A Formalization . . .

1. bird(tweety)

2. enjoys(tweety,life) \land builds(tweety,nest)

3. stay-in-summer(tweety,norther-hemisphere) \land stay-in-winter(tweety,africa)

4. \forall x: \text{bird}(x) \rightarrow \text{can-fly}(x)

5. far-away(northern-hemisphere,africa)

6. \forall x, y, z: \text{can-fly}(x) \land \text{far-away}(y, z) \land \text{stay-in-summer}(x, y) \land \text{stay-in-winter}(x, z) \rightarrow \text{flies}(x, y, z)

→ The implication (4) is just a **reasonable assumption**

⇒ what if Tweety is a **Emu**?
A Formalization . . .

1. bird(tweety)
2. enjoys(tweety,life) \land builds(tweety,nest)
3. stay-in-summer(tweety,norther-hemisphere) \land
 stay-in-winter(tweety,africa)
4. \forall x: \text{bird}(x) \rightarrow \text{can-fly}(x)
5. far-away(northern-hemisphere,africa)
6. \forall x, y, z: \text{can-fly}(x) \land \text{far-away}(y, z) \land \text{stay-in-summer}(x, y) \land
 \text{stay-in-winter}(x, z) \rightarrow \text{flies}(x, y, z)

→ The implication (4) is just a \textit{reasonable assumption}

⇒ what if Tweety is a \textbf{Emu}?

→ The implication (6) formalizes a \textit{reasonable explanation}
A Formalization . . .

1. bird(tweety)
2. enjoys(tweety,life) \land builds(tweety,nest)
3. stay-in-summer(tweety,norther-hemisphere) \land stay-in-winter(tweety,africa)
4. \forall x: bird(x) \rightarrow can-fly(x)
5. far-away(northern-hemisphere,africa)
6. \forall x, y, z: can-fly(x) \land far-away(y, z) \land stay-in-summer(x, y) \land stay-in-winter(x, z) \rightarrow flies(x, y, z)

→ The implication (4) is just a **reasonable assumption**

〜 what if Tweety is a **Emu**?

→ The implication (6) formalizes a **reasonable explanation**

〜 Tweety could be a canary **traveling with** a rich woman each year
Examples for Such Reasoning Patterns

Closed World Assumption: Data base of ground atoms. All ground atoms not present are assumed to be false.
Examples for Such Reasoning Patterns

Closed World Assumption: Data base of ground atoms. All ground atoms not present are assumed to be false.

Negation by Failure: In PROLOG, NOT(P) is interpreted as “P is not provable” instead of “P is provably false.”
Examples for Such Reasoning Patterns

Closed World Assumption: Data base of ground atoms. All ground atoms not present are assumed to be false

Negation by Failure: In PROLOG, NOT(P) is interpreted as “P is not provable” instead of “P is provably false”

Non-strict Inheritance: An attribute value is inherited only if there is more specialized information contradicting the attribute value
Examples for Such Reasoning Patterns

Closed World Assumption: Data base of ground atoms. All ground atoms not present are assumed to be false.

Negation by Failure: In PROLOG, NOT(P) is interpreted as “P is not provable” instead of “P is provably false.”

Non-strict Inheritance: An attribute value is inherited only if there is more specialized information contradicting the attribute value.

Reasoning about Actions: When reasoning about actions, it is customary to assume that a property changes only if it has to change, i.e., by default properties do not change.
Default Reasoning: Jump to a conclusion if there is no information that contradicts the conclusion
Default, Defeasible, and Nonmonotonic Reasoning

Default Reasoning: Jump to a conclusion if there is no information that contradicts the conclusion

Defeasible Reasoning: Reasoning based on assumptions that can turn out to be wrong – i.e., conclusions are defeasible. In particular, default reasoning is defeasible
Default, Defeasible, and Nonmonotonic Reasoning

Default Reasoning: Jump to a conclusion if there is no information that contradicts the conclusion.

Defeasible Reasoning: Reasoning based on assumptions that can turn out to be wrong – i.e., *conclusions are defeasible*. In particular, default reasoning is defeasible.

Nonmonotonic Reasoning: In classical logic, the set of consequence grows monotonically with the set of premises. If reasoning becomes defeasible, then reasoning becomes *non-monotonic*.
Approaches to Non-Monotonic Reasoning

- **Consistency-based:** Extend classical theory using rules that are consistently applicable

 ~ NML (non-monotonic logic), AEL (auto-epistemic logic), DL (default logic), LP (non-monotonic logic programming)
Approaches to Non-Monotonic Reasoning

- **Consistency-based:** Extend classical theory using rules that are consistently applicable
 - NML (non-monotonic logic), AEL (auto-epistemic logic), DL (default logic), LP (non-monotonic logic programming)

- **Entailment based on Normal Models:** Models are ordered by normality. Entailment is determined by considering the most normal models only.
 - Circumscription, Preferential and Cumulative Logics
Approaches to Non-Monotonic Reasoning

- **Consistency-based:** Extend classical theory using rules that are consistently applicable
 - NML (non-monotonic logic), AEL (auto-epistemic logic), DL (default logic), LP (non-monotonic logic programming)

- **Entailment based on Normal Models:** Models are ordered by normality. Entailment is determined by considering the most normal models only.
 - Circumscription, Preferential and Cumulative Logics

- **Argumentation-based approaches:** Conclusions are determined by a fight of arguments
 - Bondarenko’s admissible and preferred semantics
Approaches to Non-Monotonic Reasoning

- **Consistency-based**: Extend classical theory using rules that are consistently applicable
 - NML (non-monotonic logic), AEL (auto-epistemic logic), DL (default logic), LP (non-monotonic logic programming)

- **Entailment based on Normal Models**: Models are ordered by normality. Entailment is determined by considering the most normal models only.
 - Circumscription, Preferential and Cumulative Logics

- **Argumentation-based approaches**: Conclusions are determined by a fight of arguments
 - Bondarenko's admissible and preferred semantics

- **Belief Revision**: Revise your beliefs if evidence to the contrary comes up
 - The axiomatic AGM approach to belief revision
If φ typically implies ψ, φ is given, and it is consistent to assume ψ, then conclude ψ.
If ϕ typically implies ψ, ϕ is given, and it is consistent to assume ψ, then conclude ψ.

- Typically $\text{bird}(x)$ implies $\text{can-fly}(x)$
If φ typically implies ψ, φ is given, and it is consistent to assume ψ, then conclude ψ.

- **Typically** bird(x) implies can-fly(x)
- $\forall x: \text{emu}(x) \rightarrow \text{bird}(x)$
If φ typically implies ψ, φ is given, and it is consistent to assume ψ, then conclude ψ.

- **Typically** $\text{bird}(x)$ implies $\text{can-fly}(x)$
- $\forall x: \text{emu}(x) \rightarrow \text{bird}(x)$
- $\forall x: \text{emu}(x) \rightarrow \neg \text{can-fly}(x)$
If φ typically implies ψ, φ is given, and it is consistent to assume ψ, then conclude ψ.

- Typically $\text{bird}(x)$ implies $\text{can-fly}(x)$
- $\forall x: \text{emu}(x) \rightarrow \text{bird}(x)$
- $\forall x: \text{emu}(x) \rightarrow \neg \text{can-fly}(x)$
- $\text{bird}(x)$
If φ typically implies ψ, φ is given, and it is consistent to assume ψ, then conclude ψ.

- **Typically** $\text{bird}(x)$ implies $\text{can-fly}(x)$
- $\forall x : \text{emu}(x) \rightarrow \text{bird}(x)$
- $\forall x : \text{emu}(x) \rightarrow \neg \text{can-fly}(x)$
- $\text{bird}(x)$
- $\neg \text{can-fly(tweety)}$
If \(\varphi \) **typically implies** \(\psi \), \(\varphi \) is given, and **it is consistent to assume** \(\psi \), then **conclude** \(\psi \).

- **Typically** \(\text{bird}(x) \) **implies** \(\text{can-fly}(x) \)
- \(\forall x: \text{emu}(x) \rightarrow \text{bird}(x) \)
- \(\forall x: \text{emu}(x) \rightarrow \lnot \text{can-fly}(x) \)
- \(\text{bird}(x) \)
- \(\leadsto \text{can-fly(tweety)} \)

+ \(\text{emu(tweety)} \)
If \(\varphi \) typically implies \(\psi \), \(\varphi \) is given, and it is consistent to assume \(\psi \), then conclude \(\psi \).

- **Typically** \(\text{bird}(x) \) implies \(\text{can-fly}(x) \)
- \(\forall x: \text{emu}(x) \rightarrow \text{bird}(x) \)
- \(\forall x: \text{emu}(x) \rightarrow \neg \text{can-fly}(x) \)
- \(\text{bird}(x) \)
- \(\neg \text{can-fly(tweety)} \)

\[+ \text{emu(tweety)} \]

\[\neg \text{can-fly(tweety)} \]
NM Logic – Normal Models

If \(\varphi \) typically implies \(\psi \), then the models satisfying \(\varphi \land \psi \) should be more normal than those satisfying \(\varphi \land \neg \psi \). Similarly, try to minimize the extension of a chosen “Abnormality” predicate.

- \(\forall x: \text{bird}(x) \land \neg \text{Ab}(x) \rightarrow \text{can-fly}(x) \)
If φ typically implies ψ, then the models satisfying $\varphi \land \psi$ should be more \textbf{normal} than those satisfying $\varphi \land \neg \psi$. Similarly, try to \textbf{minimize} the extension of a chosen “Abnormality” predicate.

- $\forall x: \text{bird}(x) \land \neg \text{Ab}(x) \rightarrow \text{can-fly}(x)$
- $\forall x: \text{emu}(x) \rightarrow \text{bird}(x)$
If φ typically implies ψ, then the models satisfying $\varphi \land \psi$ should be more normal than those satisfying $\varphi \land \neg \psi$. Similarly, try to minimize the extension of a chosen “Abnormality” predicate.

- $\forall x: \text{bird}(x) \land \neg \text{Ab}(x) \rightarrow \text{can-fly}(x)$
- $\forall x: \text{emu}(x) \rightarrow \text{bird}(x)$
- $\forall x: \text{emu}(x) \rightarrow \neg \text{can-fly}(x)$
If φ typically implies ψ, then the models satisfying $\varphi \land \psi$ should be more normal than those satisfying $\varphi \land \neg \psi$. Similarly, try to minimize the extension of a chosen “Abnormality” predicate.

- $\forall x: \text{bird}(x) \land \neg \text{Ab}(x) \rightarrow \text{can-fly}(x)$
- $\forall x: \text{emu}(x) \rightarrow \text{bird}(x)$
- $\forall x: \text{emu}(x) \rightarrow \neg \text{can-fly}(x)$
- $\text{bird}(x)$
If φ typically implies ψ, then the models satisfying $\varphi \land \psi$ should be more normal than those satisfying $\varphi \land \neg \psi$. Similarly, try to minimize the extension of a chosen “Abnormality” predicate.

- $\forall x: \text{bird}(x) \land \neg \text{Ab}(x) \rightarrow \text{can-fly}(x)$
- $\forall x: \text{emu}(x) \rightarrow \text{bird}(x)$
- $\forall x: \text{emu}(x) \rightarrow \neg \text{can-fly}(x)$
- $\text{bird}(x)$

\rightarrow minimize extension of Ab
If φ typically implies ψ, then the models satisfying $\varphi \land \psi$ should be more normal than those satisfying $\varphi \land \neg \psi$. Similarly, try to minimize the extension of a chosen “Abnormality” predicate.

- $\forall x: \text{bird}(x) \land \neg \text{Ab}(x) \rightarrow \text{can-fly}(x)$
- $\forall x: \text{emu}(x) \rightarrow \text{bird}(x)$
- $\forall x: \text{emu}(x) \rightarrow \neg \text{can-fly}(x)$
- $\text{bird}(x)$
- \rightarrow minimize extension of Ab
- $\leadsto \text{can-fly}($tweety$)$
If φ typically implies ψ, then the models satisfying $\varphi \land \psi$ should be more normal than those satisfying $\varphi \land \neg \psi$. Similarly, try to minimize the extension of a chosen “Abnormality” predicate.

- $\forall x : \text{bird}(x) \land \neg \text{Ab}(x) \rightarrow \text{can-fly}(x)$
- $\forall x : \text{emu}(x) \rightarrow \text{bird}(x)$
- $\forall x : \text{emu}(x) \rightarrow \neg \text{can-fly}(x)$
- $\text{bird}(x)$

\rightarrow minimize extension of Ab

$\sim \text{can-fly(tweety)}$
If φ typically implies ψ, then the models satisfying $\varphi \land \psi$ should be more normal than those satisfying $\varphi \land \neg \psi$. Similarly, try to minimize the extension of a chosen “Abnormality” predicate.

- $\forall x: \text{bird}(x) \land \neg \text{Ab}(x) \rightarrow \text{can-fly}(x)$
- $\forall x: \text{emu}(x) \rightarrow \text{bird}(x)$
- $\forall x: \text{emu}(x) \rightarrow \neg \text{can-fly}(x)$
- $\text{bird}(x)$

\rightarrow minimize extension of Ab

$\sim \rightarrow \text{can-fly(tweety)}$

+ emu(tweety)
- Now in all models (also the normal ones) $\sim \rightarrow \neg \text{can-fly(tweety)}$
• If \(\varphi \) typically implies \(\psi \), then let us assume \(\varphi \rightarrow \psi \) – provided there is no argument against it that is not itself defeated!
• If φ typically implies ψ, then let us assume $\varphi \rightarrow \psi$ – provided there is no argument against it that is not itself defeated!

→ Different notion of being against an argument and defeating an argument!
• If φ typically implies ψ, then let us assume $\varphi \rightarrow \psi$ – provided there is no argument against it that is not itself defeated!

→ Different notion of being against an argument and defeating an argument!

• Instead of modeling the non-monotonic reasoning process by changing the entailment or derivability relation, one could use classical logic and revise the logic theories
• If φ typically implies ψ, then let us assume $\varphi \rightarrow \psi$ – provided there is no argument against it that is not itself defeated!

→ Different notion of being against an argument and defeating an argument!

• Instead of modeling the non-monotonic reasoning process by changing the entailment or derivability relation, one could use classical logic and revise the logic theories

⇒ When it becomes known that Tweety is a penguin, modify the universally quantified implication.