Principles of Knowledge Representation and Reasoning

3. Qualitative Representation and Reasoning

3.7 Spatial Representation and Reasoning: Reasoning with RCC8

Bernhard Nebel

- Reminder
- Upper Bounds
- Lower Bound - Proving NP-Hardness
- Constraint Reasoning
- Some Empirical Results
- Outlook & Open Problems
Reminder

- **RCC8** is a relation calculus for expressing spatial/topological information
Reminder

- **RCC8** is a relation calculus for expressing spatial/topological information
- **Topology** is the right mathematical theory to give meaning to the RCC8 relations
Reminder

- **RCC8** is a relation calculus for expressing spatial/topological information.
- **Topology** is the right mathematical theory to give meaning to the RCC8 relations.
- **Topological set constraints** can be used to characterize the relations.
Reminder

- **RCC8** is a relation calculus for expressing spatial/topological information
- **Topology** is the right mathematical theory to give meaning to the RCC8 relations
- **Topological set constraints** can be used to characterize the relations
- Validity of **topological set expressions** is equivalent to S4-validity of translations of these set expressions
Reminder

- **RCC8** is a relation calculus for expressing spatial/topological information
- **Topology** is the right mathematical theory to give meaning to the RCC8 relations
- **Topological set constraints** can be used to characterize the relations
- Validity of **topological set expressions** is equivalent to S4-validity of translations of these set expressions
- Using an **additional K-modality**, satisfiability of the topological set constraints can be tested

~> Reduction of spatial reasoning problems to modal logic reasoning problems.
What is the Role of the Dimension?

- Already mentioned: McKinsey & Tarski do not mention dimension at all
What is the Role of the Dimension?

- Already mentioned: McKinsey & Tarski do not mention dimension at all
- It has been shown:
 - If an RCC8-CSP is topologically satisfiable, then it is satisfiable in 2 dimensions, provided we do not require regions to be internally connected
What is the Role of the Dimension?

- Already mentioned: McKinsey & Tarski do not mention dimension at all
- It has been shown:
 - If an RCC8-CSP is topologically satisfiable, then it is satisfiable in **2 dimensions**, provided we do **not** require regions to be **internally connected**
 - If we require regions to be **internally connected** in **2 dimensions**, then the problem becomes more difficult. It is still unknown whether this problem is decidable!
What is the Role of the Dimension?

- Already mentioned: McKinsey & Tarski do not mention dimension at all
- It has been shown:
 - If an RCC8-CSP is topologically satisfiable, then it is satisfiable in 2 dimensions, provided we do not require regions to be internally connected
 - If we require regions to be internally connected in 2 dimensions, then the problem becomes more difficult. It is still unknown whether this problem is decidable!
 - If we allow 3 dimensions, then the issue whether regions are internally connected is not crucial anymore.
Upper Bounds – Using Results From Modal Logic

- Satisfiability in most modal logics (incl. K and S4 and multi-modal logics using these modalities) is \textbf{PSPACE-complete}
Upper Bounds – Using Results From Modal Logic

- Satisfiability in most modal logics (incl. K and S4 and multi-modal logics using these modalities) is **PSPACE-complete**

 \[\rightarrow \text{PSPACE = All problems that can be solved using “only” poly. space} \]
Satisfiability in most modal logics (incl. K and S4 and multi-modal logics using these modalities) is **PSPACE-complete**.

→ PSPACE = All problems that can be solved using “only” poly. space

~> Upper bound from tableaux proofs: it suffices to explore one branch at a time in a depth-first manner
Upper Bounds – Using Results From Modal Logic

- Satisfiability in most modal logics (incl. K and S4 and multi-modal logics using these modalities) is \textbf{PSPACE-complete}

\[\rightarrow \text{PSPACE} = \text{All problems that can be solved using “only” poly. space} \]

\[\leadsto \text{Upper bound from tableaux proofs: it suffices to explore one branch at a time in a depth-first manner... and the depth is bounded polynomially by the size of the formula} \]
Upper Bounds – Using Results From Modal Logic

- Satisfiability in most modal logics (incl. K and S4 and multi-modal logics using these modalities) is **PSPACE-complete**

→ PSPACE = All problems that can be solved using “only” poly. space

↗ Upper bound from tableaux proofs: it suffices to explore one branch at a time in a depth-first manner... and the depth is bounded polynomially by the size of the formula

↗ Lower bound from reduction from QBF (quantified boolean formula)
Upper Bounds – Using Results From Modal Logic

- Satisfiability in most modal logics (incl. K and S4 and multi-modal logics using these modalities) is **PSPACE-complete**

 → PSPACE = All problems that can be solved using “only” poly. space

 ~> Upper bound from tableaux proofs: it suffices to explore one branch at a time in a depth-first manner... and the depth is bounded polynomially by the size of the formula

 ~> Lower bound from reduction from QBF (quantified boolean formula)

- Deciding the satisfiability of **topological set constraints** is in PSPACE
A Better Upper Bound for RCC8

• Since the topological set constraints (and hence the modal formulae) resulting from RCC8 constraints are very restricted, there might be hope that we can do better than PSPACE . . .
A Better Upper Bound for RCC8

- Since the topological set constraints (and hence the modal formulae) resulting from RCC8 constraints are very restricted, there might be hope that we can do better than PSPACE . . .

- Consider the nesting depth of I in modal formulae resulting from RCC8-formulae
A Better Upper Bound for RCC8

- Since the topological set constraints (and hence the modal formulae) resulting from RCC8 constraints are very restricted, there might be hope that we can do better than PSPACE . . .
- Consider the nesting depth of I in modal formulae resulting from RCC8-formulae
- Satisfiability of S4-formulae with a fixed nesting depth is NP-complete
A Better Upper Bound for RCC8

- Since the topological set constraints (and hence the modal formulae) resulting from RCC8 constraints are very restricted, there might be hope that we can do better than PSPACE ...

- Consider the nesting depth of I in modal formulae resulting from RCC8-formulae

- Satisfiability of S4-formulae with a fixed nesting depth is NP-complete

\sim Guess a base relation (for each non-base relation) and then guess a satisfying interpretation.
A Better Upper Bound for RCC8

- Since the topological set constraints (and hence the modal formulae) resulting from RCC8 constraints are very restricted, there might be hope that we can do better than PSPACE . . .
- Consider the nesting depth of \(I \) in modal formulae resulting from RCC8-formulae
- Satisfiability of S4-formulae with a fixed nesting depth is NP-complete

\[\sim \] Guess a base relation (for each non-base relation) and then guess a satisfying interpretation.

Proposition. RCC8 satisfiability is in NP.
Constraint Propagation

- As in Allen’s interval algebra, we may want to use constraint propagation instead of translating everything to modal logic.
Constraint Propagation

- As in Allen’s interval algebra, we may want to use constraint propagation instead of translating everything to modal logic.

- We need a composition table . . .
Constraint Propagation

- As in Allen’s interval algebra, we may want to use constraint propagation instead of translating everything to modal logic.
- We need a composition table . . .
- . . . which could be computed using the modal logic encoding (and in fact, this has been done)
Constraint Propagation

- As in Allen’s interval algebra, we may want to use constraint propagation instead of translating everything to modal logic.
- We need a composition table . . .
- . . . which could be computed using the modal logic encoding (and in fact, this has been done)
- Based on this table, we can then apply the path-consistency algorithm
Constraint Propagation

- As in Allen’s interval algebra, we may want to use constraint propagation instead of translating everything to modal logic.
- We need a composition table . . .
- . . . which could be computed using the modal logic encoding (and in fact, this has been done)
- Based on this table, we can then apply the path-consistency algorithm
- . . . and ask ourselves for which fragment of RCC8 it is complete
Composition Table

<table>
<thead>
<tr>
<th></th>
<th>DC</th>
<th>EC</th>
<th>PO</th>
<th>TPP</th>
<th>NTPP</th>
<th>TPP~</th>
<th>NTPP~</th>
<th>EQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>* DC,EC PO,TPP NTPP</td>
<td>DC,EC PO,TPP NTPP</td>
<td>DC,EC PO,TPP NTPP</td>
<td>DC,EC PO,TPP NTPP</td>
<td>DC,EC PO,TPP NTPP</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
</tr>
<tr>
<td>EC</td>
<td>DC,EC PO,TPP NTPP</td>
<td>DC,EC PO,TPP NTPP</td>
<td>DC,EC PO,TPP NTPP</td>
<td>EC,PO TPP NTPP</td>
<td>PO TPP NTPP</td>
<td>DC,EC</td>
<td>DC</td>
<td>EC</td>
</tr>
<tr>
<td>PO</td>
<td>DC,EC PO,TPP NTPP</td>
<td>DC,EC PO,TPP NTPP</td>
<td>* PO TPP NTPP</td>
<td>PO TPP NTPP</td>
<td>DC,EC PO,TPP NTPP</td>
<td>DC,EC PO,TPP NTPP</td>
<td>PO</td>
<td></td>
</tr>
<tr>
<td>TPP</td>
<td>DC</td>
<td>DC,EC</td>
<td>DC,EC PO,TPP NTPP</td>
<td>TPP NTPP</td>
<td>NTPP</td>
<td>DC,EC PO,TPP NTPP</td>
<td>DC,EC PO,TPP NTPP</td>
<td>TPP</td>
</tr>
<tr>
<td>NTPP</td>
<td>DC</td>
<td>DC</td>
<td>DC,EC PO,TPP NTPP</td>
<td>NTPP</td>
<td>NTPP</td>
<td>DC,EC PO,TPP NTPP</td>
<td>* NTPP</td>
<td>NTPP</td>
</tr>
<tr>
<td>TPP~</td>
<td>DC,EC PO,TPP NTPP</td>
<td>EC,PO TPP NTPP</td>
<td>PO TPP NTPP</td>
<td>PO,EQ TPP NTPP</td>
<td>PO TPP NTPP</td>
<td>TPP~ NTPP</td>
<td>NTPP~ TPP</td>
<td></td>
</tr>
<tr>
<td>NTPP~</td>
<td>DC,EC PO,TPP NTPP</td>
<td>PO TPP NTPP</td>
<td>PO TPP NTPP</td>
<td>PO,TPP NTPP</td>
<td>TPP~ NTPP</td>
<td>NTPP~ TPP NTPP~ ,EQ</td>
<td>NTPP~ NTPP~ NTPP~</td>
<td></td>
</tr>
<tr>
<td>EQ</td>
<td>DC</td>
<td>EC</td>
<td>PO</td>
<td>TPP</td>
<td>NTPP</td>
<td>TPP~</td>
<td>NTPP~</td>
<td>EQ</td>
</tr>
</tbody>
</table>
Lower Bound: Proving NP-Hardness

- Idea: Reduction from 3-SAT
Lower Bound: Proving NP-Hardness

- **Idea**: Reduction from 3-SAT

- **3-SAT** structure
 1. Literals a, b, c: can be true or false
Lower Bound: Proving NP-Hardness

- **Idea:** Reduction from 3-SAT

- **3-SAT** structure
 1. Literals a, b, c: can be true or false
 2. Complementary literals: a is true iff $\neg a$ is false
Lower Bound: Proving NP-Hardness

- **Idea**: Reduction from 3-SAT

- **3-SAT** structure
 1. Literals a, b, c: can be true or false
 2. Complementary literals: a is true iff $\neg a$ is false
 3. Clauses $l_1 \lor l_2 \lor l_3$: at least one literal must be true
Lower Bound: Proving NP-Hardness

- **Idea**: Reduction from 3-SAT

- **3-SAT** structure
 1. Literals a, b, c: can be true or false
 2. Complementary literals: a is true iff $\neg a$ is false
 3. Clauses $l_1 \lor l_2 \lor l_3$: at least one literal must be true

- **RCC8-CSP**
 1. **Truth value constraints** $X_a\{R_t, R_f\}Y_a$: Either $X_a\{R_t\}Y_a$ or $X_a\{R_f\}Y_a$ holds
Lower Bound: Proving NP-Hardness

• **Idea**: Reduction from 3-SAT

• **3-SAT** structure
 1. Literals a, b, c: can be true or false
 2. Complementary literals: a is true iff $\neg a$ is false
 3. Clauses $l_1 \lor l_2 \lor l_3$: at least one literal must be true

• **RCC8-CSP**
 1. **Truth value constraints** $X_a\{R_t, R_f\}Y_a$: Either $X_a\{R_t\}Y_a$ or $X_a\{R_f\}Y_a$ holds
 2. **Polarity constraints** $X_a\{R_t\}Y_a$ holds iff $X_{\neg a}\{R_f\}Y_{\neg a}$ holds
Lower Bound: Proving NP-Hardness

- **Idea**: Reduction from 3-SAT

- **3-SAT** structure
 1. Literals a, b, c: can be true or false
 2. Complementary literals: a is true iff $\neg a$ is false
 3. Clauses $l_1 \lor l_2 \lor l_3$: at least one literal must be true

- **RCC8-CSP**
 1. **Truth value constraints** $X_a \{R_t, R_f\} Y_a$: Either $X_a \{R_t\} Y_a$ or $X_a \{R_f\} Y_a$ holds
 2. **Polarity constraints** $X_a \{R_t\} Y_a$ holds iff $X_{\neg a} \{R_f\} Y_{\neg a}$ holds
 3. **Clause constraints**: At least one of $X_{l_1} \{R_t\} Y_{l_1}$, $X_{l_2} \{R_t\} Y_{l_2}$, or $X_{l_3} \{R_t\} Y_{l_3}$ holds
The Reduction

- **Relations:** \(R_t = NTPP, \; R_f = EQ \)

- **Polarity constraints:**

- **Clause constraints:**

- RCC8 sat. \(\Rightarrow \) 3-SAT: follows from reduction

- 3-SAT \(\Rightarrow \) RCC8 sat.: Construction of model for \(\Theta \phi \) for each positive 3-SAT instance \(\phi \)
Tractable Fragments?

As in the case of Allen’s interval calculus, we may ask for maximal tractable subsets.
Tractable Fragments?

- As in the case of Allen’s interval calculus, we may ask for maximal tractable subsets.
- Again, one can identify relations that can be encoded by Horn formulae.
Tractable Fragments?

• As in the case of Allen’s interval calculus, we may ask for maximal tractable subsets

• Again, one can identify relations that can be encoded by Horn formulae

• **Idea:** Consider relations that can be expressed in a way such that we have to consider only Horn formulae inside all worlds
Tractable Fragments?

• As in the case of Allen’s interval calculus, we may ask for maximal tractable subsets

• Again, one can identify relations that can be encoded by Horn formulae

• Idea: Consider relations that can be expressed in a way such that we have to consider only Horn formulae inside all worlds

• Idea: Try to restrict the number of worlds to consider to a poly. number
Tractable Fragments?

- As in the case of Allen’s interval calculus, we may ask for maximal tractable subsets.
- Again, one can identify relations that can be encoded by Horn formulae.
- **Idea**: Consider relations that can be expressed in a way such that we have to consider only Horn formulae inside all worlds.
- **Idea**: Try to restrict the number of worlds to consider to a poly. number.

\[\sim 148 \text{ Horn relations } H_8, \]
Tractable Fragments?

• As in the case of Allen’s interval calculus, we may ask for maximal tractable subsets

• Again, one can identify relations that can be encoded by Horn formulae

• **Idea:** Consider relations that can be expressed in a way such that we have to consider only Horn formulae inside all worlds

• **Idea:** Try to restrict the number of worlds to consider to a poly. number

\[148 \text{ Horn relations } H_8, \text{ which forms again a maximal subset} \]
Tractable Fragments?

- As in the case of Allen's interval calculus, we may ask for maximal tractable subsets

- Again, one can identify relations that can be encoded by Horn formulae

- **Idea**: Consider relations that can be expressed in a way such that we have to consider only Horn formulae inside all worlds

- **Idea**: Try to restrict the number of worlds to consider to a poly. number

 \leadsto 148 Horn relations \mathcal{H}_8, which forms again a maximal subset

 \leadsto Path consistency is refutation complete for \mathcal{H}_8
Tractable Fragments?

- As in the case of Allen's interval calculus, we may ask for **maximal tractable subsets**

- Again, one can identify relations that can be encoded by **Horn formulae**

- **Idea**: Consider relations that can be expressed in a way such that we have to consider only Horn formulae inside all worlds

- **Idea**: Try to restrict the number of worlds to consider to a poly. number

 - 148 Horn relations \mathcal{H}_8, which forms again a **maximal subset**

 - **Path consistency** is refutation complete for \mathcal{H}_8

 - There are **2 additional maximal subsets** that allow for poly. satisfiability testing!
Some Experiments

- How difficult is the RCC8 satisfiability problem *in practice*?
Some Experiments

- How difficult is the RCC8 satisfiability problem in practice?
- Are there particularly difficult instances?
Some Experiments

- How difficult is the RCC8 satisfiability problem in practice?
- Are there particularly difficult instances?
 ~ Where is the phase transition region?
Some Experiments

• How difficult is the RCC8 satisfiability problem in practice?

• Are there particularly difficult instances?
 → Where is the phase transition region?
 -> Cheeseman et al [IJCAI 91] conjectured that for all NP-complete problems there exists a parameter such that when changing this parameter there exists a very small range – the phase transition region – where the probability of satisfiability of randomly generated instances changes from 1 to 0. They also conjectured that in this area one finds many hard instances.

• How well does the path consistency method approximate satisfiability?
Some Experiments

• How difficult is the RCC8 satisfiability problem in practice?

• Are there particularly difficult instances?

 → Where is the **phase transition** region?

 → Cheeseman et al [IJCAI 91] conjectured that for all NP-complete problems there exists a parameter such that when changing this parameter there exists a very small range – the **phase transition region** – where the probability of satisfiability of randomly generated instances changes from 1 to 0. They also conjectured that in this area one finds many hard instances.

• How well does the path consistency method approximate satisfiability?

• Can \mathcal{H}_8 be used to speed up the satisfiability testing?
Generating Instances

• Randomly generating instances according to the following parameters:
 ○ Number of nodes n
Generating Instances

- Randomly generating instances according to the following parameters:
 - Number of nodes n
 - Average number of constraints d: \((nd/2 \text{ out of } n(n - 1)/2 \text{ possible constraints})\)
Generating Instances

• Randomly generating instances according to the following parameters:
 ○ Number of nodes n
 ○ Average number of constraints d: $(nd/2$ out of $n(n - 1)/2$ possible constraints
 ○ Average number of base relations l per constraint
Generating Instances

- Randomly generating instances according to the following parameters:
 - Number of nodes n
 - Average number of constraints d: $(nd/2$ out of $n(n−1)/2$ possible constraints
 - Average number of base relations l per constraint
 - Allowed constraints
Generating Instances

- Randomly generating instances according to the following parameters:
 - Number of nodes n
 - Average number of constraints d: $(nd/2$ out of $n(n - 1)/2$ possible constraints
 - Average number of base relations l per constraint
 - Allowed constraints
 - $A(n, d, l)$: all RCC8 relations
Generating Instances

- Randomly generating instances according to the following parameters:
 - Number of nodes n
 - Average number of constraints d: $(nd/2$ out of $n(n - 1)/2$ possible constraints
 - Average number of base relations l per constraint
 - Allowed constraints
 - $A(n, d, l)$: all RCC8 relations
 - $H(n, d, l)$: only relations out of RCC8 - \mathcal{H}_8
Phase Transition for \(A(n, d, 4) \)

- Phase transition for \(A(n, d, 4) \) between \(d = 8 \) and \(d = 10 \) for \(10 \leq n \leq 100 \).
Phase Transition for $H(n, d, 4)$

- Phase transition for $H(n, d, 4)$ between $d = 10$ and $d = 15$ for $10 \leq n \leq 80$.

500 instances per data point
Hard Instances …

… using more than 10,000 search nodes

500 instances per data point
Quality of Path Consistency…

…measured as the percentage of path consistent but unsatisfiable CSPs

Percentage points of incorrect PCA answers for A(n,d,4.0)

Percentage points of incorrect PCA answers for H(n,d,4.0)

500 instances per data point
Outlook & Open Problems

- RCC8 is the spatial-topological counterpart of Allen’s interval calculus
RCC8 is the spatial-topological counterpart of Allen’s interval calculus.

Formalization can be done using topology and – because of McKinsey & Tarski’s result – modal logic.
Outlook & Open Problems

- RCC8 is the spatial-topological counterpart of Allen’s interval calculus
- Formalization can be done using topology and – because of McKinsey & Tarski’s result – modal logic
- Computationally well behaved
Outlook & Open Problems

- RCC8 is the spatial-topological counterpart of Allen’s interval calculus
- Formalization can be done using topology and – because of McKinsey & Tarski’s result – modal logic
- Computationally well behaved
- In contrast to Allen’s calculus no applications so far
Outlook & Open Problems

- RCC8 is the spatial-topological counterpart of Allen’s interval calculus
- Formalization can be done using topology and – because of McKinsey & Tarski’s result – modal logic
- Computationally well behaved
- In contrast to Allen’s calculus no applications so far
- Combinations of RCC8 with other constraint spatial calculi
Outlook & Open Problems

- RCC8 is the spatial-topological counterpart of Allen’s interval calculus
- Formalization can be done using topology and – because of McKinsey & Tarski’s result – modal logic
- Computationally well behaved
- In contrast to Allen’s calculus no applications so far
- Combinations of RCC8 with other constraint spatial calculi
- Combining RCC8 and Allen’s interval calculus to form a temporal-spatial calculus
Outlook & Open Problems

- RCC8 is the spatial-topological counterpart of Allen’s interval calculus
- Formalization can be done using topology and – because of McKinsey & Tarski’s result – modal logic
- Computationally well behaved
- In contrast to Allen’s calculus no applications so far
- Combinations of RCC8 with other constraint spatial calculi
- Combining RCC8 and Allen’s interval calculus to form a temporal-spatial calculus
- Are there other interesting spatial calculi?
Literature

(*) Werner Nutt, On the Translation of Qualitative Spatial Reasoning Problems into Modal Logics, *Advances in Artificial Intelligence, Proc. 23rd Annual German Conference on Artificial Intelligence, KI’99*, Bonn (Germany), September 1999.
