3.6 Spatial Representation and Reasoning: RCC8 and Topology

Bernhard Nebel

- Motivation
- RCC8 - A formalism for qualitative spatial descriptions
- Topology
- Topological set constraints
- From set constraints to modal logic
Motivation

We may want to state qualitative relationships between regions in space.
Motivation

We may want to state qualitative relationships between regions in space, for example:

- “Region X touches region Y”
- “Germany and Switzerland have a common border”
- “Freiburg is located in Baden-Württemberg”
Possible Applications

This can be useful when only partial information is available:

- We may know that region X is not connected with region Y without knowing the shape and location of X and Y.
Possible Applications

This can be useful when only **partial information** is available:

- We may know that region X is **not connected** with region Y without knowing the shape and location of X and Y

We may want to **query** a database:

- Show me all countries **bordering** the Mediterranean!
Possible Applications

This can be useful when only *partial information* is available:

- We may know that region X is *not connected* with region Y without knowing the shape and location of X and Y.

We may want to *query* a database:

- Show me all countries *bordering* the Mediterranean!

We may want to state *integrity constraints*:

- An island has to be located *in the interior of* a sea.
Qualitative Relations Between Regions: RCC-8

Eight relations between regions:

- \(DC(X,Y) \)
- \(PO(X,Y) \)
- \(TPP(X,Y) \)
- \(NTPP(X,Y) \)
- \(EC(X,Y) \)
- \(EO(X,Y) \)
- \(TPP^u(X,Y) \)
- \(NTPP^u(X,Y) \)
Intuition

- **Regions** are some "reasonable" non-empty subsets of space
Intuition

- **Regions** are some “reasonable” non-empty subsets of space

- **DC** means that the two regions do not share any point at all
Intuition

- **Regions** are some “reasonable” non-empty subsets of space
- **DC** means that the two regions do not share any point at all
- **EC** means that they only share borders
Intuition

- **Regions** are some “reasonable” non-empty subsets of space
- **DC** means that the two regions do not share any point at all
- **EC** means that they only share borders
- **PO** means that the two regions share interior points
Intuition

- **Regions** are some “reasonable” non-empty subsets of space

- **DC** means that the two regions do not share any point at all

- **EC** means that they only share borders

- **PO** means that the two regions share interior points

- **TPP** means that one region is a subset of the other sharing some points on the borders
Intuition

- **Regions** are some “reasonable” non-empty subsets of space
- **DC** means that the two regions do not share any point at all
- **EC** means that they only share borders
- **PO** means that the two regions share interior points
- **TPP** means that one region is a subset of the other sharing some points on the borders
- **NTPP** same, but without sharing any bordering points
Questions

• How can we formalize regions?
Questions

• How can we formalize regions?

• How can we formalize these relations?
Questions

• How can we formalize regions?

• How can we formalize these relations?

• Are they disjoint and exhaustive?

• Can we come up with a composition table?

• What is the computational complexity of reasoning with these relations?

• Can we identify a tractable fragment?
Point-set topology is a mathematical theory that deals with properties of space independent of size and shape.
Point-Set Topology

Point-set topology is a mathematical theory that deals with properties of space independent of size and shape.

In topology, we can define notions such as

- **interior** and **exterior** points of regions
Point-Set Topology

Point-set topology is a mathematical theory that deals with properties of space independent of size and shape.

In topology, we can define notions such as

- **interior** and **exterior** points of regions
- **isolated points** of regions
Point-set topology is a mathematical theory that deals with properties of space independent of size and shape.

In topology, we can define notions such as

- interior and exterior points of regions
- isolated points of regions
- boundaries of regions
Point-set topology is a mathematical theory that deals with properties of space independent of size and shape.

In topology, we can define notions such as

- interior and exterior points of regions
- isolated points of regions
- boundaries of regions
- connected components of regions
Point-set topology is a mathematical theory that deals with properties of space independent of size and shape.

In topology, we can define notions such as

- **interior** and **exterior** points of regions
- **isolated points** of regions
- **boundaries** of regions
- **connected components** of regions
- **connected regions**
Point-set topology is a mathematical theory that deals with properties of space independent of size and shape.

In topology, we can define notions such as

- interior and exterior points of regions
- isolated points of regions
- boundaries of regions
- connected components of regions
- connected regions
- ...
Point-Set Topology

Point-set topology is a mathematical theory that deals with properties of space independent of size and shape.

In topology, we can define notions such as

- **interior** and **exterior** points of regions
- **isolated points** of regions
- **boundaries** of regions
- **connected components** of regions
- **connected regions**
- ...
Topology

A topological space is a pair $T = (U, \mathcal{O})$.
A topological space is a pair $\mathcal{T} = (\mathcal{U}, \mathcal{O})$, where

- \mathcal{U} is a nonempty set (the universe)
A topological space is a pair $\mathcal{T} = (\mathcal{U}, \mathcal{O})$, where

- \mathcal{U} is a nonempty set (the universe), and
- \mathcal{O} is a set of subsets of \mathcal{U} (the open sets)
A **topological space** is a pair $\mathcal{T} = (\mathcal{U}, \mathcal{O})$, where

- \mathcal{U} is a nonempty set (the **universe**), and
- \mathcal{O} is a set of subsets of \mathcal{U} (the **open sets**)

such that the following holds:

- $\emptyset \in \mathcal{O}$ and $\mathcal{U} \in \mathcal{O}$
A **topological space** is a pair $\mathcal{T} = (\mathcal{U}, \mathcal{O})$, where

- \mathcal{U} is a nonempty set (the **universe**), and
- \mathcal{O} is a set of subsets of \mathcal{U} (the **open sets**)

such that the following holds:

- $\emptyset \in \mathcal{O}$ and $\mathcal{U} \in \mathcal{O}$
- If $O_1 \in \mathcal{O}$ and $O_2 \in \mathcal{O}$, then $O_1 \cap O_2 \in \mathcal{O}$
A **topological space** is a pair $\mathcal{T} = (\mathcal{U}, \mathcal{O})$, where

- \mathcal{U} is a nonempty set (the **universe**), and
- \mathcal{O} is a set of subsets of \mathcal{U} (the **open sets**)

such that the following holds:

- $\emptyset \in \mathcal{O}$ and $\mathcal{U} \in \mathcal{O}$
- If $O_1 \in \mathcal{O}$ and $O_2 \in \mathcal{O}$, then $O_1 \cap O_2 \in \mathcal{O}$
- If $(O_i)_{i \in I}$ is a (possibly infinite) family of elements from \mathcal{O}, then
 $$\bigcup_{i \in I} O_i \in \mathcal{O}.$$
A **topological space** is a pair \(T = (U, \mathcal{O}) \), where

- \(U \) is a nonempty set (the **universe**), and
- \(\mathcal{O} \) is a set of subsets of \(U \) (the **open sets**)

such that the following holds:

- \(\emptyset \in \mathcal{O} \) and \(U \in \mathcal{O} \)
- If \(O_1 \in \mathcal{O} \) and \(O_2 \in \mathcal{O} \), then \(O_1 \cap O_2 \in \mathcal{O} \)
- If \((O_i)_{i \in I} \), is a (possibly infinite) family of elements from \(\mathcal{O} \), then

\[
\bigcup_{i \in I} O_i \in \mathcal{O}.
\]

Example: In Euclidian space, a set \(O \) is open if for each point \(x \in O \) there is a ball surrounding \(x \) that is contained in \(O \).
A set $N \subseteq \mathcal{U}$ is a **neighborhood** of a point x if there is an open set $O \in \mathcal{O}$ such that $x \in O \subseteq N$.
Terminology & Notation

A set $N \subseteq U$ is a **neighborhood** of a point x if there is an open set $O \in \mathcal{O}$ such that $x \in O \subseteq N$. Let $X \subseteq U$ and $x \in U$. Then x is

- an **interior point** of X if there is a neighborhood N of x such that $N \subseteq X$.

A set \(N \subseteq U \) is a **neighborhood** of a point \(x \) if there is an open set \(O \in \mathcal{O} \) such that \(x \in O \subseteq N \). Let \(X \subseteq U \) and \(x \in U \). Then \(x \) is

- an **interior point** of \(X \) if there is a neighborhood \(N \) of \(x \) such that \(N \subseteq X \)
- a **touching point** of \(X \) if every neighborhood of \(x \) has a nonempty intersection with \(X \)
A set $N \subseteq U$ is a **neighborhood** of a point x if there is an open set $O \in \mathcal{O}$ such that $x \in O \subseteq N$. Let $X \subseteq U$ and $x \in U$. Then x is

- an **interior point** of X if there is a neighborhood N of x such that $N \subseteq X$
- a **touching point** of X if every neighborhood of x has a nonempty intersection with X
- a **boundary point** of X if x is a touching point of X and of its complement \overline{X}
Terminology & Notation

A set $N \subseteq U$ is a **neighborhood** of a point x if there is an open set $O \in \mathcal{O}$ such that $x \in O \subseteq N$. Let $X \subseteq U$ and $x \in U$. Then x is

- an **interior point** of X if there is a neighborhood N of x such that $N \subseteq X$
- a **touching point** of X if every neighborhood of x has a nonempty intersection with X
- a **boundary point** of X if x is a touching point of X and of its complement \overline{X}

Notation:

- $i(X)$ is the set of interior points of X (the **interior** of X)
Terminology & Notation

A set \(N \subseteq \mathcal{U} \) is a **neighborhood** of a point \(x \) if there is an open set \(O \in \mathcal{O} \) such that \(x \in O \subseteq N \). Let \(X \subseteq \mathcal{U} \) and \(x \in \mathcal{U} \). Then \(x \) is

- an **interior point** of \(X \) if there is a neighborhood \(N \) of \(x \) such that \(N \subseteq X \)
- a **touching point** of \(X \) if every neighborhood of \(x \) has a nonempty intersection with \(X \)
- a **boundary point** of \(X \) if \(x \) is a touching point of \(X \) and of its complement \(\overline{X} \)

Notation:

- \(i(X) \) is the set of **interior points** of \(X \) (the **interior** of \(X \))
- \(i(X) \) is the largest open set contained in \(X \).
Terminology & Notation

A set $N \subseteq \mathcal{U}$ is a **neighborhood** of a point x if there is an open set $O \in \mathcal{O}$ such that $x \in O \subseteq N$. Let $X \subseteq \mathcal{U}$ and $x \in \mathcal{U}$. Then x is

- an **interior point** of X if there is a neighborhood N of x such that $N \subseteq X$
- a **touching point** of X if every neighborhood of x has a nonempty intersection with X
- a **boundary point** of X if x is a touching point of X and of its complement \overline{X}

Notation:

- $i(X)$ is the set of interior points of X (the **interior** of X)
- $i(X)$ is the largest open set contained in X.
- $cl(X)$ is the set of touching points of X (the **closure** of X)
A set $N \subseteq \mathcal{U}$ is a **neighborhood** of a point x if there is an open set $O \in \mathcal{O}$ such that $x \in O \subseteq N$. Let $X \subseteq \mathcal{U}$ and $x \in \mathcal{U}$. Then x is

- an **interior point** of X if there is a neighborhood N of x such that $N \subseteq X$
- a **touching point** of X if every neighborhood of x has a nonempty intersection with X
- a **boundary point** of X if x is a touching point of X and of its complement \overline{X}

Notation:

- $i(X)$ is the set of interior points of X (the **interior** of X) $i(X)$ is the largest open set contained in X.
- $cl(X)$ is the set of touching points of X (the **closure** of X)
- $bd(X)$ is the set of boundary points of X
A set $N \subseteq \mathcal{U}$ is a **neighborhood** of a point x if there is an open set $O \in \mathcal{O}$ such that $x \in O \subseteq N$. Let $X \subseteq \mathcal{U}$ and $x \in \mathcal{U}$. Then x is

- an **interior point** of X if there is a neighborhood N of x such that $N \subseteq X$
- a **touching point** of X if every neighborhood of x has a nonempty intersection with X
- a **boundary point** of X if x is a touching point of X and of its complement \overline{X}

Notation:

- $i(X)$ is the set of interior points of X (the **interior** of X)

 $i(X)$ is the largest open set contained in X.

- $cl(X)$ is the set of touching points of X (the **closure** of X)

- $bd(X)$ is the set of boundary points of X

A set is **closed** if $X = cl(X)$.
The interior operator $i(\cdot)$ has the following properties:

1. $i(U) = U$
The interior operator $i(\cdot)$ has the following properties:

1. $i(U) = U$

2. $i(X) \cap i(Y) = i(X \cap Y)$
Interior, Boundary, and Closure Operators

The interior operator $i(\cdot)$ has the following properties:

1. $i(U) = U$
2. $i(X) \cap i(Y) = i(X \cap Y)$
3. $i(X) \subseteq X$
The **interior operator** $i(\cdot)$ has the following properties:

1. $i(U) = U$
2. $i(X) \cap i(Y) = i(X \cap Y)$
3. $i(X) \subseteq X$
4. $i(i(X)) = i(X)$
Interior, Boundary, and Closure Operators

The **interior operator** $i(\cdot)$ has the following properties:

1. $i(U) = U$
2. $i(X) \cap i(Y) = i(X \cap Y)$
3. $i(X) \subseteq X$
4. $i(i(X)) = i(X)$

Note:

- X is *open* iff $X = i(X)$
The interior operator $i(\cdot)$ has the following properties:

1. $i(U) = U$
2. $i(X) \cap i(Y) = i(X \cap Y)$
3. $i(X) \subseteq X$
4. $i(i(X)) = i(X)$

Note:

- X is open iff $X = i(X)$
- $\text{cl}(X) = \overline{i(X)}$
Interior, Boundary, and Closure Operators

The interior operator $i(\cdot)$ has the following properties:

1. $i(U) = U$
2. $i(X) \cap i(Y) = i(X \cap Y)$
3. $i(X) \subseteq X$
4. $i(i(X)) = i(X)$

Note:

- X is open iff $X = i(X)$
- $cl(X) = i(\overline{X})$
- $bd(X) = cl(X) \cap cl(\overline{X})$
Theorem. Let \mathcal{U} be a set and $i : 2^\mathcal{U} \to 2^\mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does.
Theorem. Let \mathcal{U} be a set and $i: \mathcal{U} \to \mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define $\mathcal{O} := \{O \subseteq \mathcal{U} \mid O = i(O)\}$.
Theorem. Let \mathcal{U} be a set and $i: 2^\mathcal{U} \to 2^\mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define $\mathcal{O} := \{O \subseteq \mathcal{U} \mid O = i(O)\}$. Then $\mathcal{T} = (\mathcal{U}, \mathcal{O})$ is a topological space.

Proof.
Theorem. Let U be a set and $i: 2^U \to 2^U$ be a function that maps subsets of U to subsets of U in the same way an interior operator does. Define $O := \{ O \subseteq U \mid O = i(O) \}$. Then $T = (U, O)$ is a topological space.

Proof. Since $i(U) = U$ by (1), we have $U \in O$.
Theorem. Let \(U \) be a set and \(i: 2^U \to 2^U \) be a function that maps subsets of \(U \) to subsets of \(U \) in the same way an interior operator does. Define \(\mathcal{O} := \{ O \subseteq U \mid O = i(O) \} \). Then \(T = (U, \mathcal{O}) \) is a topological space.

Proof. Since \(i(U) = U \) by (1), we have \(U \in \mathcal{O} \).

Since \(i(\emptyset) \subseteq \emptyset \) by (3), we have \(i(\emptyset) = \emptyset \).
Theorem. Let U be a set and $i : 2^U \to 2^U$ be a function that maps subsets of U to subsets of U in the same way an interior operator does. Define $O := \{O \subseteq U \mid O = i(O)\}$. Then $T = (U, O)$ is a topological space.

Proof. Since $i(U) = U$ by (1), we have $U \in O$.

Since $i(\emptyset) \subseteq \emptyset$ by (3), we have $i(\emptyset) = \emptyset$, and therefore $\emptyset \in O$.
From Interior Operators to Topologies and Back

Theorem. Let \mathcal{U} be a set and $i: 2^\mathcal{U} \to 2^\mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define $\mathcal{O} := \{O \subseteq \mathcal{U} \mid O = i(O)\}$. Then $\mathcal{T} = (\mathcal{U}, \mathcal{O})$ is a topological space.

Proof. Since $i(\mathcal{U}) = \mathcal{U}$ by (1), we have $\mathcal{U} \in \mathcal{O}$.

Since $i(\emptyset) \subseteq \emptyset$ by (3), we have $i(\emptyset) = \emptyset$, and therefore $\emptyset \in \mathcal{O}$.

By (2), \mathcal{O} is closed under pairwise intersection.
From Interior Operators to Topologies and Back

Theorem. Let \(U \) be a set and \(i : 2^U \to 2^U \) be a function that maps subsets of \(U \) to subsets of \(U \) in the same way an interior operator does. Define \(O := \{O \subseteq U \mid O = i(O)\} \). Then \(T = (U, O) \) is a topological space.

Proof. Since \(i(U) = U \) by (1), we have \(U \in O \).

Since \(i(\emptyset) \subseteq \emptyset \) by (3), we have \(i(\emptyset) = \emptyset \), and therefore \(\emptyset \in O \).

By (2), \(O \) is closed under pairwise intersection.

From (2), it follows that \(X \subseteq Y \) implies \(i(X) \subseteq i(Y) \) (which we need below).
From Interior Operators to Topologies and Back

Theorem. Let \mathcal{U} be a set and $i: 2^\mathcal{U} \to 2^\mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define $\mathcal{O} := \{O \subseteq \mathcal{U} \mid O = i(O)\}$. Then $\mathcal{T} = (\mathcal{U}, \mathcal{O})$ is a topological space.

Proof. Since $i(\mathcal{U}) = \mathcal{U}$ by (1), we have $\mathcal{U} \in \mathcal{O}$.

Since $i(\emptyset) \subseteq \emptyset$ by (3), we have $i(\emptyset) = \emptyset$, and therefore $\emptyset \in \mathcal{O}$.

By (2), \mathcal{O} is closed under pairwise intersection.

From (2), it follows that $X \subseteq Y$ implies $i(X) \subseteq i(Y)$ (which we need below).

Let $O := \bigcup_{i \in I} O_i$, $O_i = i(O_i)$ for all i.
From Interior Operators to Topologies and Back

Theorem. Let \mathcal{U} be a set and $i: 2^\mathcal{U} \to 2^\mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define $\mathcal{O} := \{O \subseteq \mathcal{U} \mid O = i(O)\}$. Then $\mathcal{T} = (\mathcal{U}, \mathcal{O})$ is a topological space.

Proof. Since $i(\mathcal{U}) = \mathcal{U}$ by (1), we have $\mathcal{U} \in \mathcal{O}$.

Since $i(\emptyset) \subseteq \emptyset$ by (3), we have $i(\emptyset) = \emptyset$, and therefore $\emptyset \in \mathcal{O}$.

By (2), \mathcal{O} is closed under pairwise intersection.

From (2), it follows that $X \subseteq Y$ implies $i(X) \subseteq i(Y)$ (which we need below).

Let $O := \bigcup_{i \in I} O_i$, $O_i = i(O_i)$ for all i. Of course, $i(O) \subseteq O$.
From Interior Operators to Topologies and Back

Theorem. Let \mathcal{U} be a set and $i: 2^\mathcal{U} \to 2^\mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define $\mathcal{O} := \{ O \subseteq \mathcal{U} \mid O = i(O) \}$. Then $\mathcal{T} = (\mathcal{U}, \mathcal{O})$ is a topological space.

Proof. Since $i(\mathcal{U}) = \mathcal{U}$ by (1), we have $\mathcal{U} \in \mathcal{O}$.

Since $i(\emptyset) \subseteq \emptyset$ by (3), we have $i(\emptyset) = \emptyset$, and therefore $\emptyset \in \mathcal{O}$.

By (2), \mathcal{O} is closed under pairwise intersection.

From (2), it follows that $X \subseteq Y$ implies $i(X) \subseteq i(Y)$ (which we need below).

Let $O := \bigcup_{i \in I} O_i$, $O_i = i(O_i)$ for all i. Of course, $i(O) \subseteq O$. Clearly, $O_i \subseteq O$ for all i. Then $O_i = i(O_i) \subseteq i(O)$.
From Interior Operators to Topologies and Back

Theorem. Let \mathcal{U} be a set and $i: 2^\mathcal{U} \rightarrow 2^\mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define

$\mathcal{O} := \{O \subseteq \mathcal{U} | O = i(O)\}$. Then $\mathcal{T} = (\mathcal{U}, \mathcal{O})$ is a topological space.

Proof. Since $i(\emptyset) = \emptyset$ by (1), we have $\mathcal{U} \in \mathcal{O}$.

Since $i(\emptyset) \subseteq \emptyset$ by (3), we have $i(\emptyset) = \emptyset$, and therefore $\emptyset \in \mathcal{O}$.

By (2), \mathcal{O} is closed under pairwise intersection.

From (2), it follows that $X \subseteq Y$ implies $i(X) \subseteq i(Y)$ (which we need below).

Let $O := \bigcup_{i \in I} O_i$, $O_i = i(O_i)$ for all i. Of course, $i(O) \subseteq O$. Clearly, $O_i \subseteq O$ for all i.

Then $O_i = i(O_i) \subseteq i(O)$. Therefore $O = \bigcup_{i \in I} O_i \subseteq i(O)$.
Theorem. Let \mathcal{U} be a set and $i: 2^\mathcal{U} \to 2^\mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define $\mathcal{O} := \{O \subseteq \mathcal{U} \mid O = i(O)\}$. Then $\mathcal{T} = (\mathcal{U}, \mathcal{O})$ is a topological space.

Proof. Since $i(\mathcal{U}) = \mathcal{U}$ by (1), we have $\mathcal{U} \in \mathcal{O}$.

Since $i(\emptyset) \subseteq \emptyset$ by (3), we have $i(\emptyset) = \emptyset$, and therefore $\emptyset \in \mathcal{O}$.

By (2), \mathcal{O} is closed under pairwise intersection.

From (2), it follows that $X \subseteq Y$ implies $i(X) \subseteq i(Y)$ (which we need below).

Let $O := \bigcup_{i \in I} O_i$, $O_i = i(O_i)$ for all i. Of course, $i(O) \subseteq O$. Clearly, $O_i \subseteq O$ for all i.

Then $O_i = i(O_i) \subseteq i(O)$. Therefore $O = \bigcup_{i \in I} O_i \subseteq i(O)$. Hence, $O = i(O)$.
Theorem. Let \mathcal{U} be a set and $i: 2^\mathcal{U} \to 2^\mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define $\mathcal{O} := \{O \subseteq \mathcal{U} \mid O = i(O)\}$. Then $\mathcal{T} = (\mathcal{U}, \mathcal{O})$ is a topological space.

Proof. Since $i(\mathcal{U}) = \mathcal{U}$ by (1), we have $\mathcal{U} \in \mathcal{O}$.

Since $i(\emptyset) \subseteq \emptyset$ by (3), we have $i(\emptyset) = \emptyset$, and therefore $\emptyset \in \mathcal{O}$.

By (2), \mathcal{O} is closed under pairwise intersection.

From (2), it follows that $X \subseteq Y$ implies $i(X) \subseteq i(Y)$ (which we need below).

Let $O := \bigcup_{i \in I} O_i$, $O_i = i(O_i)$ for all i. Of course, $i(O) \subseteq O$. Clearly, $O_i \subseteq O$ for all i.

Then $O_i = i(O_i) \subseteq i(O)$. Therefore $O = \bigcup_{i \in I} O_i \subseteq i(O)$. Hence, $O = i(O)$, i.e., $O \in \mathcal{O}$.
From Interior Operators to Topologies and Back

Theorem. Let \mathcal{U} be a set and $i: 2^\mathcal{U} \to 2^\mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define $\mathcal{O} := \{ O \subseteq \mathcal{U} \mid O = i(O) \}$. Then $\mathcal{T} = (\mathcal{U}, \mathcal{O})$ is a topological space.

Proof. Since $i(\mathcal{U}) = \mathcal{U}$ by (1), we have $\mathcal{U} \in \mathcal{O}$.

Since $i(\emptyset) \subseteq \emptyset$ by (3), we have $i(\emptyset) = \emptyset$, and therefore $\emptyset \in \mathcal{O}$.

By (2), \mathcal{O} is closed under pairwise intersection.

From (2), it follows that $X \subseteq Y$ implies $i(X) \subseteq i(Y)$ (which we need below).

Let $O := \bigcup_{i \in I} O_i$, $O_i = i(O_i)$ for all i. Of course, $i(O) \subseteq O$. Clearly, $O_i \subseteq O$ for all i.

Then $O_i = i(O_i) \subseteq i(O)$. Therefore $O = \bigcup_{i \in I} O_i \subseteq i(O)$. Hence, $O = i(O)$, i.e., $O \in \mathcal{O}$. Thus, \mathcal{O} is closed under arbitrary unions.
Theorem. Let \mathcal{U} be a set and $i: 2^{\mathcal{U}} \to 2^{\mathcal{U}}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define $\mathcal{O} := \{ O \subseteq \mathcal{U} \mid O = i(O) \}$. Then $\mathcal{T} = (\mathcal{U}, \mathcal{O})$ is a topological space.

Proof. Since $i(\mathcal{U}) = \mathcal{U}$ by (1), we have $\mathcal{U} \in \mathcal{O}$.

Since $i(\emptyset) \subseteq \emptyset$ by (3), we have $i(\emptyset) = \emptyset$, and therefore $\emptyset \in \mathcal{O}$.

By (2), \mathcal{O} is closed under pairwise intersection.

From (2), it follows that $X \subseteq Y$ implies $i(X) \subseteq i(Y)$ (which we need below).

Let $O := \bigcup_{i \in I} O_i$, $O_i = i(O_i)$ for all i. Of course, $i(O) \subseteq O$. Clearly, $O_i \subseteq O$ for all i.

Then $O_i = i(O_i) \subseteq i(O)$. Therefore $O = \bigcup_{i \in I} O_i \subseteq i(O)$. Hence, $O = i(O)$, i.e., $O \in \mathcal{O}$. Thus, \mathcal{O} is closed under arbitrary unions.

Note: One can show that the interior operator of the constructed topology is identical to our original i.
From Interior Operators to Topologies and Back

Theorem. Let \mathcal{U} be a set and $i: 2^\mathcal{U} \to 2^\mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define

$$O := \{O \subseteq \mathcal{U} \mid O = i(O)\}.$$

Then $\mathcal{T} = (\mathcal{U}, O)$ is a topological space.

Proof. Since $i(\mathcal{U}) = \mathcal{U}$ by (1), we have $\mathcal{U} \in O$.

Since $i(\emptyset) \subseteq \emptyset$ by (3), we have $i(\emptyset) = \emptyset$, and therefore $\emptyset \in O$.

By (2), O is closed under pairwise intersection.

From (2), it follows that $X \subseteq Y$ implies $i(X) \subseteq i(Y)$ (which we need below).

Let $O := \bigcup_{i \in I} O_i$, $O_i = i(O_i)$ for all i. Of course, $i(O) \subseteq O$. Clearly, $O_i \subseteq O$ for all i.

Then $O_i = i(O_i) \subseteq i(O)$. Therefore $O = \bigcup_{i \in I} O_i \subseteq i(O)$. Hence, $O = i(O)$, i.e., $O \in O$. Thus, O is closed under arbitrary unions.

Note: One can show that the interior operator of the constructed topology is identical to our original i. We can play the same game starting with a topology \mathcal{T}, constructing i and then defining a new topology \mathcal{T}'.
Theorem. Let \mathcal{U} be a set and $i: 2^\mathcal{U} \to 2^\mathcal{U}$ be a function that maps subsets of \mathcal{U} to subsets of \mathcal{U} in the same way an interior operator does. Define $\mathcal{O} := \{ O \subseteq \mathcal{U} \mid O = i(O) \}$. Then $\mathcal{T} = (\mathcal{U}, \mathcal{O})$ is a topological space.

Proof. Since $i(\mathcal{U}) = \mathcal{U}$ by (1), we have $\mathcal{U} \in \mathcal{O}$.

Since $i(\emptyset) \subseteq \emptyset$ by (3), we have $i(\emptyset) = \emptyset$, and therefore $\emptyset \in \mathcal{O}$.

By (2), \mathcal{O} is closed under pairwise intersection.

From (2), it follows that $X \subseteq Y$ implies $i(X) \subseteq i(Y)$ (which we need below).

Let $O := \bigcup_{i \in I} O_i$, $O_i = i(O_i)$ for all i. Of course, $i(O) \subseteq O$. Clearly, $O_i \subseteq O$ for all i.

Then $O_i = i(O_i) \subseteq i(O)$. Therefore $O = \bigcup_{i \in I} O_i \subseteq i(O)$. Hence, $O = i(O)$, i.e., $O \in \mathcal{O}$. Thus, \mathcal{O} is closed under arbitrary unions.

Note: One can show that the interior operator of the constructed topology is identical to our original i. We can play the same game starting with a topology \mathcal{T}, constructing i and then defining a new topology \mathcal{T}'. It turns out that $\mathcal{T} = \mathcal{T}'$.
Topological Set Expressions and Their Interpretations

Topological set expressions describe subsets of a topological space.
Topological Set Expressions and Their Interpretations

Topological set expressions describe subsets of a topological space:

\[s \rightarrow X \]
Topological Set Expressions and Their Interpretations

Topological set expressions describe subsets of a topological space:

\[s \rightarrow X \mid \top \]
Topological set expressions describe subsets of a topological space:

\[s \rightarrow X | \top | \bot \]
Topological set expressions describe subsets of a topological space:

\[s \rightarrow X \mid \top \mid \bot \mid s' \sqcap s'' \]
Topological Set Expressions and Their Interpretations

Topological set expressions describe subsets of a topological space:

\[s \rightarrow X \mid \top \mid \bot \mid s' \cap s'' \mid s' \cup s'' \]
Topological set expressions describe subsets of a topological space:

\[s \rightarrow X \mid \top \mid \bot \mid s' \cap s'' \mid s' \cup s'' \mid \overline{s} \]
Topological set expressions describe subsets of a topological space:

$$ s \rightarrow X \mid \top \mid \bot \mid s' \cap s'' \mid s' \cup s'' \mid \overline{s} \mid \mathbb{I}s' $$
Topological set expressions describe subsets of a topological space:

\[s \rightarrow X | \top | \bot | s' \cap s'' | s' \cup s'' | \overline{s} | I s' , \]

with set variables \(X, Y, Z \)
Topological Set Expressions and Their Interpretations

Topological set expressions describe subsets of a topological space:

\[s \rightarrow X | \top | \bot | s' \cap s'' | s' \cup s'' | \overline{s} | I s', \]

with **set variables** \(X, Y, Z \).

A **topological interpretation** is a tuple \(I = (T, d) \).
Topological set expressions describe subsets of a topological space:

\[s \rightarrow X \mid \top \mid \bot \mid s' \cap s'' \mid s' \cup s'' \mid \overline{s} \mid I_s' \],

with set variables \(X, Y, Z \).

A topological interpretation is a tuple \(\mathcal{I} = (\mathcal{T}, d) \), where \(\mathcal{T} = (\mathcal{U}, \mathcal{O}) \) is a topological space with an associated interior operator \(i \).
Topological set expressions describe subsets of a topological space:

\[s \rightarrow X \mid \top \mid \bot \mid s' \cap s'' \mid s' \cup s'' \mid \overline{s} \mid \mathbb{I}s', \]

with set variables \(X, Y, Z \).

A topological interpretation is a tuple \(\mathcal{I} = (\mathcal{T}, d) \), where \(\mathcal{T} = (\mathcal{U}, \mathcal{O}) \) is a topological space with an associated interior operator \(\mathbb{I} \) and \(d \) is a function from set variables to subsets of \(\mathcal{U} \).
Topological set expressions describe subsets of a topological space:

\[s \rightarrow X \mid \top \mid \bot \mid s' \cap s'' \mid s' \cup s'' \mid \overline{s} \mid \text{I}s', \]

with set variables \(X, Y, Z \).

A topological interpretation is a tuple \(\mathcal{I} = (\mathcal{T}, d) \), where \(\mathcal{T} = (\mathcal{U}, \mathcal{O}) \) is a topological space with an associated interior operator \(i \) and \(d \) is a function from set variables to subsets of \(\mathcal{U} \).

\(d \) is extended to topological set expressions as follows:

\[d(\bot) = \emptyset \]
Topological Set Expressions and Their Interpretations

Topological set expressions describe subsets of a topological space:

\[s \rightarrow X \mid \top \mid \bot \mid s' \cap s'' \mid s' \cup s'' \mid \overline{s} \mid Is', \]

with set variables \(X, Y, Z \).

A topological interpretation is a tuple \(\mathcal{I} = (\mathcal{T}, d) \), where \(\mathcal{T} = (\mathcal{U}, \mathcal{O}) \) is a topological space with an associated interior operator \(i \) and \(d \) is a function from set variables to subsets of \(\mathcal{U} \).

\(d \) is extended to topological set expressions as follows:

\[
\begin{align*}
 d(\bot) & = \emptyset \\
 d(\top) & = \mathcal{U}
\end{align*}
\]
Topological Set Expressions and Their Interpretations

Topological set expressions describe subsets of a topological space:

\[s \rightarrow X \mid \top \mid \bot \mid s' \cap s'' \mid s' \cup s'' \mid \overline{s} \mid I s' , \]

with **set variables** \(X, Y, Z \).

A **topological interpretation** is a tuple \(\mathcal{I} = (\mathcal{T}, d) \), where \(\mathcal{T} = (\mathcal{U}, \mathcal{O}) \) is a topological space with an associated interior operator \(i \) and \(d \) is a function from **set variables** to subsets of \(\mathcal{U} \).

\(d \) is extended to **topological set expressions** as follows:

\[
\begin{align*}
d(\bot) &= \emptyset \\
d(\top) &= \mathcal{U} \\
d(s \cap s') &= d(s) \cap d(s')
\end{align*}
\]
Topological set expressions describe subsets of a topological space:

\[s \rightarrow X | \top | \bot | s' \cap s'' | s' \cup s'' | \overline{s} | \mathcal{I}s', \]

with set variables \(X, Y, Z \).

A topological interpretation is a tuple \(\mathcal{I} = (\mathcal{T}, d) \), where \(\mathcal{T} = (\mathcal{U}, \mathcal{O}) \) is a topological space with an associated interior operator \(i \) and \(d \) is a function from set variables to subsets of \(\mathcal{U} \).

\(d \) is extended to topological set expressions as follows:

\[
\begin{align*}
 d(\bot) &= \emptyset \\
 d(\top) &= \mathcal{U} \\
 d(s \cap s') &= d(s) \cap d(s') \\
 d(s \cup s') &= d(s) \cup d(s')
\end{align*}
\]
Topological set expressions describe subsets of a topological space:

\[s \rightarrow X \mid \top \mid \bot \mid s' \cap s'' \mid s' \cup s'' \mid \overline{s} \mid I _s', \]

with set variables \(X, Y, Z \).

A topological interpretation is a tuple \(\mathcal{I} = (\mathcal{T}, d) \), where \(\mathcal{T} = (\mathcal{U}, \mathcal{O}) \) is a topological space with an associated interior operator \(i \) and \(d \) is a function from set variables to subsets of \(\mathcal{U} \).

d is extended to topological set expressions as follows:

\[
\begin{align*}
d(\bot) & = \emptyset \\
d(\top) & = \mathcal{U} \\
d(s \cap s') & = d(s) \cap d(s') \\
d(s \cup s') & = d(s) \cup d(s') \\
d(\overline{s}) & = \mathcal{U} - d(s)
\end{align*}
\]
Topological Set Expressions and Their Interpretations

Topological set expressions describe subsets of a topological space:

\[s \rightarrow X \mid \top \mid \bot \mid s' \cap s'' \mid s' \cup s'' \mid s^c \mid \text{Is'}, \]

with **set variables** \(X, Y, Z \).

A **topological interpretation** is a tuple \(\mathcal{I} = (\mathcal{T}, d) \), where \(\mathcal{T} = (\mathcal{U}, \mathcal{O}) \) is a topological space with an associated interior operator \(i \) and \(d \) is a function from **set variables** to subsets of \(\mathcal{U} \).

\(d \) is extended to **topological set expressions** as follows:

\[
\begin{align*}
d(\bot) & = \emptyset & d(\top) & = \mathcal{U} \\
d(s \cap s') & = d(s) \cap d(s') & d(s \cup s') & = d(s) \cup d(s') \\
d(s^c) & = \mathcal{U} - d(s) & d(\text{Is}) & = i(d(s))
\end{align*}
\]
Topological Set Constraints

Elementary set constraints:

\[s \equiv t \quad \text{or} \quad s \not\equiv t \]
Topological Set Constraints

Elementary set constraints:

\[s = t \quad \text{or} \quad s \neq t \]

Complex set constraints: combinations using \(\land, \lor, \) and \(\neg \).
Topological Set Constraints

Elementary set constraints:

\[s \equiv t \text{ or } s \not\equiv t \]

Complex set constraints: combinations using \(\land \), \(\lor \), and \(\neg \).

A topological interpretation \(\mathcal{I} = (\mathcal{T}, d) \) satisfies a constraint
Topological Set Constraints

Elementary set constraints:

\[s = t \text{ or } s \neq t \]

Complex set constraints: combinations using \(\land\), \(\lor\), and \(\neg\).

A topological interpretation \(\mathcal{I} = (T, d)\) satisfies a constraint:

\[\mathcal{I} \models s = t \iff d(s) = d(t) \]
Topological Set Constraints

Elementary set constraints:

\[s \vdash t \] or \[s \nvDash t \]

Complex set constraints: combinations using \(\land, \lor, \) and \(\neg \).

A topological interpretation \(\mathcal{I} = (\mathcal{T}, d) \) satisfies a constraint:

\[\mathcal{I} \models s \vdash t \iff d(s) = d(t) \]

\[\mathcal{I} \models s \nvDash t \]
Topological Set Constraints

Elementary set constraints:

\[s \equiv t \text{ or } s \not\equiv t \]

Complex set constraints: combinations using \(\land, \lor, \text{ and } \neg \).

A topological interpretation \(\mathcal{I} = (\mathcal{T}, d) \) satisfies a constraint:

\[\mathcal{I} \models s \equiv t \iff d(s) = d(t) \]
\[\mathcal{I} \models s \not\equiv t \iff d(s) \neq d(t) \]
Topological Set Constraints

Elementary set constraints:

\[s = t \text{ or } s \neq t \]

Complex set constraints: combinations using \(\land, \lor, \) and \(\neg \).

A topological interpretation \(\mathcal{I} = (\mathcal{T}, d) \) satisfies a constraint:

\[\mathcal{I} \models s = t \iff d(s) = d(t) \]
\[\mathcal{I} \models s \neq t \iff d(s) \neq d(t) \]

As usual: model, satisfiability, equivalence, entailment, \ldots
What Kind of Regions Do We Want to Consider?
What Kind of Regions Do We Want to Consider?

A and D are reasonable regions
What Kind of Regions Do We Want to Consider?

A and D are **reasonable** regions, B, C, and E are not
What Kind of Regions Do We Want to Consider?

A and D are reasonable regions, B, C, and E are not.

In other words, \(X \) is a region iff it is non-empty.

\[X \neq \bot \]
What Kind of Regions Do We Want to Consider?

A and D are reasonable regions, B, C, and E are not.

In other words, \(X \) is a region iff it is non-empty

\[
X \neq \bot
\]

and “regular”, i.e., the closure of an open set:

\[
X \doteq \overline{I(IX)}.
\]
What Kind of Regions Do We Want to Consider?

A and D are reasonable regions, B, C, and E are not.

In other words, X is a region iff it is non-empty

$$X \neq \bot$$

and “regular”, i.e., the closure of an open set:

$$X = \overline{\text{I}(\text{I}X)}.$$

It is not necessary that a region is internally connected.
Applying the Topological Set Constraints to RCC8

The RCC8 relations are short hands for topological set constraints:

\[\text{DC}(X, Y) := X \cap Y = \bot \]
Applying the Topological Set Constraints to RCC8

The RCC8 relations are short hands for topological set constraints:

\[
\text{DC}(X, Y) := X \cap Y \sqsubseteq \bot
\]
\[
\text{EC}(X, Y) := X \cap Y \not\subseteq \bot \land IX \cap IY \sqsubseteq \bot
\]
Applying the Topological Set Constraints to RCC8

The RCC8 relations are short hands for topological set constraints:

$$DC(X, Y) := X \cap Y \doteq \bot$$

$$EC(X, Y) := X \cap Y \neq \bot \land IX \cap IY \doteq \bot$$

$$PO(X, Y) := IX \cap IY \neq \bot \land X \cap \overline{Y} \neq \bot \land \overline{X} \cap Y \neq \bot$$
Applying the Topological Set Constraints to RCC8

The RCC8 relations are short hands for topological set constraints:

\[
\begin{align*}
\text{DC}(X, Y) & := X \cap Y \doteq \bot \\
\text{EC}(X, Y) & := X \cap Y \not\doteq \bot \land \overline{I} X \cap \overline{I} Y \doteq \bot \\
\text{PO}(X, Y) & := \overline{I} X \cap \overline{I} Y \not\doteq \bot \land X \cap \overline{Y} \not\doteq \bot \land \overline{X} \cap Y \not\doteq \bot \\
\text{EQ}(X, Y) & := X \doteq Y
\end{align*}
\]
Applying the Topological Set Constraints to RCC8

The **RCC8** relations are short hands for topological set constraints:

\[
\begin{align*}
\text{DC}(X, Y) & : = \quad X \cap Y \models \bot \\
\text{EC}(X, Y) & : = \quad X \cap Y \not\models \bot \land IX \cap IY \models \bot \\
\text{PO}(X, Y) & : = \quad IX \cap IY \not\models \bot \land X \cap \overline{Y} \not\models \bot \land \overline{X} \cap Y \not\models \bot \\
\text{EQ}(X, Y) & : = \quad X \models Y \\
\text{TPP}(X, Y) & : = \quad X \cap \overline{Y} \models \bot \land X \cap \overline{IY} \not\models \bot
\end{align*}
\]
Applying the Topological Set Constraints to RCC8

The RCC8 relations are short hands for topological set constraints:

\[
\begin{align*}
DC(X, Y) & := X \cap Y \doteqdot \perp \\
EC(X, Y) & := X \cap Y \neq \perp \land IX \cap IY \doteqdot \perp \\
PO(X, Y) & := IX \cap IY \neq \perp \land X \cap \overline{Y} \neq \perp \land \overline{X} \cap Y \neq \perp \\
EQ(X, Y) & := X \doteqdot Y \\
TPP(X, Y) & := X \cap \overline{Y} \doteqdot \perp \land X \cap \overline{IY} \neq \perp \\
NTPP(X, Y) & := X \cap \overline{IY} \doteqdot \perp
\end{align*}
\]

In addition, each named region must satisfy non-emptiness and regularity.

\[\rightarrow\] It follows that the relations are disjoint and exhaustive.
Normal Form Constraints

• A topological set constraint is in normal form if it is $s \models T$ or $s \not\models T$.
Normal Form Constraints

- A topological set constraint is in normal form if it is \(s \models \top \) or \(s \not\models \top \).

- Every set constraint can be translated into normal form.
Normal Form Constraints

- A topological set constraint is in **normal form** if is is $s \triangleq \top$ or $s \not\triangleq \top$.

- Every set constraint can be translated into normal form.

- $s \triangleq t$ is equivalent to $(\overline{s} \sqcup t) \sqcap (\overline{t} \sqcup s) \triangleq \top$

- $\text{DC}(X, Y) = \overline{X} \sqcup \overline{Y} \triangleq \top$
Normal Form Constraints

- A topological set constraint is in **normal form** if is is $s \vdash T$ or $s \nvdash T$.

- Every set constraint can be translated into normal form.

- $s \vdash t$ is equivalent to $(\overline{s} \sqcup t) \cap (\overline{t} \sqcup s) \vdash T$)

 - $DC(X, Y) = \overline{X} \sqcup \overline{Y} \vdash T$

 - $EC(X, Y) = \overline{X} \sqcup \overline{Y} \not\vdash T \land \overline{IX} \sqcup \overline{IY} \vdash T$
Normal Form Constraints

• A topological set constraint is in normal form if it is $s \models \top$ or $s \not\models \top$.

• Every set constraint can be translated into normal form.

• $s \models t$ is equivalent to $(\overline{s} \cup t) \cap (\overline{t} \cup s) \models \top$

 ○ $\text{DC}(X,Y) = \overline{X} \cup \overline{Y} \models \top$

 ○ $\text{EC}(X,Y) = \overline{X} \cup \overline{Y} \not\models \top \land \overline{X} \cup \overline{Y} \models \top$

 ○ …
A Deduction Theorem for Set Constraints and Convexity

We may want to know when a set constraint follows (or does not follow) from another set constraint.
A Deduction Theorem for Set Constraints and Convexity

We may want to know when a set constraint follows (or does not follow) from another set constraint. **Notation**: $s \subseteq t$ stands for $\overline{s} \cup t \models T$.
A Deduction Theorem for Set Constraints and Convexity

We may want to know when a set constraint follows (or does not follow) from another set constraint. **Notation**: \(s \sqsubseteq t \) stands for \(\overline{s} \cup t \vdash \top \).

Theorem (Nutt 99). (Deduction Theorem) Let \(s, t \) be set expressions. Then

\[
s \vdash \top \models t \vdash \top \iff \models Is \sqsubseteq It.
\]
A Deduction Theorem for Set Constraints and Convexity

We may want to know when a set constraint follows (or does not follow) from another set constraint. **Notation**: $s \sqsubseteq t$ stands for $\overline{s} \sqcup t \models \top$.

Theorem (Nutt 99). (Deduction Theorem) Let s, t be set expressions. Then

$$s \models \top \models t \models \top \iff \models I_s \sqsubseteq I_t.$$

(without proof)
A Deduction Theorem for Set Constraints and Convexity

We may want to know when a set constraint follows (or does not follow) from another set constraint. **Notation:** $s \sqsubseteq t$ stands for $\overline{s} \cup t \models \top$.

Theorem (Nutt 99). (Deduction Theorem) Let s, t be set expressions. Then

$$s \models \top \models t \models \top \text{ iff } \models Is \sqsubseteq It.$$

(without proof)

Theorem. (Convexity) The conjunctive set constraint

$$s_1 \models \top \land \ldots \land s_m \models \top \land t_1 \neq \top \land \ldots \land t_n \neq \top$$

is satisfiable iff and only if the following constraints are satisfiable for each $j \in \{1, \ldots, n\}$

$$s_1 \models \top \land \ldots \land s_m \models \top \land t_j \neq \top.$$
A Deduction Theorem for Set Constraints and Convexity

We may want to know when a set constraint follows (or does not follow) from another set constraint. **Notation:** \(s \sqsubseteq t \) stands for \(\overline{s} \cup t = \top \).

Theorem (Nutt 99). (Deduction Theorem) Let \(s, t \) be set expressions. Then

\[
\models s = \top \quad \models t = \top \quad \text{iff} \quad \models Is \subseteq It.
\]

(without proof)

Theorem. (Convexity) The conjunctive set constraint

\[
s_1 \models \top \land \ldots \land s_m \models \top \land t_1 \neq \top \land \ldots \land t_n \neq \top
\]

is satisfiable iff and only if the following constraints are satisfiable for each \(j \in \{1, \ldots, n\} \)

\[
s_1 \models \top \land \ldots \land s_m \models \top \land t_j \neq \top.
\]

Proof Idea. (\(\Leftarrow \)) Construct models for each \(j \) and create a common model by taking disjoint union.
The modal logic S4 can be characterized by the following axiom schemata (with I instead of □ as the modal box operator)

- $I\top \leftrightarrow \top$ (valid in all frames)
The modal logic S4 can be characterized by the following axiom schemata (with I instead of □ as the modal box operator)

- $I\top \leftrightarrow \top$ (valid in all frames)
- $I\varphi \rightarrow \varphi$ (valid in T-frames: reflexivity)
The modal logic S4 can be characterized by the following axiom schemata (with I instead of \Box as the modal box operator)

- $I\top \leftrightarrow \top$ (valid in all frames)
- $I\varphi \rightarrow \varphi$ (valid in \mathbf{T}-frames: reflexivity)
- $I\varphi \land I\psi \leftrightarrow I(\varphi \land \psi)$ (valid in all frames)
The modal logic S4 can be characterized by the following axiom schemata (with I instead of \Box as the modal box operator)

1. $I\top \leftrightarrow \top$ (valid in all frames)
2. $I\varphi \rightarrow \varphi$ (valid in T-frames: reflexivity)
3. $I\varphi \land I\psi \leftrightarrow I(\varphi \land \psi)$ (valid in all frames)
4. $II\varphi \leftrightarrow I\varphi$ (valid in $T4$-frames: reflexivity and transitivity)
The modal logic S4 can be characterized by the following axiom schemata (with I instead of \Box as the modal box operator)

- $I\top \leftrightarrow \top$ \textit{(valid in all frames)}
- $I\varphi \rightarrow \varphi$ \textit{(valid in T-frames: reflexivity)}
- $I\varphi \land I\psi \leftrightarrow I(\varphi \land \psi)$ \textit{(valid in all frames)}
- $II\varphi \leftrightarrow I\varphi$ \textit{(valid in $T4$-frames: reflexivity and transitivity)}

Reminder: Interior operator

- $i(U) = U$
- $i(X) \cap i(Y) = i(X \cap Y)$
- $i(X) \subseteq X$
- $i(i(X)) = i(X)$
Define translation function π from set expressions to S4 formulae as follows

- $\pi(X) = X$
- $\pi(\overline{s}) = \neg \pi(s)$
- $\pi(s \cap t) = \pi(s) \land \pi(t)$
- $\pi(s \cup t) = \pi(s) \lor \pi(t)$
- $\pi(I_s) = I\pi(s)$
Define translation function π from set expressions to S4 formulae as follows

- $\pi(X) = X$
- $\pi(\overline{s}) = \neg\pi(s)$
- $\pi(s \cap t) = \pi(s) \land \pi(t)$
- $\pi(s \cup t) = \pi(s) \lor \pi(t)$
- $\pi(\mathcal{I}s) = \mathcal{I}\pi(s)$

A set expression s is called a **topological tautology** if $d(s) = \mathcal{U}$ for all topological interpretations $\mathcal{I} = ((\mathcal{U}, \mathcal{O}), d)$.
Define translation function π from set expressions to S4 formulae as follows:

- $\pi(X) = X$
- $\pi(s) = \neg \pi(s)$
- $\pi(s \cap t) = \pi(s) \land \pi(t)$
- $\pi(s \cup t) = \pi(s) \lor \pi(t)$
- $\pi(\mathcal{I}s) = \mathcal{I}\pi(s)$

A set expression s is called a topological tautology if $d(s) = \mathcal{U}$ for all topological interpretations $\mathcal{I} = ((\mathcal{U}, \mathcal{O}), d)$.

Theorem (McKinsey & Tarski 48). s is a topological tautology iff $\pi(s)$ is S4-valid.
Define translation function π from set expressions to S4 formulae as follows

- $\pi(X) = X$
- $\pi(\neg s) = \neg \pi(s)$
- $\pi(s \cap t) = \pi(s) \land \pi(t)$
- $\pi(s \cup t) = \pi(s) \lor \pi(t)$
- $\pi(I \cdot s) = I\pi(s)$

A set expression s is called a **topological tautology** if $d(s) = \mathcal{U}$ for all topological interpretations $\mathcal{I} = ((\mathcal{U}, \mathcal{O}), d)$.

Theorem (McKinsey & Tarski 48). s is a topological tautology iff $\pi(s)$ is S4-valid.

Corollary. s is topologically satisfiable iff $\pi(s)$ is S4-satisfiable.
Topological Set Constraints and Modal Logic (1)

How can we use this result for conjunctive topological set constraints?
How can we use this result for conjunctive topological set constraints?

Note: Using the convexity theorem, we only have to test the satisfiability of constraints of the form $C_J = (s_1 \models \top \land \ldots \land s_m \models \top \land t_j \not\models \top)$.
How can we use this result for conjunctive topological set constraints?

Note: Using the convexity theorem, we only have to test the satisfiability of constraints of the form $C_j = (s_1 \models T \land \ldots \land s_m \models T \land t_j \not\models T)$.

C_j is satisfiable iff $s_1 \models T \land \ldots \land s_m \models T \not\models t_j \models T$.
How can we use this result for conjunctive topological set constraints?

Note: Using the convexity theorem, we only have to test the satisfiability of constraints of the form $C_j = (s_1 \vdash T \land \ldots \land s_m \vdash T \land t_j \not\vdash T)$.

C_j is satisfiable iff $s_1 \vdash T \land \ldots \land s_m \vdash T \not\vdash t_j \vdash T$. Equivalently, we can test $s \vdash T \not\vdash t_j \vdash T$, with $s = s_1 \cap \ldots \cap s_m$.

Using the deduction theorem, it suffices to check $\not\vdash Is \sqsubseteq It_j$
How can we use this result for conjunctive topological set constraints?

Note: Using the convexity theorem, we only have to test the satisfiability of constraints of the form $C_j = (s_1 \models T \land \ldots \land s_m \models T \land t_j \neq T)$. C_j is satisfiable iff $s_1 \models T \land \ldots \land s_m \models T \not\models t_j \models T$. Equivalently, we can test $s \models T \not\models t_j \models T$, with $s = s_1 \cap \ldots \cap s_m$.

Using the deduction theorem, it suffices to check $\not\models Is \subseteq It_j$, i.e., whether $\overline{Is} \cup It_j$ is not a tautology.
How can we use this result for conjunctive topological set constraints?

Note: Using the convexity theorem, we only have to test the satisfiability of constraints of the form $C_J = (s_1 \models \top \land \ldots \land s_m \models \top \land t_j \not\models \top)$.

C_J is satisfiable iff $s_1 \models \top \land \ldots \land s_m \models \top \not\models t_j \models \top$. Equivalently, we can test $s \models \top \not\models t_j \models \top$, with $s = s_1 \cap \ldots \cap s_m$.

Using the deduction theorem, it suffices to check $\not\models Is \sqsubseteq It_j$, i.e., whether $\overline{Is} \cup It_j$ is not a tautology, i.e., whether $Is \cap \overline{It_j}$ is satisfiable.
How can we use this result for conjunctive topological set constraints?

Note: Using the convexity theorem, we only have to test the satisfiability of constraints of the form $C_J = (s_1 \models T \land \ldots \land s_m \models T \land t_j \notmodels T)$.

C_J is satisfiable iff $s_1 \models T \land \ldots \land s_m \models T \notmodels t_j \models T$. Equivalently, we can test $s \models T \notmodels t_j \models T$, with $s = s_1 \cap \ldots \cap s_m$.

Using the deduction theorem, it suffices to check $\notmodels Is \sqsubseteq It_j$, i.e., whether $\overline{Is} \cup It_j$ is not a tautology, i.e., whether $Is \cap \overline{It_j}$ is satisfiable. Using the Mckinsey/Tarski theorem, this amounts to test for S4-satisfiability of $\pi(\overline{Is} \cap \overline{It_j})$.
How can we use this result for conjunctive topological set constraints?

Note: Using the convexity theorem, we only have to test the satisfiability of constraints of the form $C_J = \left(s_1 \models \top \land \ldots \land s_m \models \top \land t_j \not\models \top \right)$.

C_J is satisfiable iff $s_1 \models \top \land \ldots \land s_m \models \top \not\models t_j \models \top$. Equivalently, we can test $s \models \top \not\models t_j \models \top$, with $s = s_1 \sqcap \ldots \sqcap s_m$.

Using the deduction theorem, it suffices to check $\not\models Is \sqsubseteq It_j$, i.e., whether $\overline{Is} \sqcup It_j$ is not a tautology, i.e., whether $Is \sqcap \overline{It_j}$ is satisfiable. Using the Mckinsey/Tarski theorem, this amounts to test for S4-satisfiability of $\pi(\overline{Is} \sqcap \overline{It_j})$.

Theorem. (Translation) $(s_1 \models \top \land \ldots \land s_m \models \top \land t_1 \not\models \top \land \ldots \land t_n \not\models \top)$ is satisfiable if the following formulae are S4-satisfiable for all $j \in \{1, \ldots, n\}$:
How can we use this result for conjunctive topological set constraints?

Note: Using the convexity theorem, we only have to test the satisfiability of constraints of the form $C_J = (s_1 \vdash \top \land \ldots \land s_m \vdash \top \land t_j \not\vdash \top)$.

C_J is satisfiable iff $s_1 \vdash \top \land \ldots \land s_m \vdash \top \not\vdash t_j \vdash \top$. Equivalently, we can test $s \vdash \top \not\vdash t_j \vdash \top$, with $s = s_1 \sqcap \ldots \sqcap s_m$.

Using the deduction theorem, it suffices to check $\not\vdash I_{s} \sqsubseteq I_{t_j}$, i.e., whether $I_{s} \sqcup I_{t_j}$ is not a tautology, i.e., whether $I_{s} \sqcap \overline{I_{t_j}}$ is satisfiable. Using the Mckinsey/Tarski theorem, this amounts to test for S4-satisfiability of $\pi(I_{s} \sqcap \overline{I_{t_j}})$.

Theorem. (Translation) $(s_1 \vdash \top \land \ldots \land s_m \vdash \top \land t_1 \not\vdash \top \land \ldots \land t_n \not\vdash \top)$ is satisfiable if the following formulae are S4-satisfiable for all $j \in \{1, \ldots, n\}$:

$$I_{\pi}(s_1) \land \ldots \land I_{\pi}(s_m) \land \overline{I_{\pi}(t_j)}.$$
How can we use this result for conjunctive topological set constraints?

Note: Using the convexity theorem, we only have to test the satisfiability of constraints of the form $C_J = (s_1 \models \top \land \ldots \land s_m \models \top \land t_j \not\models \top)$. C_j is satisfiable iff $s_1 \models \top \land \ldots \land s_m \models \top \not\models t_j \models \top$. Equivalently, we can test $s \models \top \not\models t_j \models \top$, with $s = s_1 \sqcap \ldots \sqcap s_m$.

Using the deduction theorem, it suffices to check $\not\models Is \subseteq It_j$, i.e., whether $Is \cup \overline{It_j}$ is not a tautology, i.e., whether $Is \sqcap \overline{It_j}$ is satisfiable. Using the Mckinsey/Tarski theorem, this amounts to test for S4-satisfiability of $\pi(Is \sqcap \overline{It_j})$.

Theorem. (Translation) $(s_1 \models \top \land \ldots \land s_m \models \top \land t_1 \not\models \top \land \ldots \land t_n \not\models \top)$ is satisfiable if the following formulae are S4-satisfiable for all $j \in \{1, \ldots, n\}$:

$$\mathbf{I}\pi(s_1) \land \ldots \land \mathbf{I}\pi(s_m) \land \neg \mathbf{I}\pi(t_j).$$
Let □ and ◇ be K-modalities.
Let □ and ◊ be K-modalities.

Proposition. Let \(\varphi_1, \ldots, \varphi_m, \psi_1, \ldots, \psi_n \) be multi-modal formulae not containing the K-operators □ and ◊. Then

\[
\square \varphi_1 \land \ldots \land \square \varphi_m \land \Diamond \psi_1 \land \ldots \land \Diamond \psi_n
\]
Let □ and ◇ be K-modalities.

Proposition. Let \(\varphi_1, \ldots, \varphi_m, \psi_1, \ldots, \psi_n \) be multi-modal formulae not containing the K-operators □ and ◇. Then

\[
□ \varphi_1 \land \ldots \land □ \varphi_m \land ◇ \psi_1 \land \ldots \land ◇ \psi_n
\]

is satisfiable iff for all \(j \in \{1, \ldots, n\} \) the formulae

\[
\varphi_1 \land \ldots \land \varphi_m \land \psi_j
\]

are satisfiable.

Proof idea. Create from models satisfying the later formula a modal interpretation for the former formula.
New Translation

Use a multi-modal logic for the translation.
New Translation

Use a multi-modal logic for the translation. Extend π as follow:

- $\pi(s \models \top) = \Box I\pi(s)$
Use a multi-modal logic for the translation. Extend π as follow:

- $\pi(s \models \top) = \Box I \pi(s)$
- $\pi(s \not\models \top) = \Diamond \neg I \pi(s)$
Use a multi-modal logic for the translation. Extend π as follow:

- $\pi(s \models \top) = \Box I \pi(s)$
- $\pi(s \not\models \top) = \Diamond \neg I \pi(s)$
- $\pi(C_1 \land C_2) = \pi(C_1) \land \pi(C_2)$
Use a multi-modal logic for the translation. Extend π as follow:

- $\pi(s \models \top) = \Box I \pi(s)$
- $\pi(s \not\models \top) = \Diamond \neg I \pi(s)$
- $\pi(C_1 \land C_2) = \pi(C_1) \land \pi(C_2)$
- \ldots

This leads to the following translation of RCC8 constraints:

- $\pi(\text{DC}(X, Y)) = \Box I \neg (X \land Y)$
Use a multi-modal logic for the translation. Extend π as follow:

- $\pi(s \models \top) = \Box I\pi(s)$
- $\pi(s \not\models \top) = \Diamond \neg I\pi(s)$
- $\pi(C_1 \land C_2) = \pi(C_1) \land \pi(C_2)$
- ...

This leads to the following translation of RCC8 constraints:

- $\pi(\text{DC}(X,Y)) = \Box I \neg (X \land Y)$
- $\pi(\text{EC}(X,Y)) = \Box I \neg (IX \land IY) \land \Diamond \neg I \neg (X \land Y)$
Use a multi-modal logic for the translation. Extend π as follow:

- $\pi(s \models \top) = \Box I \pi(s)$
- $\pi(s \not\models \top) = \Diamond \neg I \pi(s)$
- $\pi(C_1 \land C_2) = \pi(C_1) \land \pi(C_2)$
- \ldots

This leads to the following translation of RCC8 constraints:

- $\pi(\text{DC}(X, Y)) = \Box I \neg(X \land Y)$
- $\pi(\text{EC}(X, Y)) = \Box I \neg(I X \land I Y) \land \Diamond \neg I \neg(X \land Y)$
- \ldots
New Translation

Use a multi-modal logic for the translation. Extend π as follow:

- $\pi(s \equiv \top) = \square I\pi(s)$
- $\pi(s \not\equiv \top) = \Diamond \neg I\pi(s)$
- $\pi(C_1 \land C_2) = \pi(C_1) \land \pi(C_2)$
- \ldots

This leads to the following translation of RCC8 constraints:

- $\pi(\text{DC}(X,Y)) = \square I\neg(X \land Y)$
- $\pi(\text{EC}(X,Y)) = \square I\neg(I\!X \land I\!Y) \land \Diamond \neg I\neg(X \land Y)$
- \ldots

Theorem. (Translation) Let C be an arbitrary topological set constraint. Then C is satisfiable iff $\pi(C)$ is satisfiable.
Outlook

- We wanted to state qualitative relationships between spatial regions
- **Semantics**: Topology
- **Language for describing relations**: Topological set constraints
 - can be translated to modal logic (McKinsey & Tarski)
 - Combination can be handled with another modality
Outlook

- We wanted to state qualitative relationships between spatial regions
- **Semantics**: Topology
- **Language for describing relations**: Topological set constraints
 - can be translated to modal logic (McKinsey & Tarski)
 - Combination can be handled with another modality
- Reasoning in RCC8?
Outlook

- We wanted to state qualitative relationships between spatial regions
- **Semantics**: Topology
- **Language for describing relations**: Topological set constraints
 - can be translated to modal logic (McKinsey & Tarski)
 - Combination can be handled with another modality

→ Reasoning in RCC8?
→ Complexity?