3. Qualitative Representation and Reasoning

3.4 A Maximal Tractable Sub-algebra

Bernhard Nebel

- The Endpoint-Class
- The OH-Class
- Complexity of the OH-Class
- Maximality
- Relevance
The EP-Subclass

End-Point Subclass: $\mathcal{P} \subseteq \mathcal{A}$ is the subclass that permits a clause form containing only unit clauses ($a \neq b$ is allowed).
End-Point Subclass: $\mathcal{P} \subseteq \mathcal{A}$ is the subclass that permits a clause form containing only unit clauses ($a \neq b$ is allowed).

Example: all basic relations
The EP-Subclass

End-Point Subclass: \(\mathcal{P} \subseteq \mathcal{A} \) is the subclass that permits a clause form containing only unit clauses \((a \neq b) \) is allowed).

Example: all basic relations and \(\{d, o\} \) since

\[
\pi(X \{d, o\} Y) = \{ X^- < X^+, Y^- < Y^+, \\
X^- < Y^+, X^+ > Y^-, X^- \neq Y^-, \\
X^+ < Y^+ \}
\]
End-Point Subclass: \(\mathcal{P} \subseteq \mathcal{A} \) is the subclass that permits a clause form containing only unit clauses (\((a \neq b)\) is allowed).

Example: all basic relations and \(\{d, o\}\) since

\[
\pi(X \{d, o\} Y) = \{ X^- < X^+, Y^- < Y^+, X^- < Y^+, X^+ > Y^-, X^- \neq Y^-, X^+ < Y^+ \}
\]

\[
\begin{array}{c}
\cdots \ X \cdots \\
\hline
X
\end{array}
\]

\[
\begin{array}{c}
\cdots \ Y \cdots \\
\hline
Y
\end{array}
\]
The EP-Subclass

End-Point Subclass: $\mathcal{P} \subseteq \mathcal{A}$ is the subclass that permits a clause form containing only unit clauses ($(a \neq b)$ is allowed).

Example: all basic relations and $\{d, o\}$ since

$$\pi(X \{d, o\} Y) = \{ X^- < X^+, Y^- < Y^+, X^- < Y^+, X^+ > Y^-, X^- \neq Y^-, X^+ < Y^+ \}$$

Theorem (Vilain, Kautz 86, Ladkin, Maddux 88). The path-consistency method decides CSAT(\mathcal{P}).
The ORD-Horn Subclass

ORD-Horn Subclass: $\mathcal{H} \subseteq \mathcal{A}$ is the subclass that permits a clause form containing only Horn clauses, where only the following literals are allowed:

$$(a \leq b), (a = b), (a \neq b)$$
The ORD-Horn Subclass

ORD-Horn Subclass: $\mathcal{H} \subseteq \mathcal{A}$ is the subclass that permits a clause form containing only **Horn clauses**, where only the following **literals** are allowed:

$$(a \leq b), (a = b), (a \neq b)$$

$\neg (a \leq b)$ is not allowed!
The ORD-Horn Subclass

ORD-Horn Subclass: \(\mathcal{H} \subseteq \mathcal{A} \) is the subclass that permits a clause form containing only **Horn clauses**, where only the following **literals** are allowed:

\[
(a \leq b), (a = b), (a \neq b)
\]

\(\neg (a \leq b) \) is not allowed!

Example: all \(R \in \mathcal{P} \) and \(\{o, s, f^{-}\} \):
The ORD-Horn Subclass

ORD-Horn Subclass: $\mathcal{H} \subseteq \mathcal{A}$ is the subclass that permits a clause form containing only **Horn clauses**, where only the following **literals** are allowed:

$$(a \leq b), (a = b), (a \neq b)$$

$\neg(a \leq b)$ is not allowed!

Example: all $R \in \mathcal{P}$ and $\{o, s, f^-\}$:

$$\pi(X\{o, s, f^-\}Y) = \left\{ (X^- \leq X^+), (X^- \neq X^+), (Y^- \leq Y^+), (Y^- \neq Y^+), (X^- \leq Y^-), (X^- \leq Y^+), (X^- \neq Y^+), (Y^- \leq X^+), (X^+ \neq Y^-), (X^+ \leq Y^+), (X^- \neq Y^- \lor X^+ \neq Y^+) \right\}.$$
Partial Orders: The \textit{ORD} Theory

Let \textit{ORD} be the following theory:

$$\forall x, y, z: \quad x \leq y \land y \leq z \quad \rightarrow \quad x \leq z \quad (\text{transitivity})$$
Let ORD be the following theory:

\[\forall x, y, z: \quad x \leq y \land y \leq z \quad \rightarrow \quad x \leq z \quad (\text{transitivity}) \]

\[\forall x: \quad x \leq x \quad (\text{reflexivity}) \]
Partial Orders: The ORD Theory

Let ORD be the following theory:

\[\forall x, y, z: \quad x \leq y \land y \leq z \quad \rightarrow \quad x \leq z \quad \text{(transitivity)} \]
\[\forall x: \quad x \leq x \quad \text{(reflexivity)} \]
\[\forall x, y: \quad x \leq y \land y \leq x \quad \rightarrow \quad x = y \quad \text{(anti-symmetry)} \]
Partial Orders: The ORD Theory

Let ORD be the following theory:

$$\forall x, y, z: \quad x \leq y \land y \leq z \implies x \leq z \quad (\text{transitivity})$$

$$\forall x: \quad x \leq x \quad (\text{reflexivity})$$

$$\forall x, y: \quad x \leq y \land y \leq x \implies x = y \quad (\text{anti-symmetry})$$

$$\forall x, y: \quad x = y \implies x \leq y \quad (\text{weakening of} =)$$
Let \(\text{ORD} \) be the following theory:

\[
\begin{align*}
\forall x, y, z: & \quad x \leq y \land y \leq z \quad \rightarrow \quad x \leq z \quad \text{(transitivity)} \\
\forall x: & \quad x \leq x \quad \text{(reflexivity)} \\
\forall x, y: & \quad x \leq y \land y \leq x \quad \rightarrow \quad x = y \quad \text{(anti-symmetry)} \\
\forall x, y: & \quad x = y \quad \rightarrow \quad x \leq y \quad \text{(weakening of =)} \\
\forall x, y: & \quad x = y \quad \rightarrow \quad y \leq x \quad \text{(weakening of =).}
\end{align*}
\]
Partial Orders: The ORD Theory

Let ORD be the following theory:

\[
\begin{align*}
\forall x, y, z: \quad & x \leq y \land y \leq z \quad \rightarrow \quad x \leq z \quad \text{(transitivity)} \\
\forall x: \quad & x \leq x \quad \text{(reflexivity)} \\
\forall x, y: \quad & x \leq y \land y \leq x \quad \rightarrow \quad x = y \quad \text{(anti-symmetry)} \\
\forall x, y: \quad & x = y \quad \rightarrow \quad x \leq y \quad \text{(weakening of =)} \\
\forall x, y: \quad & x = y \quad \rightarrow \quad y \leq x \quad \text{(weakening of =).}
\end{align*}
\]

ORD describes partially ordered sets, \leq being the ordering relation.
Partial Orders: The \textit{ORD} Theory

Let \textit{ORD} be the following theory:

\begin{align*}
\forall x, y, z: & \quad x \leq y \land y \leq z \quad \rightarrow \quad x \leq z \quad \text{(transitivity)} \\
\forall x: & \quad x \leq x \quad \text{(reflexivity)} \\
\forall x, y: & \quad x \leq y \land y \leq x \quad \rightarrow \quad x = y \quad \text{(anti-symmetry)} \\
\forall x, y: & \quad x = y \quad \rightarrow \quad x \leq y \quad \text{(weakening of =)} \\
\forall x, y: & \quad x = y \quad \rightarrow \quad y \leq x \quad \text{(weakening of =).}
\end{align*}

- \textit{ORD} describes partially ordered sets, \leq being the ordering relation.
- \textit{ORD} is a \textbf{Horn theory}
Partial Orders: The \textit{ORD} Theory

Let \textit{ORD} be the following theory:

\[
\forall x, y, z: \quad x \leq y \land y \leq z \quad \rightarrow \quad x \leq z \quad \text{(transitivity)}
\]
\[
\forall x: \quad x \leq x \quad \text{(reflexivity)}
\]
\[
\forall x, y: \quad x \leq y \land y \leq x \quad \rightarrow \quad x = y \quad \text{(anti-symmetry)}
\]
\[
\forall x, y: \quad x = y \quad \rightarrow \quad x \leq y \quad \text{(weakening of =)}
\]
\[
\forall x, y: \quad x = y \quad \rightarrow \quad y \leq x \quad \text{(weakening of =).}
\]

- \textit{ORD} describes partially ordered sets, \(\leq \) being the ordering relation.
- \textit{ORD} is a \textbf{Horn theory}
- What is missing wrt to \textit{dense} and \textit{linear} orders?
Satisfiability over Partial Orders

Proposition: Let Θ be a CSP over \mathcal{H}. Θ is satisfiable over interval interpretations iff $\pi(\Theta) \cup ORD$ is satisfiable over arbitrary interpretations.
Proposition: Let Θ be a CSP over \mathcal{H}. Θ is satisfiable over interval interpretations iff $\pi(\Theta) \cup ORD$ is satisfiable over arbitrary interpretations.

Proof:

\Rightarrow: Since the reals form a partially ordered set (i.e., satisfy ORD), this direction is trivial.
Proposition: Let Θ be a CSP over \mathcal{H}. Θ is satisfiable over interval interpretations iff $\pi(\Theta) \cup ORD$ is satisfiable over arbitrary interpretations.

Proof:

\Rightarrow: Since the reals form a partially ordered set (i.e., satisfy ORD), this direction is trivial.

\Leftarrow: Each extension of a partial order to a linear order satisfies all formulae of the form $(a \leq b)$, $(a = b)$, and $(a \neq b)$ which have been satisfied over the original partial order.
Complexity of CSAT(\mathcal{H})

Let $ORD_{\pi(\Theta)}$ be the propositional theory resulting from instantiating all axioms with the endpoints occurring in $\pi(\Theta)$.
Complexity of CSAT(\mathcal{H})

Let $ORD_{\pi(\Theta)}$ be the propositional theory resulting from instantiating all axioms with the endpoints occurring in $\pi(\Theta)$.

Proposition: $ORD \cup \pi(\Theta)$ is satisfiable iff $ORD_{\pi(\Theta)} \cup \pi(\Theta)$ is.
Complexity of CSAT(\mathcal{H})

Let $ORD_{\pi(\Theta)}$ be the propositional theory resulting from instantiating all axioms with the endpoints occurring in $\pi(\Theta)$.

Proposition: $ORD \cup \pi(\Theta)$ is satisfiable iff $ORD_{\pi(\Theta)} \cup \pi(\Theta)$ is.

Herbrand expansion!
Complexity of CSAT(\mathcal{H})

Let $ORD_{\pi(\Theta)}$ be the propositional theory resulting from instantiating all axioms with the endpoints occurring in $\pi(\Theta)$.

Proposition: $ORD \cup \pi(\Theta)$ is satisfiable iff $ORD_{\pi(\Theta)} \cup \pi(\Theta)$ is.

Herbrand expansion!

Theorem: CSAT(\mathcal{H}) can be decided in polynomial time.
Complexity of CSAT(\mathcal{H})

Let $ORD_{\pi(\Theta)}$ be the propositional theory resulting from instantiating all axioms with the endpoints occurring in $\pi(\Theta)$.

Proposition: $ORD \cup \pi(\Theta)$ is satisfiable iff $ORD_{\pi(\Theta)} \cup \pi(\Theta)$ is.

Herbrand expansion!

Theorem. CSAT(\mathcal{H}) can be decided in polynomial time.

Proof. CSAT(\mathcal{H}) instances can be translated into a propositional Horn theory with blowup $O(n^3)$ according to the above Prop., and such a theory is decidable in poly. time.
Complexity of CSAT(\mathcal{H})

Let $ORD_{\pi(\Theta)}$ be the propositional theory resulting from instantiating all axioms with the endpoints occurring in $\pi(\Theta)$.

Proposition: $ORD \cup \pi(\Theta)$ is satisfiable iff $ORD_{\pi(\Theta)} \cup \pi(\Theta)$ is.

Herbrand expansion!

Theorem. CSAT(\mathcal{H}) can be decided in polynomial time.

Proof. CSAT(\mathcal{H}) instances can be translated into a propositional Horn theory with blowup $O(n^3)$ according to the above Prop., and such a theory is decidable in poly. time.

$\mathcal{C} \subset \mathcal{P} \subset \mathcal{H}$,

$|\mathcal{C}|=83$, $|\mathcal{P}|=188$, $|\mathcal{H}|=868$
Path-Consistency and the OH-Class

Let $\hat{\Theta}$ be the path-consistent interval CSP that is logically equivalent to Θ.
Let $\hat{\Theta}$ be the path-consistent interval CSP that is logically equivalent to Θ.

Lemma. Let $\hat{\Theta}$ be a path-consistent set over \mathcal{H}. Then

$$(X\{\}Y) \notin \hat{\Theta} \iff \hat{\Theta} \text{ is satisfiable}$$
Path-Consistency and the OH-Class

Let \(\hat{\Theta} \) be the path-consistent interval CSP that is logically equivalent to \(\Theta \).

Lemma. Let \(\hat{\Theta} \) be a path-consistent set over \(\mathcal{H} \). Then

\[
(X\{\}Y) \notin \hat{\Theta} \quad \text{iff} \quad \hat{\Theta} \text{ is satisfiable}
\]

Proof Idea. One can show that \(ORD_{\pi(\hat{\Theta})} \cup \pi(\hat{\Theta}) \) is closed wrt positive unit resolution. Since this inference rule is refutation complete for Horn theories, the claim follows.
Path-Consistency and the OH-Class

Let $\hat{\Theta}$ be the path-consistent interval CSP that is logically equivalent to Θ.

Lemma. Let $\hat{\Theta}$ be a path-consistent set over \mathcal{H}. Then

$$(X\{\}Y) \notin \hat{\Theta} \iff \hat{\Theta} \text{ is satisfiable}$$

Proof Idea. One can show that $ORD_{\pi(\hat{\Theta})} \cup \pi(\hat{\Theta})$ is closed wrt positive unit resolution. Since this inference rule is refutation complete for Horn theories, the claim follows.

Lemma. \mathcal{H} is a set closed under intersection, composition, and conversion.
Let $\hat{\Theta}$ be the path-consistent interval CSP that is logically equivalent to Θ.

Lemma. Let $\hat{\Theta}$ be a path-consistent set over \mathcal{H}. Then

$$(X\{\}Y) \notin \hat{\Theta} \iff \hat{\Theta} \text{ is satisfiable}$$

Proof Idea. One can show that $ORD_{\pi(\hat{\Theta})} \cup \pi(\hat{\Theta})$ is closed wrt positive unit resolution. Since this inference rule is refutation complete for Horn theories, the claim follows.

Lemma. \mathcal{H} is a set closed under intersection, composition, and conversion.

Theorem. The path-consistency method decides CSAT(\mathcal{H}).
Let $\hat{\Theta}$ be the path-consistent interval CSP that is logically equivalent to Θ.

Lemma. Let $\hat{\Theta}$ be a path-consistent set over \mathcal{H}. Then

$$(X\{\}Y) \notin \hat{\Theta} \iff \hat{\Theta} \text{ is satisfiable}$$

Proof Idea. One can show that $ORD_{\pi(\hat{\Theta})} \cup \pi(\hat{\Theta})$ is closed wrt positive unit resolution. Since this inference rule is refutation complete for Horn theories, the claim follows.

Lemma. \mathcal{H} is a set closed under intersection, composition, and conversion.

Theorem. The path-consistency method decides $\text{CSAT}(\mathcal{H})$.

\leadsto Maximality of \mathcal{H}?
Path-Consistency and the OH-Class

Let \(\hat{\Theta} \) be the path-consistent interval CSP that is logically equivalent to \(\Theta \).

Lemma. Let \(\hat{\Theta} \) be a path-consistent set over \(\mathcal{H} \). Then

\[
(X\{\}Y) \notin \hat{\Theta} \iff \hat{\Theta} \text{ is satisfiable}
\]

Proof Idea. One can show that \(ORD_{\pi(\hat{\Theta})} \cup \pi(\hat{\Theta}) \) is closed wrt positive unit resolution. Since this inference rule is refutation complete for Horn theories, the claim follows.

Lemma. \(\mathcal{H} \) is a set closed under intersection, composition, and conversion.

Theorem. The path-consistency method decides \(\text{CSAT}(\mathcal{H}) \).

\(\leadsto \) Maximality of \(\mathcal{H} \)?

\(\leadsto \) Do we have to check all 8192 - 868 extensions?
Complexity of Sub-algebras

Let \hat{S} be the closure of $S \subseteq A$ under converse, intersection, and composition (i.e., the carrier of the least sub-algebra generated by S)
Complexity of Sub-algebras

Let \hat{S} be the closure of $S \subseteq A$ under converse, intersection, and composition (i.e., the carrier of the least sub-algebra generated by S)

Theorem. $\text{CSAT}(\hat{S})$ can be polynomially transformed to $\text{CSAT}(S)$.
Complexity of Sub-algebras

Let \hat{S} be the closure of $S \subseteq A$ under converse, intersection, and composition (i.e., the carrier of the least sub-algebra generated by S)

Theorem. CSAT(\hat{S}) can be polynomially transformed to CSAT(S).

Proof Idea: All relations in $\hat{S} - S$ can be modeled by a finite, fixed number of compositions, intersections, and conversions of relations in S, introducing perhaps some fresh variables (prerequisite: the universal relation is in S).
Complexity of Sub-algebras

Let \hat{S} be the closure of $S \subseteq \mathcal{A}$ under converse, intersection, and composition (i.e., the carrier of the least sub-algebra generated by S).

Theorem. CSAT(\hat{S}) can be polynomially transformed to CSAT(S).

Proof Idea: All relations in $\hat{S} - S$ can be modeled by a finite, fixed number of compositions, intersections, and conversions of relations in S, introducing perhaps some fresh variables (prerequisite: the universal relation is in S).

\leadsto polynomiality of S extends to \hat{S}.
Complexity of Sub-algebras

Let \hat{S} be the closure of $S \subseteq A$ under converse, intersection, and composition (i.e., the carrier of the least sub-algebra generated by S)

Theorem. CSAT(\hat{S}) can be polynomially transformed to CSAT(S).

Proof Idea: All relations in $\hat{S} - S$ can be modeled by a finite, fixed number of compositions, intersections, and conversions of relations in S, introducing perhaps some fresh variables (prerequisite: the universal relation is in S).

\Rightarrow polynomiality of S extends to \hat{S}.

\Rightarrow NP-hardness of \hat{S} is inherited by all generating sets S.
Complexity of Sub-algebras

Let \(\hat{S} \) be the closure of \(S \subseteq A \) under converse, intersection, and composition (i.e., the carrier of the least sub-algebra generated by \(S \))

Theorem. CSAT(\(\hat{S} \)) can be polynomially transformed to CSAT(\(S \)).

Proof Idea: All relations in \(\hat{S} - S \) can be modeled by a finite, fixed number of compositions, intersections, and conversions of relations in \(S \), introducing perhaps some fresh variables (prerequisite: the universal relation is in \(S \)).

\[\leadsto \text{polynomiality of } S \text{ extends to } \hat{S}. \]

\[\leadsto \text{NP-hardness of } \hat{S} \text{ is inherited by all generating sets } S. \]

Note: \(\mathcal{H} = \hat{\mathcal{H}}. \)
Minimal Extensions of the \mathcal{H}-Subclass

A computer-aided case analysis leads to the following result:

There are two minimal sub-algebras that strictly contain \mathcal{H}: $\mathcal{X}_1, \mathcal{X}_2$
Minimal Extensions of the \mathcal{H}-Subclass

A *computer-aided* case analysis leads to the following result:

There are two minimal sub-algebras that strictly contain \mathcal{H}: $\mathcal{X}_1, \mathcal{X}_2$

$N_1 = \{d, d^{-}, o^{-}, s^{-}, f\} \in \mathcal{X}_1$

$N_2 = \{d^{-}, o, o^{-}, s^{-}, f^{-}\} \in \mathcal{X}_2$
Minimal Extensions of the \mathcal{H}-Subclass

A computer-aided case analysis leads to the following result:

There are two minimal sub-algebras that strictly contain \mathcal{H}: $\mathcal{X}_1, \mathcal{X}_2$

$N_1 = \{d, d^\sim, o^\sim, s^\sim, f\} \in \mathcal{X}_1$

$N_2 = \{d^\sim, o, o^\sim, s^\sim, f^\sim\} \in \mathcal{X}_2$

The clause form of these relations contain “proper” disjunctions!

Theorem: $\text{CSAT}(\mathcal{H} \cup \{N_i\})$ is NP-complete.

Question: Are there other maximal tractable subclasses?
"Interesting" Subclasses

Interesting subclasses of \mathcal{A} should contain all basic relations.
“Interesting” Subclasses

Interesting subclasses of \mathcal{A} should contain all basic relations.

A computer-aided case analysis reveals: For $S \supseteq \{\{B\} \mid B \in \mathcal{B}\}$ it holds that

1. $\hat{S} \subseteq \mathcal{H}$,
“Interesting” Subclasses

Interesting subclasses of \mathcal{A} should contain all basic relations.

A *computer-aided* case analysis reveals: For $S \supseteq \{\{B\} | B \in \mathcal{B}\}$ it holds that

1. $\hat{S} \subseteq \mathcal{H}$, or

2. N_1 or N_2 is in \hat{S}.
“Interesting” Subclasses

Interesting subclasses of \mathcal{A} should contain all basic relations.

A computer-aided case analysis reveals: For $S \supseteq \{\{B\}| B \in \mathcal{B}\}$ it holds that

1. $\hat{S} \subseteq \mathcal{H}$, or

2. N_1 or N_2 is in \hat{S}.

In case 2, one can show: CSAT(S) is NP-complete.
Interesting subclasses of \mathcal{A} should contain all basic relations.

A computer-aided case analysis reveals: For $S \supseteq \{\{B\} \mid B \in \mathcal{B}\}$ it holds that

1. $\hat{S} \subseteq \mathcal{H}$, or
2. N_1 or N_2 is in \hat{S}.

In case 2, one can show: CSAT(S) is NP-complete.

$\leadsto \mathcal{H}$ is the only maximal tractable subclass that is interesting.
“Interesting” Subclasses

Interesting subclasses of \(\mathcal{A} \) should contain all basic relations.

A computer-aided case analysis reveals: For \(S \supseteq \{\{B\} \mid B \in \mathcal{B}\} \) it holds that

1. \(\hat{S} \subseteq \mathcal{H} \), or
2. \(N_1 \) or \(N_2 \) is in \(\hat{S} \).

In case 2, one can show: CSAT(\(S \)) is NP-complete.

\(\leadsto \mathcal{H} \) is the only maximal tractable subclass that is interesting.

Meanwhile, there is a complete classification of all sub-algebras containing at least one basic relation [IJCAI 2001]
“Interesting” Subclasses

Interesting subclasses of \(A \) should contain all basic relations.

A computer-aided case analysis reveals: For \(S \supseteq \{\{B\}| B \in B\} \) it holds that

1. \(\hat{S} \subseteq \mathcal{H} \), or

2. \(N_1 \) or \(N_2 \) is in \(\hat{S} \).

In case 2, one can show: \(\text{CSAT}(S) \) is NP-complete.

\(\sim \) \(\mathcal{H} \) is the only maximal tractable subclass that is interesting.

Meanwhile, there is a complete classification of all sub-algebras containing at least one basic relation [IJCAI 2001] . . . but the question for sub-algebras not containing a basic relation is open
Relevance?

Theoretical:
Relevance?

Theoretical:

⊕ We now know the boundary between polynomial and NP-hard reasoning problems along the dimension *expressiveness*.
Relevance?

Theoretical:

⊕ We now know the boundary between polynomial and NP-hard reasoning problems along the dimension expressiveness.

Practical:
We now know the boundary between polynomial and NP-hard reasoning problems along the dimension expressiveness.

All known applications either need only \mathcal{P} or they need more than \mathcal{H}!
Relevance?

Theoretical:

⊕ We now know the boundary between polynomial and NP-hard reasoning problems along the dimension expressiveness.

Practical:

⊖ All known applications either need only \mathcal{P} or they need more than $\mathcal{H}!$

? Backtracking methods might profit from the result because the branching factor is lower.
Relevance?

Theoretical:

⊕ We now know the boundary between polynomial and NP-hard reasoning problems along the dimension *expressiveness*.

Practical:

⊕ All known applications either need only \mathcal{P} or they need more than \mathcal{H}!

? Backtracking methods might profit from the result because the branching factor is lower.

∼ How difficult is CSAT(\mathcal{A}) in practice?
Relevance?

Theoretical:

⊕ We now know the boundary between polynomial and NP-hard reasoning problems along the dimension expressiveness.

Practical:

⊕ All known applications either need only \mathcal{P} or they need more than \mathcal{H}!

? Backtracking methods might profit from the result because the branching factor is lower.

∽ How difficult is CSAT(\mathcal{A}) in practice?

∽ What are the relevant branching factors?
Solving General Allen CSPs

- Backtracking algorithm using path-consistency as a forward-checking method
Solving General Allen CSPs

• Backtracking algorithm using path-consistency as a forward-checking method

• Relies on tractable fragments of Allen’s calculus: Split relations into relations of a tractable fragment, and backtrack over these.
Solving General Allen CSPs

- Backtracking algorithm using path-consistency as a forward-checking method

- Relies on tractable fragments of Allen’s calculus: Split relations into relations of a tractable fragment, and backtrack over these.

- Refinements and evaluation of different heuristics
Solving General Allen CSPs

- Backtracking algorithm using path-consistency as a forward-checking method
- Relies on tractable fragments of Allen’s calculus: Split relations into relations of a tractable fragment, and backtrack over these.
- Refinements and evaluation of different heuristics

Which tractable fragment should one use?
Branching Factors

- If the labels are split into base relations, then on average a label is split into
Branching Factors

- If the labels are split into base relations, then on average a label is split into

 6.5 relations.
Branching Factors

- If the labels are split into base relations, then on average a label is split into

 6.5 relations.

- If the labels are split into pointizable relations (\mathcal{P}), then on average a label is split into
Branching Factors

- If the labels are split into base relations, then on average a label is split into 6.5 relations.

- If the labels are split into pointizable relations (P), then on average a label is split into 2.955 relations.
Branching Factors

- If the labels are split into base relations, then on average a label is split into

 6.5 relations.

- If the labels are split into pointizable relations (\mathcal{P}), then on average a label is split into

 2.955 relations.

- If the labels are split into ORD-Horn relations (\mathcal{H}), then on average a label is split into
Branching Factors

- If the labels are split into base relations, then on average a label is split into
 \[6.5\] relations.

- If the labels are split into pointizable relations \((\mathcal{P})\), then on average a label is split into
 \[2.955\] relations.

- If the labels are split into ORD-Horn relations \((\mathcal{H})\), then on average a label is split into
 \[2.533\] relations.
Branching Factors

- If the labels are split into base relations, then on average a label is split into

 6.5 relations.

- If the labels are split into pointizable relations (\mathcal{P}), then on average a label is split into

 2.955 relations.

- If the labels are split into ORD-Horn relations (\mathcal{H}), then on average a label is split into

 2.533 relations.

⇒ a difference of 0.422
Branching Factors

• If the labels are split into base relations, then on average a label is split into

6.5 relations.

• If the labels are split into pointizable relations (P), then on average a label is split into

2.955 relations.

• If the labels are split into ORD-Horn relations (H), then on average a label is split into

2.533 relations.

→ a difference of 0.422

→ Does it make a difference in practice?
Branching Factors

- If the labels are split into base relations, then on average a label is split into
 6.5 relations.

- If the labels are split into pointizable relations (\(P\)), then on average a label
 is split into
 2.955 relations.

- If the labels are split into ORD-Horn relations (\(H\)), then on average a label
 is split into
 2.533 relations.

\(\sim\) a difference of 0.422

\(\sim\) Does it make a difference in practice? Yes . . . for “hard” instances
Summary for Allen’s Interval Calculus

- Allen’s interval calculus is often adequate for describing relative orders of events that have duration
Summary for Allen’s Interval Calculus

- Allen’s interval calculus is often adequate for describing relative orders of events that have duration
- The satisfiability problem for CSPs using the relations is NP-complete
Summary for Allen’s Interval Calculus

- Allen’s interval calculus is often adequate for describing relative orders of events that have duration
- The satisfiability problem for CSPs using the relations is NP-complete
- For the continuous endpoint class, minimal CSPs can be computed using the path-consistency method
Summary for Allen’s Interval Calculus

- Allen’s interval calculus is often adequate for describing relative orders of events that have duration.
- The satisfiability problem for CSPs using the relations is NP-complete.
- For the continuous endpoint class, minimal CSPs can be computed using the path-consistency method.
- For the larger ORD-Horn class, CSAT is still decided by the path-consistency method.
Summary for Allen’s Interval Calculus

- Allen’s interval calculus is often adequate for describing relative orders of events that have duration.
- The satisfiability problem for CSPs using the relations is NP-complete.
- For the continuous endpoint class, minimal CSPs can be computed using the path-consistency method.
- For the larger ORD-Horn class, CSAT is still decided by the path-consistency method.
- Can be used in practice for backtracking algorithms.
Literature

