Multi-Agent Systems
 Cooperative Game Theory

Bernhard Nebel, Rolf Bergdoll, and Thorsten Engesser
Winter Term 2019/20

Motivation

The famous prisoner's dilemma with the following payoff matrix:

	Silent	Betray
Silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

In games like this one cooperation is prevented, because:

- Binding agreements are not possible
- Pay-off is given directly to individuals as the result of individual action

Cooperative Game Theory

- In many situations...
- Contracts can form binding agreements
- Pay-off is given to groups of agents rather than to individuals
- Hence, cooperation is both possible and rational.
- Cooperative game theory asks which contracts are meaningful solutions among self-interested agents.

Characterization (Shoham, Keyton-Brown, 2009, Ch. 12)

[Cooperative game theory is about] how self-interested agents can combine to form effective teams.

Real-world examples

- Political parties form coalitions to ensure majorities. Division of power (ministry posts).
- Companies cooperate to save ressources.
- People buy expensive things together they could not afford to buy alone.
- Buildings are built by several people with different capabilities (craftsmen, electricians, architects, ...). Who should earn how much?
- People share a taxi. How to split the fare?

Key Questions

- Which coalition should/will form?
- We assume usually the grand coalition, provided this is rational.
- How should the value be divided among the members?

Cooperative Game Theory: Terminology

Cooperative Game (with transferable utility)

A cooperative game with transferable utility is a pair (N, v) :

- N : Set of agents
- Any subset $S \subseteq N$ is called a coalition
- N is the grand coalition
$v: 2^{N} \rightarrow \mathbb{R}$: characteristic function that assigns a value $v(S)$ to each $S \subseteq N, v(\emptyset)=0$, also called the payoff of S.
- Transferable value assumption:
- Value of a coalition can be (arbitrarily) redistributed among the coalition's members
- I.e., value is dispensed in some universal currency
- Each coalition can be assigned a single value

Division of Value

$\square \Psi(N, v)=\left(\Psi_{1}(N, v), \ldots, \Psi_{k}(N, v)\right)$ is a distribution of value to members $1, \ldots, k$ of N.

Feasible distribution

A distribution $\Psi(N, v)$ is feasible iff

$$
\sum_{i \in N} \Psi_{i}(N, v) \leq v(N)
$$

Efficient distribution

A distribution $\Psi(N, v)$ is efficient iff

$$
\sum_{i \in N} \Psi_{i}(N, v) \geq v(N)
$$

Example: Gloves

Mr A and Mr B are knitting gloves. The gloves are one-size-fits-all, and two gloves make a pair that they sell for 5 EUR. They have each made three gloves. How to share the proceeds from the sale?

Example: Gloves

Mr A and Mr B are knitting gloves. The gloves are one-size-fits-all, and two gloves make a pair that they sell for 5 EUR. They have each made three gloves. How to share the proceeds from the sale?
$\square(N, v), N=1,2, v(\{1\})=5, v(\{2\})=5, v(\{1,2\})=15$

- Assume they form a coalition. What about these feasible and efficient divisions of value?
- $\psi^{a}(N, v)=(7.5,7.5)$
- $\psi^{b}(N, v)=(5,10)$
- $\Psi^{c}(N, v)=(4,11)$

Example: Gloves Extended

Mr A and Mr B and Mr C are knitting gloves. The gloves are one-size-fits-all, and two gloves make a pair that they sell for 5 EUR. They have each made three gloves. How to share the proceeds from the sale?

Example: Gloves Extended

Mr A and Mr B and Mr C are knitting gloves. The gloves are one-size-fits-all, and two gloves make a pair that they sell for 5 EUR. They have each made three gloves. How to share the proceeds from the sale?

- (N, v) $, N=1,2,3$
- $v(\{1\})=5, v(\{2\})=5, v(\{3\})=5, v(\{1,2\})=15, v(\{1,3\})=$ $15, v(\{2,3\})=15, v(\{1,2,3\})=20$
\square Assume they form a coalition. What about these feasible and efficient divisions of value?
- $\psi^{d}(N, v)=(6.6,6.6,6.6)$
- $\psi^{e}(N, v)=(7.5,7.5,5)$

Is the grand coalition stable: The Core

Core

The core of a cooperative game (N, v) is the set of feasible and efficient distributions of value Ψ, such that no $S \subseteq N$ can do better by splitting off, i.e., Ψ satisfies:

$$
\begin{aligned}
& \sum_{i \in N} \Psi_{i}(N, v)=v(N) \\
& \sum_{i \in S} \Psi_{i}(N, v) \geq v(S) \quad \forall S \subseteq N
\end{aligned}
$$

Existence, uniqueness, and fairness of the

core

- Is the core always nonempty? No.
- In the extended glove example, the core is empty.

Existence, uniqueness, and fairness of the

core

- Is the core always nonempty? No.
- In the extended glove example, the core is empty.
- Is the core always unique? No.
- In the original glove example, all $\Psi=\left(\Psi_{1}, \Psi_{2}\right)$ such that $\Psi_{1}>5, \Psi_{2}>5, \Psi_{1}+\Psi_{2}=15$ are in the core.

Existence, uniqueness, and fairness of the

core

- Is the core always nonempty? No.
- In the extended glove example, the core is empty.
- Is the core always unique? No.
- In the original glove example, all $\Psi=\left(\Psi_{1}, \Psi_{2}\right)$ such that $\psi_{1}>5, \Psi_{2}>5, \Psi_{1}+\Psi_{2}=15$ are in the core.
- Is the core fair?
- No. In the example, people could get different shares, although they contributed the same!

Simple game, Veto agent

Simple game

A game (N, v) is a simple game iff for all $S \subseteq N, v(S) \in\{0,1\}$
Veto agent
An agent i is a veto agent iff $v(N \backslash\{i\})=0$.

Simple Game: Example

Consider the coaltion of three parties A, B, C with 30,25 , and 15 votes, respectively.

- Case 1: 55 votes necessary to win the election.

■ $v(A)=0, v(B)=0, v(A B)=1, v(A C)=0, v(B C)=0, v(A B C)=1$
\square Who is a veto agent? How does the core look like?

- Case 2: 15 votes necessary to win the election.
$\square v(A)=1, v(B)=1, v(A B)=1, v(A C)=1, v(B C)=1, v(A B C)=1$
\square Who is a veto agent? How does the core look like?

Simple Games: Core Existence

Theorem

In a simple game the core is empty iff there is no veto agent. If there are veto agents, the core consists of all value distributions in which the nonveto agents get 0 .

Fair Division

- Goal: Grand coalition is to divide its value 'fair'.
- Shapley's idea: Members should receive value proportional to their contributions.
- However:
- Consider $v(N)=1$ and $v(S)=0$ for all $S \neq N$.
- Thus, $v(N)-v(N \backslash\{i\})=1$ for every agent i : everybody's contribution is 1 (everybody is indeed likewise essential).
- Clearly, one cannot pay 1 to everybody
- Needed: Some way of weighing. How to design it?
- Next: Axiomatic characterization of properties of a fair value division (due to Shapley).

Symmetry

Definition Interchangeability

Agents i and j are interchangeable relative to v iff they always contribute the same amount to every coalition of the other agents, i.e., for all S that contain neither i nor j, $v(S \cup\{i\})=v(S \cup\{j\})$.

Axiom Symmetry

For any v, if i and j are interchangeable then $\Psi_{i}(N, v)=\Psi_{j}(N, v)$.

- Agents who contribute the same to every possible coalition should get the same.

Dummy Player

Definition Dummy Player

Agent i is a dummy player iff the amount that i contributes to any coalition is $v(\{i\})$, i.e., for all S with $i \notin S$:, $v(S \cup\{i\})-v(S)=v(\{i\})$.

Axiom Dummy Player

For any $S \subseteq N, v$ if i is a dummy player then $\Psi_{i}(S, v)=v(\{i\})$.

- Dummy players should receive the amount they contribute.

Additivity

Axiom Additivity

For any two v_{1}, v_{2}, it holds that
$\Psi_{i}\left(N, v_{1}+v_{2}\right)=\Psi_{i}\left(N, v_{1}\right)+\Psi_{i}\left(N, v_{2}\right)$ for each i, where the game $\left(N, v_{1}+v_{2}\right)$ is defined by $\left(v_{1}+v_{2}\right)(S)=v_{1}(S)+v_{2}(S)$.

Shapley Value Theorem

Theorem

Given a coalitional game (N, v), there is a unique payoff division $\Psi(N, v)$ that divides the full payoff of the grand coalition and that satisfies Symmetry, Dummy Player, and Additivity: The Shapley Value.

Marginal value

Marginal value of agent i

The marginal value of an agent i to any coalition $S \subseteq N$ is defined by $\mu_{i}: 2^{N} \rightarrow \mathbb{R}$:

$$
\mu_{i}(S):=\left\{\begin{array}{ll}
v(S \cup\{i\})-v(S), & i \notin S \\
v(S)-v(S \backslash\{i\}), & i \in S
\end{array} .\right.
$$

Shapley Value

Definition Shapley Value

Given a cooperative game (N, v), the Shapley Value divides value according to:

$$
\Psi_{i}(N, v)=\frac{1}{N!} \sum_{o \in \Pi(N)} \mu_{i}\left(C_{i}(o)\right)
$$

- $\Pi_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in N, \forall i, j\left[i \neq j \Rightarrow x_{i} \neq x_{j}\right]\right\}$
- $C_{i}(o)$: set containing only those agents that appear before agent i in o, e.g., $o=(3,1,2)$, then $C_{3}(o)=\emptyset, C_{2}(o)=\{1,3\}$

Examples: Shapley Value

■ Original Glove Example: Shapley-Value (7.5,7.5)

- Permutation AB
- Marginal Contribution of A: 5
- Marginal Contribution of B: 10
- Permutation BA
- Marginal Contribution of A: 10
- Marginal Contribution of B: 5

Examples: Shapley Value

- Extended Glove Example: Shapley-Value (6.6,6.6,6.6)
- Permutation ABC
- Marginal Contributions of A, B, C: 5, 10, 5
- Permutation ACB
- Marginal Contributions of A, B, C: 5, 5, 10
- Permutation BAC
- Marginal Contributions of A, B, C: 10, 5, 5
- Permutation BCA
- Marginal Contributions of A, B, C: 5, 5, 10
- Permutation CBA
- Marginal Contributions of A, B, C: 5, 10, 5
- Permutation CAB
- Marginal Contributions of A, B, C: 10, 5, 5
\Rightarrow Not in the core!

Convex Games

Convex game

A game (N, v) is convex, iff the value of a coalition increases no slower when these coalitions grow in size, i.e.,
$v(S \cup\{i\})-v(S) \leq v(T \cup\{i\})-v(T)$ for all $S \subseteq T \subseteq N, i \in N \backslash T$.
For cost games, the inequalities are reversed.

Theorem

In every convex game, the Shapley value is in the core.

Corollary

Every convex game has a nonempty core.
\Rightarrow Fair and stable distributions exist!

Interesting Example I: Bankruptcy game instance

- Claimants: $N=\{A, B\}$
- Claims: $c_{A}=80, c_{B}=40$
- Estate: $E=100$
- $v(C)=\max \left\{0, E-\sum_{i \in N \backslash C} c_{i}\right\}$
$\square v(\emptyset)=0, v(\{A\})=60, v(\{B\})=20, v(\{A, B\})=100$

Properties

- This game is convex \Rightarrow the Shapley value is in the core.
- Shapley value: $\Psi=\left(\Psi_{A}, \Psi_{B}\right)=\frac{(60,40)+(80,20)}{2}=(70,30)$
- In core indeed, because:
- $\Psi_{A}=70 \geq v(\{A\})=60$ ©
- $\Psi_{B}=30 \geq v(\{B\})=20$ ©
- $\Psi_{A}+\Psi_{B}=70+30 \geq v(\{A, B\})=100$ ©

Interesting Example II: Taxi Share

- characteristic function v
$\square v(\{A\})=6$
$\square v(\{S\})=12$
- $v(\{T\})=42$
- $v(\{A, S\})=12$
- $v(\{A, T\})=42$
- $v(\{S, T\})=42$
$v(\{A, S, T\})=42$
- Shapley value computation

■ $(A, S, T) \rightarrow(6,6,30)$

- $(A, T, S) \rightarrow(6,0,36)$
- $(S, A, T) \rightarrow(0,12,30)$
- $(S, T, A) \rightarrow(0,12,30)$
- $(T, A, S) \rightarrow(0,0,42)$
$\square(T, S, A) \rightarrow(0,0,42)$
- $\Psi(N, v)=(2,5,35)$

Intermediate Summary

- Cooperative game theory is concerned with what agents can achieve if they form coalitions, viz., binding agreements.
- Values are given to coalitions first
- Coalitions redistribute value to their members
- Solution concepts for cooperative games
- Core: stability; sometimes exists; not unique
- Shapley value: fairness; always exists; unique
- For convex games, the Shapley value is in the Core
- Next
- Computational aspects
- Coalition structure formation

Computational aspects

Remember: Given a cooperative game (N, v), the Shapley Value divides value according to:

$$
\Psi_{i}(N, v)=\frac{1}{N!} \sum_{o \in \Pi(N)} \mu_{i}\left(C_{i}(o)\right)
$$

- Imagine you wanted to compute the Shapley value of an agent i of a cooperative game (N, v)
def shapleyValue($\mathrm{N}, \mathrm{v}, \mathrm{i}$):
...
- How many entries are in v ?
- How many steps are necessary to compute Shapley value?

Feasible Game Types

- Some cooperative games can be treated more efficiently
- Weighted graph games
- Weighted voting games
- Centralized algorithm for coalition structure generation

Weighted graph game: Definition

Assumption

The value of a coalition is the sum of the pairwise synergies among agents.

Definition

Let (V, W) denote an undirected weighted graph, where V is the set of vertices and $W \in \mathbb{R}^{V \times V}$ is the set of edge weights; denote the weight of the edge between vertices i and j as $w_{\{i, j\}}$. This graph defines a weighted graph game, where the cooperative game is constructed as follows:

- $N=V$
- $v(S)=\sum_{\{i, j\} \subseteq S} w_{\{i, j\}}$

Weighted graph game: Example

Revenue Sharing game

Consider the problem of dividing the revenues from toll highways between the cities that the highways connect. The pair of cities connected by a highway get to share in the revenues only when they form an agreement on revenue splitting; otherwise, the tolls go to the state.

$$
\begin{aligned}
v(\{A, B, C\}) & =3+2=5 \\
v(\{D\}) & =5 \\
v(\{B, D\}) & =1+5=6 \\
v(\{A, C\}) & =2
\end{aligned}
$$

Weighted graph game: Shapley Value

1 Only N^{2} many values to store (adjacency matrix).
2 Shapley-Value $s h_{i}$ of agent $i: s h_{i}=w_{\{i, i\}}+\frac{1}{2} \sum_{i \neq j} w_{\{i, j\}}$
Each pair of agents plays a game, in which they are interchangeable. Thus, they get the same value (Symmetry).

Axiom Symmetry

For any $S \subseteq N, v$, if i and j are interchangeable then $\Psi_{i}(S, v)=\Psi_{j}(S, v)$.

Value adds up in "bigger" games due to Additivity.

Axiom Additivity

For any two v_{1}, v_{2}, it holds that
$\Psi_{i}\left(N, v_{1}+v_{2}\right)=\Psi_{i}\left(N, v_{1}\right)+\Psi_{i}\left(N, v_{2}\right)$ for each i, where the game $\left(N, v_{1}+v_{2}\right)$ is defined by $\left(v_{1}+v_{2}\right)(S)=v_{1}(S)+v_{2}(S)$.

Weighted graph game: Properties

Theorem

If all the weights are nonnegative then the game is convex.

Remember:

Theorem

Every convex game has a nonempty core.

Theorem

In every convex game, the Shapley value is in the core.
\Rightarrow A fair and stable value distribution exists and can be computed in polynomial time w.r.t. to number of agents.

Weighted graph game: Incompleteness

- Not every game can be represented as a weighted graph game. For example, consider this voting game:
- Parties A, B, C, D have 45, 25, 15, and 15 representatives, respectively. 51 votes are required to pass the bill.
- Agents: $N=\{A, B, C, D\}$
- Coalitions: $\{A\}, \ldots,\{A, B, C, D\} \in 2^{N}$
- Characteristic function $v: 2^{N} \rightarrow \mathbb{R}$
- $v(\{A\})=v(\{B\})=v(\{C\})=v(\{D\})=v(\{B, C\})=v(\{B, D\})=$ $v(\{C, D\})=0$
- $v(\{A, B\})=v(\{A, C\})=v(\{A, D\})=v(\{B, C, D\})=1$
- E.g., $v(\{B, C\})+v(\{B, D\})+v(\{C, D\}) \neq v(\{B, C, D\})$ ©, i.e., the overall payoff is not the result of the local coalitions.

Weighted voting game: Definition

Definition

A weighted voting game $\left(q ; w_{1}, \ldots, w_{n}\right)$ consists of a set of agents $A g=\{1, \ldots, n\}$ and a quota q. The cooperative game (N, v) is then given by:

- $N=A g$
$v(C)= \begin{cases}1, & \sum_{i \in C} w_{i} \geq q \\ 0, & \text { else }\end{cases}$

Weighted voting game: Example

- Parties A, B, C, D have 45, 25, 15, and 15 representatives, respectively. 51 votes are required to pass the bill.
- Weighted voting game: $(51 ; 45,25,15,15)$

Weighted voting game: Properties

- Computing the Shapley value is NP-hard
\square But checking if core is non-empty is easy

Remember:

Theorem

In a simple game the core is empty iff there is no veto agent. If there are veto agents, the core consists of all value distributions in which the nonveto agents get 0 .

- Check if agent i is veto agent:

1 Draw up $C=N \backslash\{i\}$
2 Check that both hold:
$\square \sum_{j \in C} w_{j}<q$, i.e., no winner without i
$\square \sum_{j \in C \cup\{i\}} w_{j} \geq q$, i.e., winner with i

- Some cooperative games can be treated more efficiently

■ Weighted graph games

- Weighted voting games
- Centralized algorithm for coalition structure generation

Coalition Structure Formation

- Agents can use their capacity to compute Shapley values to try to optimize their local payoff.
- If, however, there is a central component that knows of all the agents, this component can attempt to maximize social welfare of the whole system.

Coalition Structure

A coalition structure is a partition of the overall set of agents N into mutually disjoint coalitions.

Example, with $N=\{1,2,3\}$:

- Seven possible coalitions:

$$
\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{3,1\},\{1,2,3\}
$$

- Five possible coalition structures:

$$
\begin{gathered}
\{\{1\},\{2\},\{3\}\},\{\{1\},\{2,3\}\},\{\{2\},\{1,3\}\}, \\
\{\{3\},\{1,2\}\},\{\{1,2,3\}\}
\end{gathered}
$$

Coalition Structure Formation

Given game $G=(N, v)$, the socially optimal coalition structure $C S^{*}$ is defined as:

$$
C S^{*}=\operatorname{argmax}_{C S \in \text { partitions of } N} V(C S)
$$

where

$$
V(C S)=\sum_{C \in C S} v(C)
$$

Unfortunately, there are exponentially many coalition structures over the sets of agents N
\Rightarrow Exhaustive search is infeasible!

Coalition Structure Graph

Coalition Structure Graph: Search

- Observation: At the first two levels every coalition is present.
- Let $C S^{\prime}$ be the best structure we find in these levels.
- Let CS* be the best structure overall (as defined earlier).
- Let $C^{*}=\operatorname{argmax}_{C \subseteq N} v(C)$ the coalition with highest possible value.

Then:
$\square V\left(C S^{*}\right) \leq|N| v\left(C^{*}\right) \leq|N| V\left(C S^{\prime}\right)$
$\square \Rightarrow$ in worst case, $V\left(C S^{\prime}\right)=\frac{V\left(C S^{*}\right)}{|N|}$
Algorithm:
1 Search first two bottom levels, keep track of best one.
2 Continue with breadth-first search beginning with top level.

- The Core: Stability / rationality of a coalition
- Shapley Value: Fairness
- Simple Games: Core easy to determine
- Convex Games: Shapley Value is in the core
- Weighted graph games
- Compact representation of games with additive values
- Efficient compuation of Shapley values
- Weighted voting games
- Compact representation of certain simple games
- Efficient computation of a core value distribution
- Coalition Structure Formation
- Centralized search-based algorithm to find a partition of agents into coalitions maximizing overall value.
- Provable bounds of solution quality.

Literature

M．Wooldridge，An Introduction to MultiAgent Systems，2nd Edition，John Wiley \＆Sons， 2009.
©
Y．Shoham，K．Layton－Brown，Multiagent Systems：Algorithmic， Game－Theoretic，and Logical Foundations，Cambridge University Press， 2009.

R－Game Theory Online，Youtube Channel， https：／／www．youtube．com／user／gametheoryonline

