Distributed Constraint Satisfaction

Bernhard Nebel, Rolf Bergdoll, and Thorsten Engesser Winter Term 2019/20

- Agents' abilities and/or preferences differ. How can they reach agreements?
- Example: Frequency assignment in a network of wireless base stations.
- → Use Constraint Satisfaction techniques.
 - Needs central solver instance and global commnication.
 - Distributed Constraint Satisfaction
 - Agents hold private constraints and exchange partial solutions.

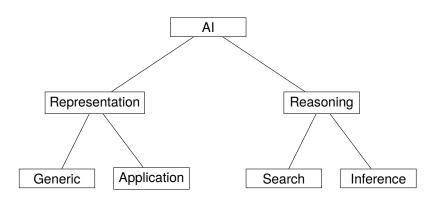
CSP (Freuder & Mackworth, 2006)

"Constraint satisfaction involves finding a value for each one of a set of problem variables where constraints specify that some subsets of values cannot be used together." ([1, p. 11])

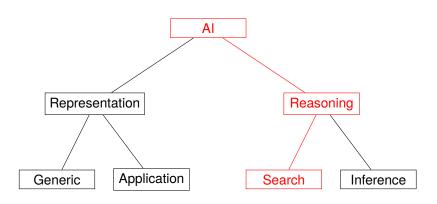
Examples:

- Pick appetizer, main dish, wine, dessert such that everything fits together.
- Place furniture in a room such that doors, windows, light switches etc. are not blocked.
- Frequency assignment.
-

AI Research on Constraint Satisfaction



AI Research on Constraint Satisfaction



Constraint Satisfaction Problem

CSP

A CSP is a triple $\mathscr{P} = (X, D, C)$:

- $X = (x_1, \dots, x_n)$: finite list of variables
- \blacksquare $D = (D_1, \dots, D_n)$: finite domains
- \blacksquare $C = (C_1, ..., C_k)$: finite list of constraint predicates
- Variable x_i can take values from D_i
- Constraint predicate $C(x_i, ..., x_l)$ is defined on $D_i \times ... \times D_l$
- Unary constraints: $C(Wine) \leftrightarrow Wine \neq riesling$
- Binary constraints: *C(WineAppetizer, WineMainDish)* ↔ *WineAppetizer* ≠ *WineMainDish*
- k-ary: $C(Alice, Bob, John) \leftrightarrow Alice \land Bob \rightarrow John$

Problem statement

Given a graph G = (V, E) and a set of colors N. Find a coloring $f : V \to N$ that assigns to each $v_i \in V$ a color different from those of its neighbors.

Problem statement

Given a graph G = (V, E) and a set of colors N. Find a coloring $f: V \to N$ that assigns to each $v_i \in V$ a color different from those of its neighbors.

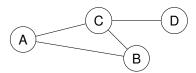
CSP formulation

Represent graph coloring as CSP $\mathscr{P} = (X, D, C)$:

- Each variable $x_i \in X$ represents the color of node $v_i \in V$
- Each $x_i \in X$ can get a value from its domain $D_i = N$
- For all $(x_i, x_j) \in E$ add a constraint $c(x_i, x_j) \leftrightarrow x_i \neq x_j$.

Graph coloring: Encoding

Colors: 1, 2, 3



CSP Encoding

Represention of this instance as a CSP $\mathscr{P} = (X, D, C)$:

$$X = (x_A, x_B, x_C, x_D)$$

$$D = (\{1,2,3\},\{1,2,3\},\{1,2,3\},\{1,2,3\})$$

$$C(x_A, x_B) \leftrightarrow x_A \neq x_B, C(x_A, x_C) \leftrightarrow x_A \neq x_C, \\ C(x_B, x_C) \leftrightarrow x_B \neq x_C, C(x_C, x_D) \leftrightarrow x_C \neq x_D$$

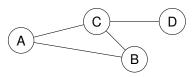
Definition

A solution of a CSP $\mathscr{P} = (X, D, C)$ is an assignment $a: X \to \bigcup_{i:x_i \in X} D_i$ such that:

- $a(x_i) \in D_i$ for each $x_i \in X$
- Every constraint $C(x_i,...,x_m) \in C$ evaluates to true under $\{x_i \to a(x_i),...,x_m \to a(x_m)\}.$
- \blacksquare \mathscr{P} is satisfiable iff \mathscr{P} has a solution.

Graph coloring: Solution

Colors: 1, 2, 3



Solutions

$$a(x_A) = 1, a(x_B) = 2, a(x_C) = 3, a(x_D) = 1$$

$$a(x_A) = 1, a(x_B) = 2, a(x_C) = 3, a(x_D) = 2$$

$$a(x_A) = 2, a(x_B) = 1, a(x_C) = 3, a(x_D) = 1$$

. . .

Here: 81 assignments, 12 solutions. Can we do better than listing all assignments?

■ CSP is NP-complete:

- Membership: Guess a legal assignment of values to variables. Testing whether the assignment is a solution can be done in polynomial time (just check that all the constraints hold).
- Hardness: Employ that graph coloring is known to be NP-complete and see reduction to CSP on earlier slides. More common reduction: Reduce 3SAT to CSP. Each propositional variable in the 3SAT-formula is represented as a variable in the CSP with domain {0,1}. Ternary constraints as given by the clauses, viz., at least one of the literals need to be 1.

- In case of n variables with domains of size d there are $O(d^n)$ assignments.
- We can use all sorts of search algorithms to intelligently explore the space of assignments and to eventually find a solution.
- We will use backtracking search and employ the notion of partial solution

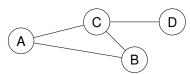
Definition

Given a CSP $\mathscr{P} = (X, D, C)$.

- An instantiation of a subset $X' \subseteq X$ is an assignment $a: X' \to \bigcup_{i:x_i \in X'} D_i$.
- An instantiation a of X' is a partial solution if a satisfies all constraints in C that are defined only over variables in X'.
 Then a is also called locally consistent.
- Hence, a solution is a locally consistent instantiation/a partial solution of X.

Graph coloring: Partial Solution

Colors: 1, 2, 3



Partial solutions

$$a(x_A) = 1$$

$$a(x_A) = 1, a(x_B) = 2$$

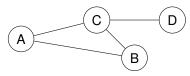
$$a(x_A) = 1, a(x_B) = 2, a(x_C) = 3$$

$$a(x_A) = 1, a(x_B) = 2, a(x_C) = 3, a(x_D) = 1$$

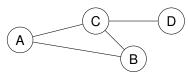
not a partial solution:
$$a(x_A) = 1, a(x_B) = 1$$

Backtracking Algorithm

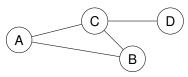

```
function BT(\mathcal{P}, part\_sol)
    if IsSolution(part sol) then
       return part sol
    end if
    if \negisPartialSolution(part sol, \mathscr{P}) then
       return false
    end if
    select some x<sub>i</sub> so far undefined in part_sol
   for all possible values d \in D_i for x_i do
       par sol \leftarrow BT(\mathcal{P}, par sol[x_i|d])
       if par sol ≠ False then
           return par sol
       end if
    end for
    return False
end function
```

$$BT(\mathscr{P}, \{\})$$



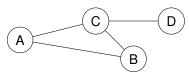
$$BT(\mathscr{P},\{x_A\to 1\})$$

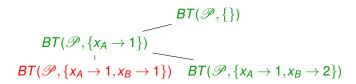


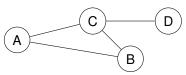
$$BT(\mathscr{P}, \{x_A \to 1\})$$

$$BT(\mathscr{P}, \{x_A \to 1\})$$

$$BT(\mathscr{P}, \{x_A \to 1, x_B \to 1\})$$





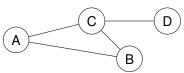


$$BT(\mathscr{P},\{x_A \to 1\})$$

$$BT(\mathscr{P},\{x_A \to 1, x_B \to 1\})$$

$$BT(\mathscr{P},\{x_A \to 1, x_B \to 2\})$$

$$BT(\mathscr{P},\{x_A \to 1, x_B \to 2, x_C \to 1\})$$

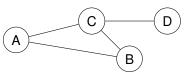


$$BT(\mathscr{P},\{x_A \to 1\})$$

$$BT(\mathscr{P},\{x_A \to 1, x_B \to 1\}) \quad BT(\mathscr{P},\{x_A \to 1, x_B \to 2\})$$

$$BT(\mathscr{P},\{x_A \to 1, x_B \to 2, x_C \to 1\})$$

$$BT(\mathscr{P},\{x_A \to 1, x_B \to 2, x_C \to 2\})$$



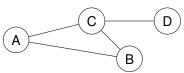
$$BT(\mathscr{P},\{x_A \to 1\})$$

$$BT(\mathscr{P},\{x_A \to 1\})$$

$$BT(\mathscr{P},\{x_A \to 1,x_B \to 1\})$$

$$BT(\mathscr{P},\{x_A \to 1,x_B \to 2,x_C \to 1\})$$

$$BT(\mathscr{P},\{x_A \to 1,x_B \to 2,x_C \to 2\})$$



$$BT(\mathcal{P}, \{x_A \to 1\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 1\}) \quad BT(\mathcal{P}, \{x_A \to 1, x_B \to 2\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 2, x_C \to 1\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 2, x_C \to 1\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 2, x_C \to 1\})$$

- Nodes A, B, C, and D represent families living in a neighborhood. An edge between two nodes models that the represented families are direct neighbors. Each family wants to buy a new car, but they don't want their respective neighbors to own the same car as they do.
- Centralized solution: A, B, C, D meet, make their constraints public and find a solution together.
- Decentralized solution: A, B, C, D do not meet. Instead, they just buy cars. If someone dislikes one other's choice (s)he will either buy another one or tell the neighbor to do so (without telling why).

- Centralized agent decision making encoded as CSP:
 - Each variable stands for the action of an agent. Constraints between variables model the interrelations between the agents' actions. A CSP solver solves the CSP and communicates the result to each of the agents.
- This, however, presupposes a central component that knows about all the variables and constraints. So what?
 - In some applications, gathering all information to one component is undesirable or impossible, e.g., for security/privacy reasons, because of too high communication costs, because of the need to convert internal knowledge into an exchangeable format.
- ⇒Distributed Constraint Satisfaction (DisCSP)

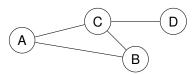
A DistCSP is a tuple $\mathscr{P} = (A, X, D, C)$:

- $A = (ag_1, ..., ag_n)$: finite list of agents
- $X = (x_1, ..., x_n)$: finite list of variables
- \blacksquare $D = (D_1, ..., D_n)$: finite list of domains
- \subset C = (C_1, \ldots, C_k) : finite list of constraint predicates
- Variable x_i can take values from D_i
- Constraint predicate $C(x_i,...,x_l)$ is defined on $D_i \times ... \times D_l$
- Variable x_i belongs (only) to agent ag_i
- \blacksquare Agent ag_i knows all constraints on x_i

Definition

- An assignment a is a solution to a distributed CSP (DisCSP) instance if and only if:
 - Every variable x_i has some assigned value $d \in D_i$, and
 - For all agents ag_i : Every constraint predicate that is known by ag_i evaluates to **true** under the assignment $a(x_i) = d$

Example as a DisCSP



Encoding

- $A = (A, B, C, D), X = (x_A, x_B, x_C, x_D), D_A = \{1, 2, 3\}, D_B = \{1\}, D_C = \{2, 3\}, D_D = \{3\}$
- Constraints
 - \blacksquare $A: x_A \neq x_B, x_A \neq x_C$
 - \blacksquare $B: x_B \neq x_A, x_B \neq x_C$
 - \blacksquare $C: x_C \neq x_A, x_C \neq x_B, x_C \neq x_D$
 - \square $D: x_D \neq x_C$

- Modification of the backtracking algorithm
 - Agents agree on an instantiation order for their variables (x_1 goes first, then goes x_2 etc.)
 - Each agent receiving a partial solution instantiates its variable based on the constraints it knows about
 - If the agent finds such a value it will append it to the partial solution and pass it on to the next agent
 - Otherwise, it sends a backtracking message to the previous agent

Synchronous Backtracking: Example Trace

- A, B, C, and D agree on acting in this order
- 2 A sets x_A to 1 and sends $\{x_A \rightarrow 1\}$ to B
- 3 B sends backtrack! to A
- A sets x_A to 2 and sends $\{x_A \rightarrow 2\}$ to B
- B sets x_B to 1 and sends $\{x_A \rightarrow 2, x_B \rightarrow 1\}$ to C
- 6 C sets c_C to 3 and sends $\{x_A \rightarrow 2, x_B \rightarrow 1, x_C \rightarrow 3\}$ to D
- 7 D sends backtrack! to C
- 8 C sends backtrack! to B
- 9 B sends backtrack! to A
- 10 A sets x_A to 3 and sends $\{x_A \rightarrow 3\}$ to B
- 11 B sets x_B to 1 and sends $\{x_A \rightarrow 3, x_B \rightarrow 1\}$ to C
- 12 C sets x_C to 2 and sends $\{x_A \rightarrow 3, x_B \rightarrow 1, x_C \rightarrow 2\}$ to D
- 13 D sets x_D to 3.

- Pro: No need to share private constraints and domains with some centralized decision maker
- Con: Agents act sequentially instead of taking advantage of parallelism, i.e., at any given time, only one agent is receiving a partial solution and acts on it

Nogoods

For the generalization to a more general form of distributed CSP solving, we need a new concept.

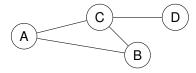
Definition

Given a CSP $\mathscr{P} = (X, D, C)$. An instantiation a' of $X' \subseteq X$ is a nogood of \mathscr{P} iff a' cannot be extended to a full solution of \mathscr{P} .

Note: If during backtracking search, we need to backtrack (because no possible value for x_j leads to a solution, then the instantiation of all the variables so far constitutes a nogood. It is not necessarily be a minimal nogood!

Graph coloring: Nogood

Colors: 1, 2, 3

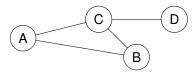


Nogood

$$a(x_A)=1, a(x_B)=1$$

Graph coloring: Nogood

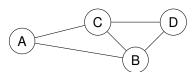
Colors: 1, 2, 3



Nogood

$$a(x_A) = 1, a(x_B) = 1$$

Colors: 1, 2, 3



Nogood

$$a(x_A) = 1, a(x_D) = 3$$

- Each agent maintains three properties:
 - current_value: value of its owned variable (subject to revision)
 - agent_view: what the agent knows so far about the values of other agents
 - constraint_list: ist of private constraints and received nogoods
- Each agent i can send messages of two kinds:
 - \blacksquare (ok?, $x_j \rightarrow d$)
 - \blacksquare (nogood!, i, $\{x_j \rightarrow d_j, x_k \rightarrow d_k, \ldots\}$)

- Assumption: For each contraint, there is one evaluating agent and one value sending agent. Hence, the graph is directed!
 - In some applications this may be naturally so (e.g., only one of the agents actually cares about the constraint)
 - In other applications, two agents involved in a constraint have to decide who will be the sender/evaluator.

Asynchronous Backtracking

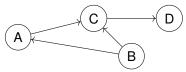

```
if received (ok?, (x_i, d_i)) then
   add (x_i, d_i) to agent_view
   CHECKAGENTVIEW()
end if
function CHECKAGENTVIEW
   if agent view and current value are not consistent then
      if no value in D_i is consistent with agent view then
          BACKTRACK()
      else
          select d \in D_i s.th. agent view and d consistent
          current value ← d
          send (ok?, (x_i, d)) to outgoing links
      end if
   end if
end function
```

Asynchronous Backtracking (cont.)

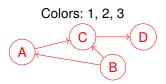

```
function BACKTRACK
   if \emptyset is a nogood then
       broadcast that there is no solution and terminate
   end if
   generate a nogood V (inconsistent subset of agent view)
   select (x_i, d_i) \in V
   send (nogood!, x_i, V) to x_i; remove (x_i, d_i) from agent\_view
end function
if received (nogood!, x_i, {nogood})) then
   add nogood to constraint list
   if nogood contains agent x_k that is not yet a neighbor then
       add x_k as neighbor and ask x_k to add x_i as neighbor
   end if
   CHECKAGENTVIEW()
end if
```

Asynchronous Backtracking: Example

Colors: 1, 2, 3

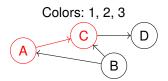


■ The graph is now directed (source: sender agent, sink: evaluator agent). All other things the same as before.



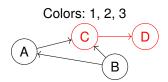
1 Each agent initializes its private variable and sends ok?-messages down the links

Agent	Current Value	Agent View	Constraint List
Α	1	$\{x_B \rightarrow 1\}$	$X_A \neq X_B$
В	1	0	Ø
С	2	$\{x_A \rightarrow 1, x_B \rightarrow 1\}$	$X_C \neq X_A, X_C \neq X_B$
D	3	$\{x_C \rightarrow 2\}$	$x_D \neq x_C$



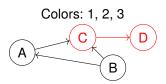
2 Agent A changes its value to 2 and sends ok? to C

Agent	Current Value	Agent View	Constraint List
Α	2	$\{x_B \rightarrow 1\}$	$X_A \neq X_B$
В	1	0	Ø
С	2	$\{x_A \rightarrow 2, x_B \rightarrow 1\}$	$X_C \neq X_A, X_C \neq X_B$
D	3	$\{x_C \rightarrow 2\}$	$x_D \neq x_C$



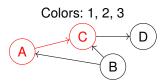
3 Agent C changes its value to 3 and sends ok? to D

Agent	Current Value	Agent View	Constraint List
Α	2	$\{x_B \rightarrow 1\}$	$X_A \neq X_B$
В	1	0	Ø
С	3	$\{x_A \rightarrow 2, x_B \rightarrow 1\}$	$X_C \neq X_A, X_C \neq X_B$
D	3	$\{x_C \rightarrow 3\}$	$x_D \neq x_C$



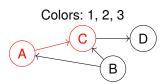
4 Agent D sends (nogood!, D, $\{x_c \rightarrow 3\}$) to C

Agent	Current Value	Agent View	Constraint List
Α	2	$\{x_B \rightarrow 1\}$	$X_A \neq X_B$
В	1	0	Ø
С	3	$\{x_A \rightarrow 2, x_B \rightarrow 1\}$	$x_C \neq x_A, x_C \neq x_B, x_C \neq 3$
D	3	0	$x_D \neq x_C$



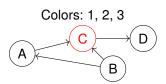
5 Agent C sends (nogood!, C, $\{x_A \rightarrow 2\}$) to A

Agent	Current Value	Agent View	Constraint List
Α	2	$\{x_B \rightarrow 1\}$	$X_A \neq X_B, X_A \neq 2$
В	1	Ø	0
С	3	$\{x_B \rightarrow 1\}$	$x_C \neq x_A, x_C \neq x_B, x_C \neq 3$
D	3	Ø	$x_D \neq x_C$



6 Agent A sets value to 3 and sends ok? to C

Agent	Current Value	Agent View	Constraint List
Α	3	$\{x_B \rightarrow 1\}$	$x_A \neq x_B, x_A \neq 2$
В	1	0	Ø
С	3	$\{x_A \rightarrow 3, x_B \rightarrow 1\}$	$x_C \neq x_A, x_C \neq x_B, x_C \neq 3$
D	3	Ø	$x_D \neq x_C$



7 Agent C sets value to 2 and sends ok? to D

Agent	Current Value	Agent View	Constraint List
Α	3	$\{x_B \rightarrow 1\}$	$x_A \neq x_B, x_A \neq 2$
В	1	0	Ø
С	2	$\{x_A \rightarrow 3, x_B \rightarrow 1\}$	$x_C \neq x_A, x_C \neq x_B, x_C \neq 3$
D	3	$\{x_C \rightarrow 2\}$	$x_D \neq x_C$

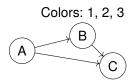
Loops

Colors: 1, 2, 3

- A, B, and C set their variables to 2 and send ok?
- A, B, and C set their variables to 1 and send ok?
- 4 ...

Avoiding Loops

Postulate an order over the agents (e.g., IDs). Based on that order, e.g., a link always goes from a higher-order to a lower-order agent.

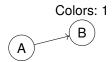


- A, B, and C set their variables to 1, A and B send ok?
- B and C set their variables to 2, B sends ok?
- C sets its variable to 3

Theorem (see [2])

The CSP is unsatisfiable iff the empty Nogood is generated.

Example of an empty nogood:



- A and B set their variables to 1, A sends ok?
- 2 B sends (nogood!, $x_A \rightarrow 1$)
- A generates a nogood, and as A's agent view is empty, the generated nogood is empty as well.

■ This time

- Constraint Satisfaction Problem & Backtracking algorithm
- Distributed Constraint Satisfaction Problem & Synchronous and Asynchronous Backtracking

Next time

Argumentation:

Literature I

- E. C. Freuder, A. K. Mackworth, Constraint satisfaction: An emerging paradigm, In F. Rossi, P. van Beek, T. Walsh (Eds.) Handbook of Constraint Programming, Elsevier, 2006.
- M. Yokoo, T. Ishida, E. H. Durfee, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed problem solving, In 12th IEEE International Conference on Distributed Computing Systems '92, pp. 614–621, 1992.
- M. Yokoo, K. Hirayama, Algorithms for distributed constraint satisfaction: A review, Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 2, pp. 198–212, 2000.