

Principle of double effect (DDE)

An action is permissible if

- The act itself must be morally good or neutral.
- A positive consequence must be intended.
- 3 No negative consequence may be intended.
- I No negative consequence may be a means to the goal.
- 5 There must be proportionally grave reasons to prefer.

Nebel, Engesser, Bergdoll – MAS

5/21

Planning formalism and more ...

We assume an ordinary propositional planning formalism with conditional effects (e.g., SAS or ADL) extended by

- timed exogenous actions;
- counterfactual friendly execution semantics (unexecutable actions are simply skipped);
- an utility function u mapping from actions and facts to \mathbb{R} (or \mathbb{Z});
- defining the utility of a state as the sum of the utility of facts.

Nebel, Engesser, Bergdoll - MAS

A plan is deontological permissible if all of its actions are not morally impermissible.

Theorem

The deontological plan validation problem can be decided in time linear in plan size.

Utilitarian plan validation

- Given a planning task and a plan, we can easily compute the utility of the reached final state.
- The plan is only permissible if the reached state has a maximum utility value over all reachable states.
- In so far, the validation problem is very similar to over-subscription planning.

Theorem

The utilitarian plan validation problem is PSPACE-complete.

Nebel, Engesser, Bergdoll - MAS

Do-no-harm plan validation (1)

9/21

- We could ask whether no harmful fact is true in the end. Only then we do no harm.
- $\rightarrow\,$ Harm could already be true in the initial state.
- Better: Do not add any harmful facts wrt. initial state.
- $\rightarrow\,$ Harmful fact could be removed and added again during execution.
- Next try: Do not any add *avoidable* harm.
- You can avoid harm by doing *more* or by doing *less*. We will only consider the latter option (since this is the idea behind the do-no-harm principle).
- Could harm be avoided by doing nothing?
- \rightarrow Treating the entire plan as one large action.

- Membership: Impermissibility could be shown by guessing a higher-valued state and then non-deterministically verifying that there exists a plan to it. Hence, this problem is in NPSPACE. Since NPSPACE=PSPACE and PSPACE is closed under complement, we are done.
- Hardness: Reduce (propositional) plan non-existence to permissibility. Introduce two new operators, one has the original goal as a precondition and g as an effect. One with no precondition and f as an effect. Give g and f utility 1, and set f as the new goal. Now, the one-operator plan of making f true is permissible iff the original planning instance is unsolvable.

Nebel, Engesser, Bergdoll – MAS

10/21

Proof sketch

 Membership: Impermissibility can be checked by a non-deterministic algorithm using only polynomial time: Guess a harmful fact *f* and a subset of action occurrences *O*. Verify that *f* is true in the final state of the original plan π, but not in final state of the modified plan where *O* is removed from π.

■ Hardness: *3SAT* can be reduced to *impermissibility*. Assume a 3SAT problem instance with *n* variables v_i and *m* clauses c_j . The planning instance has variables $V = \{v_1, ..., v_n, c_1, ..., c_m, b\}$, for each variable v_i an action $V_i : \langle \top, v_i \rangle$, for each clause $c_j = (l_{j1} \lor l_{j2} \lor l_{j3})$ an action $C_j : \langle \top, \bigwedge_{k=1}^3 (l_{jk} \rhd c_j) \rangle$, the action $G : \langle \top, (\bigwedge_{j=1}^m c_j) \rhd b \rangle$, and the action $B : \langle \top, \neg b \rangle$, with utility of $\neg b$ is -1 and 0 for all others.

Nebel, Engesser, Bergdoll – MAS

13 / 21

Nebel, Engesser, Bergdoll - MAS

16/21

Double-effect plan validation

- The act itself must be morally good or neutral.
- A positive consequence must be intended.
- No negative consequence may be intended.
- Is No negative consequence may be a means to the goal.
- 5 There must be proportionally grave reasons to prefer.
- All criteria except for the no negative consequence may be a means to the goal condition can be checked easily.

Theorem

The double-effect plan validation problem is co-NP-complete.

Nebel, Engesser, Bergdoll - MAS

17/21

- What could a planning algorithm and heuristics in this context look like?
- Where do the utility values come from?
- The understanding of what an **action** is is different from the computer science understanding (e.g. enter, break-in).
- Be aware that slight modelling changes can make a big difference. Example: Two lakes, two drowning persons, after the third time step, everybody drowned if not rescued: (*walk*, *walk*, *rescue*) is not do-no-harm permissible!

