

Alignment Problem

Moral Principles	BURG	Hybrid Ethio	cal Reasoning Robots	
 Moral principles determine the subset of mor options from the set of all available options. Examples: Utilitarianism (maximize social welfare) Deontology Principle of Double Effect Virtue Ethics 	ally acceptable		Video 2:30	
Nebel, Engesser, Bergdoll – MAS	11 / 41		Nebel, Engesser, Bergdoll – MAS	12 / 41

Language of Deontic Logic

- $\varphi ::= p_i \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \neg \varphi \mid O\varphi \mid F\varphi \mid P\varphi$
- $\blacksquare E.g., (a \land b), Oa, O(a \lor b), OO(a \to b)$

Two readings: Ought-to-be and Ought-to-do

- *p* := "You help your neighbor."
- *Op* := "You ought to help your neighbor."
- Ought-to-be: "It ought to be the case that you help your neighbor."
- Ought-to-do: "You ought to execute an action of type helping your neighbor." (How to make sense of OOp?)

Nebel, Engesser, Bergdoll – MAS

17/41

Free-Choice Permission

- What happens if one adds this as an axiom to SDL?
 - $\blacksquare \models O \phi \rightarrow O(\phi \lor \psi) \text{ (Weakening Rule)}$
 - $\blacksquare \models O(\phi \lor \psi) \to P(\phi \lor \psi) \text{ (Seriality)}$
 - $\models O\phi \rightarrow P(\phi) \land P(\psi)$ (viz., if something is obligatory, then everything is permissible)
- ⇒Mind the gap between natural language and propositional logics.

Nebel, Engesser, Bergdoll – MAS

25/41

Nebel, Engesser, Bergdoll – MAS

Obligation and Necessity

- The permitted is what is possible for a good person to do.
- The obligatory is what is necessary for a good person to do.

Petrus Abaelardus, 1097-1144

- Necessity is what nature demands.
- Possibility is what nature allows.
- Impossibility is what nature forbids.

Leibnizian-Kangerian-Andersonian reduction

- Leibnizian definition of obligation: φ is obligatory iff bringing about φ is necessary for being a good person.
- Can be written as: $O\phi \stackrel{\text{def}}{=} \Box(g \rightarrow \phi)$. The propositional symbol *g* represents "being a good person".
- Permission can be defined as: $P\phi \stackrel{\text{def}}{=} \diamondsuit (g \land \phi)$.

Nebel, Engesser, Bergdoll - MAS

29/41

