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Going beyond MAPF

In MAPF, planning is performed centrally, then the plan is
communicated to all agents and execution is done
decentrally.

What if there is no central instance and communication of
plans is impossible?

In this setting, which we call DMAPF, we assume that
everybody wants to achieve the common goal of reaching
all destinations.

Each agent needs to plan decentrally.
What kind of plans do we need to generate?
How do we define the joint execution of such plans?

Nebel, Engesser, Bergdoll - MAS 2/44

UNI

FREIBURG

Implicitly coordinated plans (in a cooperative “/
setting)
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An agent plans its own actions ...

...in a way to empower the other agents to reach the
common goal.

This implies to plan for the other agents.

We consider one possibility for the other agent to continue
the plan, i.e., the plan will be a linear plan.

We assume that plans are non-redundant, i.e., that they are
cycle-free.

Executing such a plan will thus never lead to a dead end,
i.e., a state from which the other agents cannot reach the
common goal.

However, almost certainly, agents will come up with
different (perhaps conflicting) plans.

How do we define joint execution of such conflicting plans?
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Example: Two implicitly coordinated plans

Vi V2 V3

Va

How to solve the problem?

e
s

<(C7 V3, V2)7 (C7 Vo, V4)7 (87 V1 7V2)7 (87 Vo, V3)7 (C7 Vg, V2)>
<(S7 Vi, V2)7 (87 Vo, V4)7 (C7 V3, V2)7 (C7 V2,Vq )7 (S, Va, V2)7
(87 Vo, V3)7 (C7 Vi 7V2)>
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Joint execution
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Let us assume, all agents have planed and a subset of
them came up with a family of plans (7;);ca.

Among the agents that have a plan with their own action as
the next action to execute, one is chosen.

The action of the chosen agent is executed.

Agents, which have anticipated the action, track that in their
plans.

All other agents have to replan from the new state.

Since everybody has a successful plan, no acting agent will
ever execute an action that leads to a dead end.
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Example execution

Vi

V2

V3

Vg

Planning, executing, and replanning:

1.C:
2.S:

3.C:

Done!

<(Cﬁv3tv2> C ,Vo,Vy ,(S,V1,V2),(S,V2,V3),(C,V4,V2)>

( )
((S,v1,V2),(S,v2,va),
(S V27V3)7(C Vi, 2))

( )

<(CaV2aV4)7 S Vi, V2 ,(S,VQ,V3),(C,V4,V2)>
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Lazy and eager agents
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What can go wrong?

Agents could be /azy: Sometimes they choose a plan where
they expect that another agent should act, although they
could act.

Agents may wait forever for each other to act (dish washing
dilemma).

Agents could be eager: If agents could act (without creating
a cycle or a dead end), they choose to act.

Agents might create cyclic executions (without creating
plans that are cyclic), leading to infinite executions.
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Example for infinite execution

7y (S initially): {(
> (C initially): ((
73 (C after (S,vo,v3)): ( (C,
4 (S after (C, vg, vs)): ((S V3,
5 (C after (S,vs,va)): ((
5 (S after (C, vs, vg)): ( (

Vi

V3

Vg

V4

v7
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(S V3, V4) (S.V4.V5).(C.V64V7)....
,V5),(C,v5,v4),(C,Vv4,v3),(S,Vo,vq),.. )

,Vs),(C,Vs5,v4),(S,v3,Vs),(C,v4,V3),...)

\
/
\
)
)
/

(S,v2,v1),(S,v1,vg),(S,ve,V7), . .)

)

Ve (C V67V7) (C7V77V8)>(va87v1)7~'

)

8/44

UNI
FREIBURG




Optimally eager agents
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Eager agents avoid deadlocks, however they are
hyper-active.

They might even move away from their destination!

So, let force them to be smart: They should generate only
optimal plans ...and among those optimal plans they
should also be eager.

In our previous example: After the square agent moved
right, the circle agent will choose to move left!

Does it always work out?
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Optimally eager agents are always successful

Theorem

Optimally eager agents are always successful on all solvable
DMAPF instances.

Proof.

By induction over the length of a shortest plan k.

k=0: Obviously true.

Assume the claim is true for k. Consider a DMAPF instance
such that there exists a shortest plan of length k + 1. Because
the agents are eager, at least one agent wants to move. One
agent will move (according to an optimal plan) and by this
reduce the necessary number of steps by one. Hence, we have
now an instance with plan length k and the induction hypothesis
applies. O
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Conservative replanning
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Optimally eager agents have to solve a sequence of
NP-hard problems.

Is it possible to solve the problem using only polynomial
time?

Conservative replanning: Always start at the initial state and
consider the already executed movements as a prefix of the

new plan.
Avoids infinite executions because plans have to be
cycle-free.
The agents might visit the entire state space before
terminating.

[ ] [ ] o

a as as an
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Other ways to coordinate?

One way to avoid NP-hardness or exponentially longer
plans is to use approximation algorithms, but we know of
none.

Is it possible to use the rule-based algorithms (which are
polynomial)?
Assume that everybody uses the same algorithm: Of

course, the agents would act in coordinated way, but this
more like central planning.

If the agents may use different algorithms, then it is not
clear how to avoid cyclic executions.

Conservative replanning is not helpful in this context,
because the executed actions might not be a prefix of a
valid plan!
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MAPE/DU: MAPF under destination
uncertainty
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MAPF under destination uncertainty (MAPF/DU):
The common goal of all agents is that everybody reaches
its destination.
All agents know their own destinations, but these are not
common knowledge any longer.
For each agent, there exists a set of possible destinations,
which are common knowledge.
All agents plan and re-plan without communicating with
their peers.
A success announcement action becomes necessary,
which the agents may use to announce that they have
reached their destination (and after that they are not
allowed to move anymore).
Models multi-robot interactions without communication
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MAPF/DU: Conceptual problems
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We need a solution concept for the agents: implicitly
coordinated branching plans.

We need to find conditions that guarantee success of joint
execution.

We have to determine the computational complexity for
finding plans and deciding solvability.

Since MAPF/DU is a special case of epistemic planning
(initial state uncertainty which is monotonically decreasing),
we can use concepts and results from this area.
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MAPF/DU representation & state space
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In addition to the sets of agents A, the graph G = (V,E), and
the assignment of agents to nodes o, we need a function to
represent the possible destinations B : A — 2V.

We assume that the set of possible destinations are
pairwise disjoint (this can be relaxed, though).

An objective state is given by the pair s = (a, )
representing the common knowledge of all agents.

A subjective state of agent i is given by s'(a, B,i,v) with
v € B(i), representing the private knowledge of agent i.
A MAPF/DU instance is given by (A, G, So, &), where
So = (o, Bo)-
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MAPEF/DU: Implicitly coordinated branching
plans
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Square agent S wants to go to vz and
knows that circle agent C wants to go to
Vi Or V4.
C wants to go to v4 and knows that S
é wants to go to vp or vs.
o O Let us assume S forms a plan in which it
iz Vs moves in order to empower C to reach
their common goal.

VA Vo

S needs shifting its perspective in order
to plan for all possible destinations of C
(branching on destinations).

Planning for C, S must forget about its
own destination.
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Branching plans: Building blocks
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Branching plans consist of:

Movement actions: ({(agent), (sourcenode), (targetnode)),
i.e., a movement of an agent

Success announcement: ((agent),.), after that all agents
know that the agent has reached its destination and it
cannot move anymore

Perspective shift: [(agent) : .. ], i.e., from here on we
assume to plan with the knowledge of agent (agent). This
can be unconditional or conditional on (agent)’s
destinations.

Branch on all destinations:
(?(desty){...},...,?(dest,){...}), where all destinations of
the current agent have to be listed. For each case we try to
find a successful plan to reach the goal state.
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Semantics of branching plans

UNI
FREIBURG

Movement actions modify o in the obvious way.

A success announcement of agent i (only possible if agent
B(i) = v and i is at v) transforms 3 to B’ such that B’(i/) = @
in order to signal that i cannot move anymore

A perspective shift from j to j with subsequent branching on
destinations transforms the subjective state s’ = (a, B8,i,v;)
to a set of subjective states sk = (o, 8./, v;, ) with all

Vi € B()-

A perspective shift from i to j without subsequent branching
on destinations induces the same transformation, but
enforces that the subsequent plans are the same for all
states subjective states g.

Note: After a perspective shift to j, only j can move and
announce success!
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. ) v
Branching plan: Example g
[x4 m -
L
2o
(S,v1,va) = T8
w - C: el vy
(C,VZ-V1i T (C,v2,v1)
vi v2 (€. (S.vave) (S.vav)
ﬁ é S:
O 0 " v
Vy V3 (S,va,va)  (S,va,va) (S, va,v2) (S,)
C:
[ J u v, vy
Svave)  (5.9) (8.7) (Covi,va) (C.7)
c:
v, N2
6. (C.v1.va) (C,7) (€.

€.2)
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Strong plans
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Similar to the notion of strong plans in non-deterministic
single-agent planning, we define i-sfrong plans for an agent i to
be:

cycle-free, i.e., not visiting the same objective state twice;

always successful, i.e. always ending up in a state such that
all agents have announced success;

covering, i.e., for all combinations of possible destinations
of agents different from i, success can be reached.
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Subjectively and objectively strong plans
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A plan is called subjectively strong if it is i-strong for some §
agent /.

A plan is called objectively strong if it is i-strong for each

agent .

An instance is objectively or subjectively solvable if there
exists an objectively or subjectively strong plan,

respectively.
B . é

| 6] A 0 [
A

There does not exist a T-strong plan, but an S- and a
C-strong plan.

Difference between subjective and objective solvability
concerns only the first acting agent!

Z] Va2 V3 V4
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Structure of strong plans: Stepping stones
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A stepping stone for agent i is a state in
which i can move to each of its possible
destinations, announcing success, and
afterwards, for each possible
destination, there exists an j-strong plan | v

to solve the resulting states. ﬁ é

S can create a stepping stone for Cby  |va Vs
moving from vy via v4 1o vs.

C can now move to vy or v4 and
announce success.

In each case, S can move afterwards to
its destination (or stay) and announce
success.
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. O
Stepping Stone Theorem &
=_0_
2
Proof by example =TS
Theorem v
Given an i-solvable MG
MAPF/DU instance, there (©vev1) (G
exists an i-strong we S,
branching plan such that ©.7) (S.va.va) Svava)
the only branching points ‘.
are those utilizing Wl

. (S,va,v3)  (S,va,va) (S,vs,v2) (S,.)
Stepplng stones. 1

Proof SketCh (S.v3,v2) (S,.7) (S,) (C,v1,va) (é.,y’)
R C:
Remove non-stepping stone i v
branching points by picking ¢ G €2 ©2)
one branch without success
announcement. O ©.9)
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Execution cost
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The execution cost of a branching plan is the number of atomic
actions of the longest execution trace.

Theorem

Given an i-solvable MAPF/DU instance over a graph G = (V,E),
then there exists an i-strong branching plan with execution cost
bounded by O(|V |*).

Proof sketch.

Direct consequence of the stepping stone theorem and the
maximal number of movements in the MAPF problem. O
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Joint execution and execution guarantees
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Joint execution is defined similarly to the fully observable
case: One agent is chosen; afterwards the plan is tracked
or the agent has to replan.

In the MAPF/DU framework not all agents might have a
plan initially!

One might hope that optimally eager agents are always
successful.

In epistemic planning this was proven to be true only in the
uniform knowledge case.

We do not have uniform knowledge ...and indeed,
execution cycles cannot be excluded.

Nebel, Engesser, Bergdoll — MAS 25/44

A counter example
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viil@

A number on an edge means that there are as many nodes on a line.

Agent 2 has a shortest eager plan moving first to ve.

Agent 1 has then a shortest eager plan moving first to v4.
Agent 2 has then a shortest eager plan moving first to vs.
Agent 1 has then a shortest eager plan moving first to v».
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Conservatism
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Perhaps conservatism can help!

Similarly to DMAPF, conservative replanning means that
the already executed actions are used as a prefix in the
plan to be generated.

Differently from DMAPF, we assume that after a success
announcement, the initial state is modified so that the real
destination of the agent is known in the initial state.

Otherwise we could not solve instances that are only
subjectively solvable.
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Conservative, optimally eager agents
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Conservative, eager agents are always successful, but
might visit the entire state space before terminating.
Adding optimal eagerness can help to reduce the execution
length.

Theorem

For solvable MAPF/DU instances, joint execution and replanning
by conservative, optimally eager agents is always successful and
the execution length is polynomial.

Proof idea.

After the second agent starts to act, all agents have an identical perspective
and for this reason produce objectively strong plans with the same execution
costs, which can be shown to be bounded polynomially using the stepping
stone theorem. O
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Conservative replanning example
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Assume S moves first to v4.

Assume C re-plans. From now on, in
replanning from the beginning, it has to
do a perspective shift to S, because it

Vi Vo

ﬁ é now has to extend the partial plan
o - starting with (S,v4,v4), i.e., it has to
Va V3 create an objectively strong plan.
Assume that C moves now to vj.
o ]

From now on, also S has to make a
perspective shift to C, effectively
“forgetting” its own destination, i.e., it
also has to create a objectively strong
plan.
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Computational Complexity:
Algorithms and Turing machines
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We use Turing machines as formal models of algorithms
This is justified, because:
we assume that Turing machines can compute all
computable functions
the resource requirements (in term of time and memory) of
a Turing machine are only polynomially worse than other
models
The regular type of Turing machine is the deterministic one:
DTM (or simply TM)
Often, however, we use the notion of nondeterministic TMs:
NDTM
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Computational Complexity:
Complexity classes P and NP
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Problems are categorized into complexity classes according to
the requirements of computational resources:

The class of problems decidable on deterministic Turing
machines in polynomial time: P

Problems in P are assumed to be efficiently solvable
(although this might not be true if the exponent is very large)
In practice, a reasonable definition
The class of problems decidable on non-deterministic
Turing machines in polynomial time, i.e., having a poly.
length accepting computation for all positive instances: NP
More classes are definable using other resource bounds on
time and memory
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Computational Complexity:
Upper and lower bounds
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Upper bounds (membership in a class) are usually easy to
prove:
provide an algorithm
show that the resource bounds are respected
Lower bounds (hardness for a class) are usually difficult to
show:
the technical tool here is the polynomial reduction (or any
other appropriate reduction)
show that some hard problem can be reduced to the
problem at hand
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Computational Complexity:
Polynomial reduction
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Given languages L1 and Lp, Ly can be polynomially
reduced to Lo, written L1 <, Ly, if there exists a polynomial
time-computable function f such that

x €Ly <= f(x) € L,.

Rationale: it cannot be harder to decide L1 than L,

L is hard for a class C (C-hard) if all languages of this class
can be reduced to L.

L is complete for C (C-complete) if L is C-hard and L € C.
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Computational Complexity:
NP-complete problems

A problem is NP-complete iff it is NP-hard and in NP.
Example: SAT (the satisfiability problem for propositional
logic) is NP-complete (Cook/Karp)
Membership is obvious, hardness follows because
computations on a NDTM correspond to satisfying truth
assignments of certain formulae

all problems

NP-hard

NP-complete
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Computational Complexity:
The complexity class co-NP
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Note that there is some asymmetry in the definition of NP:
It is clear that we can decide SAT by using a NDTM with
polynomially bounded computation
There exists an accepting computation of polynomial length
iff the formula is satisfiable
In other words: Checking a proposed solution (of poly size)
is easy.

What if we want to decide UNSAT, the complementary

problem?

It seems necessary to check all possible truth-assignments!
Define co-C = {L C%*: ¥*\ L € C} (provided X is our
alphabet)
co-NP = {L C3*: 3*\ L € NP}

Examples: UNSAT, TAUT € co-NP!

Note: P is closed under complement, in particular,

P € NPNco-NP
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Computational Complexity:
PSPACE

There are problems even more difficult than NP and co-NP...

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can
be decided on deterministic (non-deterministic) Turing machines
using only polynomially many tape cells.

Some facts about PSPACE:
PSPACE is closed under complements (... as all other
deterministic classes)
PSPACE is identical to NPSPACE (because
non-deterministic Turing machines can be simulated on
deterministic TMs using only quadratic space: Savitch’s
Theorem)
NPCPSPACE (because in polynomial time one can “visit”
only polynomial space, i.e., NPCNPSPACE)
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Computational Complexity:
PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete if it is in
PSPACE and all other problems in PSPACE can be polynomially
reduced to it.

Intuitively, PSPACE-complete problems are the “hardest”
problems in PSPACE (similar to NP-completeness). They appear
to be “harder” than NP-complete problems from a practical point
of view.
An example for a PSPACE-complete problem is the NDFA
equivalence problem:
Instance: Two non-deterministic finite state automata A and
As.
Question: Are the languages accepted by A; and A,
identical?
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Computational complexity of MAPEF/DU
bounded plan existence
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Theorem

Deciding whether there exists an eager MAPF/DU i-strong or
objectively strong plan with execution cost k or less is
PSPACE-complete.

Proof sketch.

Since plans have polynomial depth,
all execution traces can be
generated non-deterministically
and tested using only polynomial
space, i.e., PSPACE-membership.
For hardness, reduction from QBF.
Example construction for

Vx13xoVx3 :
(X1 VXxo V _\X3) A (_\X1 V X2 \/X3)

Vs Vo Vio Vi1
choice séquencer

Nebel, Engesser, Bergdoll - MAS 38/44

The reduction enlarged

collector clause eyaluator
. F .
Ve, Cr @ V3 5:(X3) 2% Vx13x2Vx3 :

(x1 VX2V =x3) A (—X1 VX2V X3)

vitfy voifo vaifs V4o vsify veifs viifg V8

Vg Vip V11
choice sequencer.
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Complexity with a fixed number of agents
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These results probably imply that the technique could not be
used online.

For a fixed number of agents, however, the bounded planning
problem is polynomial.

Theorem

For a fixed number c of agents, deciding whether there exists a
MAPF/DU i-strong or objectively strong plan with execution cost
of k or less can be done in time O(nCZ"C).

That means, for two agents, it takes “only” O(n®) time — but in
practice it should be faster.
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An algorithm for generating an objective
MAPF/DU plan for two agents
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Determine in the state space of all node assignmenits the
distance to the initial state using Dijkstra: O(|V|*) time.

For each of the O(|V|?) configurations check, whether it is a
potential stepping stone for one agent, i.e., whether all
potential destinations of this agent are reachable using
Dijkstra on the modified graph, where the other agent
blocks the way: O(|V|*) time.

For all O(| V|2) potential stepping stones, check whether for
each of the O(]V|) possible destination of the first agent,
the second agent can reach its possible destinations and
use Dijkstra to compute the shortest path: altogether
O(|V|°) time.

Consider all stepping stones and minimize over the
maximum plan depth. Among the minimal plans select
those that are eager for the planning agent.
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Summary

DMAPF generalizes the MAPF problem by dropping the
assumption that plans are generated centrally and then
communicated.

MAPF/DU generalizes the MAPF problem further by
dropping the assumptions that destinations are common
knowledge.

A solution concept for this setting are i-strong branching
plans corresponding to implicitly coordinated policies in the
area of epistemic planning.

The backbone of such plans are stepping stones.

Joint execution can be guaranteed to be successful and
polynomially bounded if all agents are conservative and
optimally eager.

While bounded plan existence in general is
PSPACE-complete, it is polynomial for a fixed number of
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Outlook
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Do the results still hold for planar graphs?

Is MAPF/DU plan existence also PSPACE-complete?

How would more general forms of describing the common
knowledge about destinations affect the results?

Overlap of destinations or general Boolean combinations
Can we get similar results for other execution semantics?
Concurrent executions of actions

Can we be more aggressive in expectations about possible
destinations?

Use forward induction, i.e., assume that actions in the past
were rational.

Are other forms of implicit coordination possible?

More communication? Coordination in competitive
scenarios?
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