
Multi-Agent Systems
(Classical) Multi-Agent Path Finding

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Rolf Bergdoll, and Thorsten Engesser
Winter Term 2019/20

A∗ -based
algorithm

Agents moving in a spatial environment

A central problem in many applications is the coordinated
movement of agents/robots/vehicles in a given spatial
environment.

Logistic robots (KARIS) Airport ground traffic control (atrics)

Nebel, Engesser, Bergdoll – MAS 2 / 25

https://youtu.be/53mRfLQkuZM
https://youtu.be/J2FotYJ80Rw

A∗ -based
algorithm

Multi-agent path finding

Definition (Multi-agent path finding (MAPF) problem)
Given a set of agents A, a (perhaps directed) graph G = (V ,E),
an initial state modelled by an injective function α0 : A→ V , and
a goal state modelled by another injective function α∗, can α0 be
transformed into α∗ by movements of single agents without
collisions?

Existence problem: Does there exist a successful sequence
of movements (= plan)?
Bounded existence problem: Does there exist a plan of a
given length k or less?
Plan generation problem: Generate a plan.
Optimal plan generation problem: Generate a shortest plan.

Nebel, Engesser, Bergdoll – MAS 3 / 25

A∗ -based
algorithm

Multi-agent path finding

Definition (Multi-agent path finding (MAPF) problem)
Given a set of agents A, a (perhaps directed) graph G = (V ,E),
an initial state modelled by an injective function α0 : A→ V , and
a goal state modelled by another injective function α∗, can α0 be
transformed into α∗ by movements of single agents without
collisions?

Existence problem: Does there exist a successful sequence
of movements (= plan)?

Bounded existence problem: Does there exist a plan of a
given length k or less?
Plan generation problem: Generate a plan.
Optimal plan generation problem: Generate a shortest plan.

Nebel, Engesser, Bergdoll – MAS 3 / 25

A∗ -based
algorithm

Multi-agent path finding

Definition (Multi-agent path finding (MAPF) problem)
Given a set of agents A, a (perhaps directed) graph G = (V ,E),
an initial state modelled by an injective function α0 : A→ V , and
a goal state modelled by another injective function α∗, can α0 be
transformed into α∗ by movements of single agents without
collisions?

Existence problem: Does there exist a successful sequence
of movements (= plan)?
Bounded existence problem: Does there exist a plan of a
given length k or less?

Plan generation problem: Generate a plan.
Optimal plan generation problem: Generate a shortest plan.

Nebel, Engesser, Bergdoll – MAS 3 / 25

A∗ -based
algorithm

Multi-agent path finding

Definition (Multi-agent path finding (MAPF) problem)
Given a set of agents A, a (perhaps directed) graph G = (V ,E),
an initial state modelled by an injective function α0 : A→ V , and
a goal state modelled by another injective function α∗, can α0 be
transformed into α∗ by movements of single agents without
collisions?

Existence problem: Does there exist a successful sequence
of movements (= plan)?
Bounded existence problem: Does there exist a plan of a
given length k or less?
Plan generation problem: Generate a plan.

Optimal plan generation problem: Generate a shortest plan.

Nebel, Engesser, Bergdoll – MAS 3 / 25

A∗ -based
algorithm

Multi-agent path finding

Definition (Multi-agent path finding (MAPF) problem)
Given a set of agents A, a (perhaps directed) graph G = (V ,E),
an initial state modelled by an injective function α0 : A→ V , and
a goal state modelled by another injective function α∗, can α0 be
transformed into α∗ by movements of single agents without
collisions?

Existence problem: Does there exist a successful sequence
of movements (= plan)?
Bounded existence problem: Does there exist a plan of a
given length k or less?
Plan generation problem: Generate a plan.
Optimal plan generation problem: Generate a shortest plan.

Nebel, Engesser, Bergdoll – MAS 3 / 25

A∗ -based
algorithm

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan: (C,v3,v2), (C,v2,v4), (S,v1,v2), (S,v2,v3),(C,v4,v2).

Nebel, Engesser, Bergdoll – MAS 4 / 25

A∗ -based
algorithm

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan: (C,v3,v2), (C,v2,v4), (S,v1,v2), (S,v2,v3),(C,v4,v2).

Nebel, Engesser, Bergdoll – MAS 4 / 25

A∗ -based
algorithm

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan:

(C,v3,v2), (C,v2,v4), (S,v1,v2), (S,v2,v3),(C,v4,v2).

Nebel, Engesser, Bergdoll – MAS 4 / 25

A∗ -based
algorithm

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan: (C,v3,v2),

(C,v2,v4), (S,v1,v2), (S,v2,v3),(C,v4,v2).

Nebel, Engesser, Bergdoll – MAS 4 / 25

A∗ -based
algorithm

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan: (C,v3,v2),

(C,v2,v4), (S,v1,v2), (S,v2,v3),(C,v4,v2).

Nebel, Engesser, Bergdoll – MAS 4 / 25

A∗ -based
algorithm

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan: (C,v3,v2), (C,v2,v4),

(S,v1,v2), (S,v2,v3),(C,v4,v2).

Nebel, Engesser, Bergdoll – MAS 4 / 25

A∗ -based
algorithm

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan: (C,v3,v2), (C,v2,v4),

(S,v1,v2), (S,v2,v3),(C,v4,v2).

Nebel, Engesser, Bergdoll – MAS 4 / 25

A∗ -based
algorithm

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan: (C,v3,v2), (C,v2,v4), (S,v1,v2),

(S,v2,v3),(C,v4,v2).

Nebel, Engesser, Bergdoll – MAS 4 / 25

A∗ -based
algorithm

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan: (C,v3,v2), (C,v2,v4), (S,v1,v2),

(S,v2,v3),(C,v4,v2).

Nebel, Engesser, Bergdoll – MAS 4 / 25

A∗ -based
algorithm

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan: (C,v3,v2), (C,v2,v4), (S,v1,v2), (S,v2,v3),

(C,v4,v2).

Nebel, Engesser, Bergdoll – MAS 4 / 25

A∗ -based
algorithm

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan: (C,v3,v2), (C,v2,v4), (S,v1,v2), (S,v2,v3),

(C,v4,v2).

Nebel, Engesser, Bergdoll – MAS 4 / 25

A∗ -based
algorithm

Example

Can we find a (central) plan to move the square robot S to v3
and the circle robot C to v2?

v1 v2 v3

v4

G = (V ,E) with V = {v1,v2,v3,v4} and E =
{
{v1,v2},{v2,v3},{v2,v4}

}
A = {S,C} and α0(S) = v1,α0(C) = v3,α∗(S) = v3,α∗(C) = v2

Plan: (C,v3,v2), (C,v2,v4), (S,v1,v2), (S,v2,v3),(C,v4,v2).

Nebel, Engesser, Bergdoll – MAS 4 / 25

A∗ -based
algorithm

A special case: 15-puzzle

Pictures from Wikipedia article on 15-Puzzle

Nebel, Engesser, Bergdoll – MAS 5 / 25

A∗ -based
algorithm

A special case: 15-puzzle

Pictures from Wikipedia article on 15-Puzzle

Nebel, Engesser, Bergdoll – MAS 5 / 25

A∗ -based
algorithm

Lecture plan

MAPF: variations, algorithms, complexity
Distributed MAPF (each agent plans on it own): DMAPF
Distributed MAPF with destination uncertainty: MAPF/DU

Nebel, Engesser, Bergdoll – MAS 6 / 25

A∗ -based
algorithm

Sequential MAPF

Sequential MAPF (or pebble motion on a graph) allows only
one agent to move per time step.
An agent a ∈ A can move in one step from s ∈ V to t ∈ V
transforming α to α ′, if

α(a) = s,
〈s, t〉 ∈ E,
there is no agent b such that α(b) = t.

In this case, α ′ is determined as follows:
α ′(a) = t,
for all agents b 6= a : α(b) = α ′(b),

One usually wants to minimize the number of single
movements (= sum-of-cost over all agents)

Nebel, Engesser, Bergdoll – MAS 7 / 25

A∗ -based
algorithm

Parallel MAPF

Parallel MAPF allows many agents to move in parallel,
provided they do not collide.
Two models:

Parallel: A chain of agents can move provided the first agent
can move on a an unoccupied vertex.
Parallel with rotations: A closed cycle in move
synchronously.

In both cases, one is usually interested in the number of
parallel steps (= make-span).
However, also the sum-of-cost is sometimes considered.

Nebel, Engesser, Bergdoll – MAS 8 / 25

A∗ -based
algorithm

Anonymous MAPF

There is a set of agents and a set of targets (of the same
cardinality as the agent set).
Each target must be reached by one agent.
This means one first has to assign a target and then to
solve the original MAPF problem.
Interestingly, the problem as a whole is easier to solve
(using flow-based techniques).

Nebel, Engesser, Bergdoll – MAS 9 / 25

A∗ -based
algorithm

Types of MAPF algorithms

A∗-based algorithm (optimal)

Conflict-based search (optimal)
Reduction-based approaches: Translate MAPF to SAT, ASP
or to a CSP (usually optimal)
Suboptimal search-based algorithms (may even be
incomplete): Cooperative A∗ (CA∗), Hierarchical
Cooperative A∗ (HCA∗) and Windowed HCA∗ (WHCA∗).
Rule-based algorithms: Kornhauser’s algorithm,
Push-and-Rotate, BIBOX, . . . (complete on a given class of
graphs, but suboptimal)

Nebel, Engesser, Bergdoll – MAS 10 / 25

A∗ -based
algorithm

Types of MAPF algorithms

A∗-based algorithm (optimal)
Conflict-based search (optimal)

Reduction-based approaches: Translate MAPF to SAT, ASP
or to a CSP (usually optimal)
Suboptimal search-based algorithms (may even be
incomplete): Cooperative A∗ (CA∗), Hierarchical
Cooperative A∗ (HCA∗) and Windowed HCA∗ (WHCA∗).
Rule-based algorithms: Kornhauser’s algorithm,
Push-and-Rotate, BIBOX, . . . (complete on a given class of
graphs, but suboptimal)

Nebel, Engesser, Bergdoll – MAS 10 / 25

A∗ -based
algorithm

Types of MAPF algorithms

A∗-based algorithm (optimal)
Conflict-based search (optimal)
Reduction-based approaches: Translate MAPF to SAT, ASP
or to a CSP (usually optimal)

Suboptimal search-based algorithms (may even be
incomplete): Cooperative A∗ (CA∗), Hierarchical
Cooperative A∗ (HCA∗) and Windowed HCA∗ (WHCA∗).
Rule-based algorithms: Kornhauser’s algorithm,
Push-and-Rotate, BIBOX, . . . (complete on a given class of
graphs, but suboptimal)

Nebel, Engesser, Bergdoll – MAS 10 / 25

A∗ -based
algorithm

Types of MAPF algorithms

A∗-based algorithm (optimal)
Conflict-based search (optimal)
Reduction-based approaches: Translate MAPF to SAT, ASP
or to a CSP (usually optimal)
Suboptimal search-based algorithms (may even be
incomplete): Cooperative A∗ (CA∗), Hierarchical
Cooperative A∗ (HCA∗) and Windowed HCA∗ (WHCA∗).

Rule-based algorithms: Kornhauser’s algorithm,
Push-and-Rotate, BIBOX, . . . (complete on a given class of
graphs, but suboptimal)

Nebel, Engesser, Bergdoll – MAS 10 / 25

A∗ -based
algorithm

Types of MAPF algorithms

A∗-based algorithm (optimal)
Conflict-based search (optimal)
Reduction-based approaches: Translate MAPF to SAT, ASP
or to a CSP (usually optimal)
Suboptimal search-based algorithms (may even be
incomplete): Cooperative A∗ (CA∗), Hierarchical
Cooperative A∗ (HCA∗) and Windowed HCA∗ (WHCA∗).
Rule-based algorithms: Kornhauser’s algorithm,
Push-and-Rotate, BIBOX, . . . (complete on a given class of
graphs, but suboptimal)

Nebel, Engesser, Bergdoll – MAS 10 / 25

A∗ -based
algorithm

A∗-based algorithm

Define state space:
A state is an assignment of agents to vertices (modelled by
a function α)
There is a transition from one state α to α ′ iff there is a legal
move from α to α ′ according to the appropriate semantics
(sequential, parallel, or parallel with rotations)

Search in this state space using the A∗ algorithm.
Possible heuristic estimator: Sum or maximum over the
length of the individual movement plans (ignoring other
agents).
Problem: Large branching factor because of many agents
that can move.

Nebel, Engesser, Bergdoll – MAS 11 / 25

A∗ -based
algorithm

Example: State space for A∗ algorithm

v1 v2 v3

v4

Convention: Function α is represented by 〈α(S),α(C)〉

Question: How many states?

〈v1,v3〉

〈v1,v2〉

〈v2,v3〉

〈v1,v4〉

〈v4,v3〉

〈v2,v4〉

〈v4,v2〉

〈v3,v4〉

〈v4,v1〉 〈v2,v1〉 〈v3,v1〉

〈v3,v2〉

Question: Heuristic value for states 〈v1,v2〉 and 〈v2,v3〉 under
the sum-aggregation?

Nebel, Engesser, Bergdoll – MAS 12 / 25

A∗ -based
algorithm

Example: State space for A∗ algorithm

v1 v2 v3

v4

Convention: Function α is represented by 〈α(S),α(C)〉
Question: How many states?

〈v1,v3〉

〈v1,v2〉

〈v2,v3〉

〈v1,v4〉

〈v4,v3〉

〈v2,v4〉

〈v4,v2〉

〈v3,v4〉

〈v4,v1〉 〈v2,v1〉 〈v3,v1〉

〈v3,v2〉

Question: Heuristic value for states 〈v1,v2〉 and 〈v2,v3〉 under
the sum-aggregation?

Nebel, Engesser, Bergdoll – MAS 12 / 25

A∗ -based
algorithm

Example: State space for A∗ algorithm

v1 v2 v3

v4

Convention: Function α is represented by 〈α(S),α(C)〉
Question: How many states?

〈v1,v3〉

〈v1,v2〉

〈v2,v3〉

〈v1,v4〉

〈v4,v3〉

〈v2,v4〉

〈v4,v2〉

〈v3,v4〉

〈v4,v1〉 〈v2,v1〉 〈v3,v1〉

〈v3,v2〉

Question: Heuristic value for states 〈v1,v2〉 and 〈v2,v3〉 under
the sum-aggregation?

Nebel, Engesser, Bergdoll – MAS 12 / 25

A∗ -based
algorithm

Example: State space for A∗ algorithm

v1 v2 v3

v4

Convention: Function α is represented by 〈α(S),α(C)〉
Question: How many states?

〈v1,v3〉

〈v1,v2〉

〈v2,v3〉

〈v1,v4〉

〈v4,v3〉

〈v2,v4〉

〈v4,v2〉

〈v3,v4〉

〈v4,v1〉 〈v2,v1〉 〈v3,v1〉

〈v3,v2〉

Question: Heuristic value for states 〈v1,v2〉 and 〈v2,v3〉 under
the sum-aggregation?

Nebel, Engesser, Bergdoll – MAS 12 / 25

A∗ -based
algorithm

CA∗

Problems with A∗ on MAPF state space:

exponential state space

, i.e., m!/(m−n)! with m nodes and
n agents;

huge branching factor

: n×d for sequential and dn for
parallel MAPF for graphs with maximal degree d.

CA∗: Decoupled planning in space & time

Order agents linearly and then plan for each agent
separately a (shortest) path.
Store each path in a reservation table, which stores for each
node at which time point it is occupied.
When planning, take the reservation table into account and
avoid nodes at time points, when they are reserved for other
agents; wait action is possible.
Solvability depends on chosen order.
Our small example is not solvable (shortest paths lead to
head on collision), but small modification works.

Nebel, Engesser, Bergdoll – MAS 13 / 25

A∗ -based
algorithm

CA∗

Problems with A∗ on MAPF state space:
exponential state space

, i.e., m!/(m−n)! with m nodes and
n agents;
huge branching factor

: n×d for sequential and dn for
parallel MAPF for graphs with maximal degree d.

CA∗: Decoupled planning in space & time

Order agents linearly and then plan for each agent
separately a (shortest) path.
Store each path in a reservation table, which stores for each
node at which time point it is occupied.
When planning, take the reservation table into account and
avoid nodes at time points, when they are reserved for other
agents; wait action is possible.
Solvability depends on chosen order.
Our small example is not solvable (shortest paths lead to
head on collision), but small modification works.

Nebel, Engesser, Bergdoll – MAS 13 / 25

A∗ -based
algorithm

CA∗

Problems with A∗ on MAPF state space:
exponential state space, i.e., m!/(m−n)! with m nodes and
n agents;

huge branching factor

: n×d for sequential and dn for
parallel MAPF for graphs with maximal degree d.

CA∗: Decoupled planning in space & time

Order agents linearly and then plan for each agent
separately a (shortest) path.
Store each path in a reservation table, which stores for each
node at which time point it is occupied.
When planning, take the reservation table into account and
avoid nodes at time points, when they are reserved for other
agents; wait action is possible.
Solvability depends on chosen order.
Our small example is not solvable (shortest paths lead to
head on collision), but small modification works.

Nebel, Engesser, Bergdoll – MAS 13 / 25

A∗ -based
algorithm

CA∗

Problems with A∗ on MAPF state space:
exponential state space, i.e., m!/(m−n)! with m nodes and
n agents;
huge branching factor

: n×d for sequential and dn for
parallel MAPF for graphs with maximal degree d.

CA∗: Decoupled planning in space & time

Order agents linearly and then plan for each agent
separately a (shortest) path.
Store each path in a reservation table, which stores for each
node at which time point it is occupied.
When planning, take the reservation table into account and
avoid nodes at time points, when they are reserved for other
agents; wait action is possible.
Solvability depends on chosen order.
Our small example is not solvable (shortest paths lead to
head on collision), but small modification works.

Nebel, Engesser, Bergdoll – MAS 13 / 25

A∗ -based
algorithm

CA∗

Problems with A∗ on MAPF state space:
exponential state space, i.e., m!/(m−n)! with m nodes and
n agents;
huge branching factor: n×d for sequential and dn for
parallel MAPF for graphs with maximal degree d.

CA∗: Decoupled planning in space & time

Order agents linearly and then plan for each agent
separately a (shortest) path.
Store each path in a reservation table, which stores for each
node at which time point it is occupied.
When planning, take the reservation table into account and
avoid nodes at time points, when they are reserved for other
agents; wait action is possible.
Solvability depends on chosen order.
Our small example is not solvable (shortest paths lead to
head on collision), but small modification works.

Nebel, Engesser, Bergdoll – MAS 13 / 25

A∗ -based
algorithm

CA∗

Problems with A∗ on MAPF state space:
exponential state space, i.e., m!/(m−n)! with m nodes and
n agents;
huge branching factor: n×d for sequential and dn for
parallel MAPF for graphs with maximal degree d.

CA∗: Decoupled planning in space & time

Order agents linearly and then plan for each agent
separately a (shortest) path.
Store each path in a reservation table, which stores for each
node at which time point it is occupied.
When planning, take the reservation table into account and
avoid nodes at time points, when they are reserved for other
agents; wait action is possible.
Solvability depends on chosen order.
Our small example is not solvable (shortest paths lead to
head on collision), but small modification works.

Nebel, Engesser, Bergdoll – MAS 13 / 25

A∗ -based
algorithm

CA∗

Problems with A∗ on MAPF state space:
exponential state space, i.e., m!/(m−n)! with m nodes and
n agents;
huge branching factor: n×d for sequential and dn for
parallel MAPF for graphs with maximal degree d.

CA∗: Decoupled planning in space & time
Order agents linearly and then plan for each agent
separately a (shortest) path.

Store each path in a reservation table, which stores for each
node at which time point it is occupied.
When planning, take the reservation table into account and
avoid nodes at time points, when they are reserved for other
agents; wait action is possible.
Solvability depends on chosen order.
Our small example is not solvable (shortest paths lead to
head on collision), but small modification works.

Nebel, Engesser, Bergdoll – MAS 13 / 25

A∗ -based
algorithm

CA∗

Problems with A∗ on MAPF state space:
exponential state space, i.e., m!/(m−n)! with m nodes and
n agents;
huge branching factor: n×d for sequential and dn for
parallel MAPF for graphs with maximal degree d.

CA∗: Decoupled planning in space & time
Order agents linearly and then plan for each agent
separately a (shortest) path.
Store each path in a reservation table, which stores for each
node at which time point it is occupied.

When planning, take the reservation table into account and
avoid nodes at time points, when they are reserved for other
agents; wait action is possible.
Solvability depends on chosen order.
Our small example is not solvable (shortest paths lead to
head on collision), but small modification works.

Nebel, Engesser, Bergdoll – MAS 13 / 25

A∗ -based
algorithm

CA∗

Problems with A∗ on MAPF state space:
exponential state space, i.e., m!/(m−n)! with m nodes and
n agents;
huge branching factor: n×d for sequential and dn for
parallel MAPF for graphs with maximal degree d.

CA∗: Decoupled planning in space & time
Order agents linearly and then plan for each agent
separately a (shortest) path.
Store each path in a reservation table, which stores for each
node at which time point it is occupied.
When planning, take the reservation table into account and
avoid nodes at time points, when they are reserved for other
agents; wait action is possible.

Solvability depends on chosen order.
Our small example is not solvable (shortest paths lead to
head on collision), but small modification works.

Nebel, Engesser, Bergdoll – MAS 13 / 25

A∗ -based
algorithm

CA∗

Problems with A∗ on MAPF state space:
exponential state space, i.e., m!/(m−n)! with m nodes and
n agents;
huge branching factor: n×d for sequential and dn for
parallel MAPF for graphs with maximal degree d.

CA∗: Decoupled planning in space & time
Order agents linearly and then plan for each agent
separately a (shortest) path.
Store each path in a reservation table, which stores for each
node at which time point it is occupied.
When planning, take the reservation table into account and
avoid nodes at time points, when they are reserved for other
agents; wait action is possible.
Solvability depends on chosen order.

Our small example is not solvable (shortest paths lead to
head on collision), but small modification works.

Nebel, Engesser, Bergdoll – MAS 13 / 25

A∗ -based
algorithm

CA∗

Problems with A∗ on MAPF state space:
exponential state space, i.e., m!/(m−n)! with m nodes and
n agents;
huge branching factor: n×d for sequential and dn for
parallel MAPF for graphs with maximal degree d.

CA∗: Decoupled planning in space & time
Order agents linearly and then plan for each agent
separately a (shortest) path.
Store each path in a reservation table, which stores for each
node at which time point it is occupied.
When planning, take the reservation table into account and
avoid nodes at time points, when they are reserved for other
agents; wait action is possible.
Solvability depends on chosen order.
Our small example is not solvable (shortest paths lead to
head on collision), but small modification works.

Nebel, Engesser, Bergdoll – MAS 13 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C:

(C,v3,v2), (C,v2,v4)

Reservation table: (0 : v3)

, (1 : v2), (2−n : v4)

Plan for S:

wait (because v2 occupied at time 1), (S,v1,v2),
(S,v2,v3)

Reservation table: (0 : v3), (1 : v2), (2−n : v5)

,
(0 : v1), (1 : v1), (2 : v2), (3−n : v3)

Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉

Plan for C:

(C,v3,v2), (C,v2,v4)

Reservation table: (0 : v3)

, (1 : v2), (2−n : v4)

Plan for S:

wait (because v2 occupied at time 1), (S,v1,v2),
(S,v2,v3)

Reservation table: (0 : v3), (1 : v2), (2−n : v5)

,
(0 : v1), (1 : v1), (2 : v2), (3−n : v3)

Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C:

(C,v3,v2), (C,v2,v4)

Reservation table: (0 : v3)

, (1 : v2), (2−n : v4)
Plan for S:

wait (because v2 occupied at time 1), (S,v1,v2),
(S,v2,v3)

Reservation table: (0 : v3), (1 : v2), (2−n : v5)

,
(0 : v1), (1 : v1), (2 : v2), (3−n : v3)

Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2)

, (C,v2,v4)

Reservation table: (0 : v3)

, (1 : v2), (2−n : v4)
Plan for S:

wait (because v2 occupied at time 1), (S,v1,v2),
(S,v2,v3)

Reservation table: (0 : v3), (1 : v2), (2−n : v5)

,
(0 : v1), (1 : v1), (2 : v2), (3−n : v3)

Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2)

, (C,v2,v4)

Reservation table: (0 : v3), (1 : v2)

, (2−n : v4)
Plan for S:

wait (because v2 occupied at time 1), (S,v1,v2),
(S,v2,v3)

Reservation table: (0 : v3), (1 : v2), (2−n : v5)

,
(0 : v1), (1 : v1), (2 : v2), (3−n : v3)

Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2), (C,v2,v4)
Reservation table: (0 : v3), (1 : v2)

, (2−n : v4)
Plan for S:

wait (because v2 occupied at time 1), (S,v1,v2),
(S,v2,v3)

Reservation table: (0 : v3), (1 : v2), (2−n : v5)

,
(0 : v1), (1 : v1), (2 : v2), (3−n : v3)

Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2), (C,v2,v4)
Reservation table: (0 : v3), (1 : v2), (2−n : v4)

Plan for S:

wait (because v2 occupied at time 1), (S,v1,v2),
(S,v2,v3)

Reservation table: (0 : v3), (1 : v2), (2−n : v5)

,
(0 : v1), (1 : v1), (2 : v2), (3−n : v3)

Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2), (C,v2,v4)
Reservation table: (0 : v3), (1 : v2), (2−n : v4)
Plan for S:

wait (because v2 occupied at time 1), (S,v1,v2),
(S,v2,v3)

Reservation table: (0 : v3), (1 : v2), (2−n : v5)

,
(0 : v1), (1 : v1), (2 : v2), (3−n : v3)
Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2), (C,v2,v4)
Reservation table: (0 : v3), (1 : v2), (2−n : v4)
Plan for S: wait (because v2 occupied at time 1)

, (S,v1,v2),
(S,v2,v3)

Reservation table: (0 : v3), (1 : v2), (2−n : v5)

,
(0 : v1), (1 : v1), (2 : v2), (3−n : v3)
Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2), (C,v2,v4)
Reservation table: (0 : v3), (1 : v2), (2−n : v4)
Plan for S: wait (because v2 occupied at time 1)

, (S,v1,v2),
(S,v2,v3)

Reservation table: (0 : v3), (1 : v2), (2−n : v5),
(0 : v1), (1 : v1)

, (2 : v2), (3−n : v3)
Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2), (C,v2,v4)
Reservation table: (0 : v3), (1 : v2), (2−n : v4)
Plan for S: wait (because v2 occupied at time 1), (S,v1,v2)

,
(S,v2,v3)

Reservation table: (0 : v3), (1 : v2), (2−n : v5),
(0 : v1), (1 : v1)

, (2 : v2), (3−n : v3)
Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2), (C,v2,v4)
Reservation table: (0 : v3), (1 : v2), (2−n : v4)
Plan for S: wait (because v2 occupied at time 1), (S,v1,v2)

,
(S,v2,v3)

Reservation table: (0 : v3), (1 : v2), (2−n : v5),
(0 : v1), (1 : v1), (2 : v2)

, (3−n : v3)
Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2), (C,v2,v4)
Reservation table: (0 : v3), (1 : v2), (2−n : v4)
Plan for S: wait (because v2 occupied at time 1), (S,v1,v2),
(S,v2,v3)
Reservation table: (0 : v3), (1 : v2), (2−n : v5),
(0 : v1), (1 : v1), (2 : v2)

, (3−n : v3)
Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2), (C,v2,v4)
Reservation table: (0 : v3), (1 : v2), (2−n : v4)
Plan for S: wait (because v2 occupied at time 1), (S,v1,v2),
(S,v2,v3)
Reservation table: (0 : v3), (1 : v2), (2−n : v5),
(0 : v1), (1 : v1), (2 : v2), (3−n : v3)

Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

Example CA∗ run

v1 v2 v3

v4

Linear order: 〈C,S〉
Plan for C: (C,v3,v2), (C,v2,v4)
Reservation table: (0 : v3), (1 : v2), (2−n : v4)
Plan for S: wait (because v2 occupied at time 1), (S,v1,v2),
(S,v2,v3)
Reservation table: (0 : v3), (1 : v2), (2−n : v5),
(0 : v1), (1 : v1), (2 : v2), (3−n : v3)
Not solvable with different order!

Nebel, Engesser, Bergdoll – MAS 14 / 25

A∗ -based
algorithm

BIBOX

BIBOX is a rule-based algorithm that is complete on all
bi-connected graphs with at least two unoccupied nodes in the
graph.

Definition
A graph G = (V ,E) is connected iff |V | ≥ 2 and there is path
between each pair of nodes s, t ∈ V . A graph is bi-connected iff
|V | ≥ 3 and for each v ∈ V , the graph (V −{v},E′) with
E′ =

{
{x,y} ∈ E | x,y 6= v

}
is connected.

Nebel, Engesser, Bergdoll – MAS 15 / 25

A∗ -based
algorithm

Loop decomposition

Every bi-connected graph can be constructed from a cycle by
adding loops iteratively.

A loop decomposition into a basic cycle and additional loops can
be done in time O(|V |2).
Let us name them C0, L1, L2, . . . , where the index depends on
the time when the loop is added.

Nebel, Engesser, Bergdoll – MAS 16 / 25

A∗ -based
algorithm

Loop decomposition

Every bi-connected graph can be constructed from a cycle by
adding loops iteratively.

A loop decomposition into a basic cycle and additional loops can
be done in time O(|V |2).
Let us name them C0, L1, L2, . . . , where the index depends on
the time when the loop is added.

Nebel, Engesser, Bergdoll – MAS 16 / 25

A∗ -based
algorithm

Loop decomposition

Every bi-connected graph can be constructed from a cycle by
adding loops iteratively.

A loop decomposition into a basic cycle and additional loops can
be done in time O(|V |2).
Let us name them C0, L1, L2, . . . , where the index depends on
the time when the loop is added.

Nebel, Engesser, Bergdoll – MAS 16 / 25

A∗ -based
algorithm

Loop decomposition

Every bi-connected graph can be constructed from a cycle by
adding loops iteratively.

A loop decomposition into a basic cycle and additional loops can
be done in time O(|V |2).

Let us name them C0, L1, L2, . . . , where the index depends on
the time when the loop is added.

Nebel, Engesser, Bergdoll – MAS 16 / 25

A∗ -based
algorithm

Loop decomposition

Every bi-connected graph can be constructed from a cycle by
adding loops iteratively.

C0 L1

L2

A loop decomposition into a basic cycle and additional loops can
be done in time O(|V |2).
Let us name them C0, L1, L2, . . . , where the index depends on
the time when the loop is added.

Nebel, Engesser, Bergdoll – MAS 16 / 25

A∗ -based
algorithm

Moving unoccupied nodes and agents around

–
a1

–
–

–

–

– a1

–
–

–

C0 L1

L2

An unoccupied place can be sent to any node.
Any agent can be sent to any node by rotating the agents in
a cycle or in the loop.
This can be done without disturbing loops with a higher
index than the one the agent starts and finishes in.

Nebel, Engesser, Bergdoll – MAS 17 / 25

A∗ -based
algorithm

Moving unoccupied nodes and agents around

–
a1

–
–

–

–

– a1

–
–

–

C0 L1

L2

An unoccupied place can be sent to any node.

Any agent can be sent to any node by rotating the agents in
a cycle or in the loop.
This can be done without disturbing loops with a higher
index than the one the agent starts and finishes in.

Nebel, Engesser, Bergdoll – MAS 17 / 25

A∗ -based
algorithm

Moving unoccupied nodes and agents around

–
a1

–
–

–

–

– a1

–
–

–

C0 L1

L2

An unoccupied place can be sent to any node.
Any agent can be sent to any node by rotating the agents in
a cycle or in the loop.

This can be done without disturbing loops with a higher
index than the one the agent starts and finishes in.

Nebel, Engesser, Bergdoll – MAS 17 / 25

A∗ -based
algorithm

Moving unoccupied nodes and agents around

–
a1

–
–

–

–

– a1

–
–

–

C0 L1

L2

An unoccupied place can be sent to any node.
Any agent can be sent to any node by rotating the agents in
a cycle or in the loop.
This can be done without disturbing loops with a higher
index than the one the agent starts and finishes in.

Nebel, Engesser, Bergdoll – MAS 17 / 25

A∗ -based
algorithm

Filling loops

Starting with highest-index loop: Move agents to destination
loop, then shift agents to their destinations.
Special case: When agents are already in the destination
loop, they have to be rotated out of the loop.

–
–

–

–

–

a1

–
a1 –

a2
–
a3

–
a4

L2

When done with one loop, repeat for next one with next
lower index.

Nebel, Engesser, Bergdoll – MAS 18 / 25

A∗ -based
algorithm

Filling loops

Starting with highest-index loop: Move agents to destination
loop, then shift agents to their destinations.
Special case: When agents are already in the destination
loop, they have to be rotated out of the loop.

–
–

–
–

–

–

–
a1 –

a2
–
a3

a1
a4

L2

When done with one loop, repeat for next one with next
lower index.

Nebel, Engesser, Bergdoll – MAS 18 / 25

A∗ -based
algorithm

Filling loops

Starting with highest-index loop: Move agents to destination
loop, then shift agents to their destinations.
Special case: When agents are already in the destination
loop, they have to be rotated out of the loop.

–
–

–

–

–

a2

–
a1 –

a2
–
a3

a1
a4

L2

When done with one loop, repeat for next one with next
lower index.

Nebel, Engesser, Bergdoll – MAS 18 / 25

A∗ -based
algorithm

Filling loops

Starting with highest-index loop: Move agents to destination
loop, then shift agents to their destinations.
Special case: When agents are already in the destination
loop, they have to be rotated out of the loop.

–
–

–
–

–

–

–
a1 –

a2
a1
a3

a2
a4

L2

When done with one loop, repeat for next one with next
lower index.

Nebel, Engesser, Bergdoll – MAS 18 / 25

A∗ -based
algorithm

Filling loops

Starting with highest-index loop: Move agents to destination
loop, then shift agents to their destinations.
Special case: When agents are already in the destination
loop, they have to be rotated out of the loop.

–
–

–

–

–

a3

–
a1 –

a2
a1
a3

a2
a4

L2

When done with one loop, repeat for next one with next
lower index.

Nebel, Engesser, Bergdoll – MAS 18 / 25

A∗ -based
algorithm

Filling loops

Starting with highest-index loop: Move agents to destination
loop, then shift agents to their destinations.
Special case: When agents are already in the destination
loop, they have to be rotated out of the loop.

–
–

–

–

–

–

a1
a1

a2
a2

a3
a3

a4
a4

L2

When done with one loop, repeat for next one with next
lower index.

Nebel, Engesser, Bergdoll – MAS 18 / 25

A∗ -based
algorithm

Filling loops

Starting with highest-index loop: Move agents to destination
loop, then shift agents to their destinations.
Special case: When agents are already in the destination
loop, they have to be rotated out of the loop.

–
–

–

–

–

–

a1
a1

a2
a2

a3
a3

a4
a4

L2

When done with one loop, repeat for next one with next
lower index.

Nebel, Engesser, Bergdoll – MAS 18 / 25

A∗ -based
algorithm

Reordering agents in the cycle

Assumption: The destinations for the empty places are in
the cycle C0 (can be relaxed).
If the agents are in the right order, just rotate them to their
destinations.
Otherwise reorder by successively take one out and
re-insert.

Nebel, Engesser, Bergdoll – MAS 19 / 25

A∗ -based
algorithm

Runtime and plan length estimation

Moving an empty place around is in O(|V |) steps.

Moving one agent to an arbitrary position can be done in
O(|V |2) steps.
Moving one agent to its final destination in a loop needs
O(|V |2).
Since this has to be done O(|V |) times, we need overall
O(|V |3) steps.
Reordering in the final cycle is also bounded by O(|V |3).

→ Runtime and number of steps is bounded by O(|V |3).

Nebel, Engesser, Bergdoll – MAS 20 / 25

A∗ -based
algorithm

Runtime and plan length estimation

Moving an empty place around is in O(|V |) steps.
Moving one agent to an arbitrary position can be done in
O(|V |2) steps.

Moving one agent to its final destination in a loop needs
O(|V |2).
Since this has to be done O(|V |) times, we need overall
O(|V |3) steps.
Reordering in the final cycle is also bounded by O(|V |3).

→ Runtime and number of steps is bounded by O(|V |3).

Nebel, Engesser, Bergdoll – MAS 20 / 25

A∗ -based
algorithm

Runtime and plan length estimation

Moving an empty place around is in O(|V |) steps.
Moving one agent to an arbitrary position can be done in
O(|V |2) steps.
Moving one agent to its final destination in a loop needs
O(|V |2).

Since this has to be done O(|V |) times, we need overall
O(|V |3) steps.
Reordering in the final cycle is also bounded by O(|V |3).

→ Runtime and number of steps is bounded by O(|V |3).

Nebel, Engesser, Bergdoll – MAS 20 / 25

A∗ -based
algorithm

Runtime and plan length estimation

Moving an empty place around is in O(|V |) steps.
Moving one agent to an arbitrary position can be done in
O(|V |2) steps.
Moving one agent to its final destination in a loop needs
O(|V |2).
Since this has to be done O(|V |) times, we need overall
O(|V |3) steps.

Reordering in the final cycle is also bounded by O(|V |3).
→ Runtime and number of steps is bounded by O(|V |3).

Nebel, Engesser, Bergdoll – MAS 20 / 25

A∗ -based
algorithm

Runtime and plan length estimation

Moving an empty place around is in O(|V |) steps.
Moving one agent to an arbitrary position can be done in
O(|V |2) steps.
Moving one agent to its final destination in a loop needs
O(|V |2).
Since this has to be done O(|V |) times, we need overall
O(|V |3) steps.
Reordering in the final cycle is also bounded by O(|V |3).

→ Runtime and number of steps is bounded by O(|V |3).

Nebel, Engesser, Bergdoll – MAS 20 / 25

A∗ -based
algorithm

Runtime and plan length estimation

Moving an empty place around is in O(|V |) steps.
Moving one agent to an arbitrary position can be done in
O(|V |2) steps.
Moving one agent to its final destination in a loop needs
O(|V |2).
Since this has to be done O(|V |) times, we need overall
O(|V |3) steps.
Reordering in the final cycle is also bounded by O(|V |3).

→ Runtime and number of steps is bounded by O(|V |3).

Nebel, Engesser, Bergdoll – MAS 20 / 25

A∗ -based
algorithm

Computational Complexity of MAPF

Existence: For arbitrary graphs with at least one empty
place, the problem is polynomial (O(|V |3) using
Kornhauser’s algorithm). For BIBOX on bi-connected with at
least two empty places also cubic, but smaller constant.

Generation: O(|V |3), generating the same number of steps,
again using Kornhauser’s algorithm or BIBOX (on a smaller
instance set).
Bounded existence: Is definitely in NP

If there exists a solution, then it is polynomially bounded.
A solution candidate can be checked in polynomial time for
satisfying the conditions of being a movement plan with k of
steps or less.

Question: Is the problem also NP-hard?

Nebel, Engesser, Bergdoll – MAS 21 / 25

A∗ -based
algorithm

Computational Complexity of MAPF

Existence: For arbitrary graphs with at least one empty
place, the problem is polynomial (O(|V |3) using
Kornhauser’s algorithm). For BIBOX on bi-connected with at
least two empty places also cubic, but smaller constant.
Generation: O(|V |3), generating the same number of steps,
again using Kornhauser’s algorithm or BIBOX (on a smaller
instance set).

Bounded existence: Is definitely in NP

If there exists a solution, then it is polynomially bounded.
A solution candidate can be checked in polynomial time for
satisfying the conditions of being a movement plan with k of
steps or less.

Question: Is the problem also NP-hard?

Nebel, Engesser, Bergdoll – MAS 21 / 25

A∗ -based
algorithm

Computational Complexity of MAPF

Existence: For arbitrary graphs with at least one empty
place, the problem is polynomial (O(|V |3) using
Kornhauser’s algorithm). For BIBOX on bi-connected with at
least two empty places also cubic, but smaller constant.
Generation: O(|V |3), generating the same number of steps,
again using Kornhauser’s algorithm or BIBOX (on a smaller
instance set).
Bounded existence: Is definitely in NP

If there exists a solution, then it is polynomially bounded.
A solution candidate can be checked in polynomial time for
satisfying the conditions of being a movement plan with k of
steps or less.

Question: Is the problem also NP-hard?

Nebel, Engesser, Bergdoll – MAS 21 / 25

A∗ -based
algorithm

Computational Complexity of MAPF

Existence: For arbitrary graphs with at least one empty
place, the problem is polynomial (O(|V |3) using
Kornhauser’s algorithm). For BIBOX on bi-connected with at
least two empty places also cubic, but smaller constant.
Generation: O(|V |3), generating the same number of steps,
again using Kornhauser’s algorithm or BIBOX (on a smaller
instance set).
Bounded existence: Is definitely in NP

If there exists a solution, then it is polynomially bounded.

A solution candidate can be checked in polynomial time for
satisfying the conditions of being a movement plan with k of
steps or less.

Question: Is the problem also NP-hard?

Nebel, Engesser, Bergdoll – MAS 21 / 25

A∗ -based
algorithm

Computational Complexity of MAPF

Existence: For arbitrary graphs with at least one empty
place, the problem is polynomial (O(|V |3) using
Kornhauser’s algorithm). For BIBOX on bi-connected with at
least two empty places also cubic, but smaller constant.
Generation: O(|V |3), generating the same number of steps,
again using Kornhauser’s algorithm or BIBOX (on a smaller
instance set).
Bounded existence: Is definitely in NP

If there exists a solution, then it is polynomially bounded.
A solution candidate can be checked in polynomial time for
satisfying the conditions of being a movement plan with k of
steps or less.

Question: Is the problem also NP-hard?

Nebel, Engesser, Bergdoll – MAS 21 / 25

A∗ -based
algorithm

Computational Complexity of MAPF

Existence: For arbitrary graphs with at least one empty
place, the problem is polynomial (O(|V |3) using
Kornhauser’s algorithm). For BIBOX on bi-connected with at
least two empty places also cubic, but smaller constant.
Generation: O(|V |3), generating the same number of steps,
again using Kornhauser’s algorithm or BIBOX (on a smaller
instance set).
Bounded existence: Is definitely in NP

If there exists a solution, then it is polynomially bounded.
A solution candidate can be checked in polynomial time for
satisfying the conditions of being a movement plan with k of
steps or less.

Question: Is the problem also NP-hard?

Nebel, Engesser, Bergdoll – MAS 21 / 25

A∗ -based
algorithm

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)
Given a set of elements U and a collection of subsets C = {sj}
with sj ⊆ U and |sj | = 3. Is there a sub-collection of subsets
C′ ⊆ C such that

⋃
s∈C′ s = U and all subsets in C′ are pairwise

disjoint, i.e., sa∩ sb = /0 for each sa,sb ∈ C′ with sa 6= sb?

X3C is NP-complete.

Example
U = {1,2,3,4,5,6}
C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}
C′1 = {{1,2,3},{2,3,4}} is not a cover.
C′2 = {{1,2,3},{2,3,4},{1,5,6}} is not an exact cover.
C′3 = {{2,3,4},{1,5,6}} is an exact cover.

Nebel, Engesser, Bergdoll – MAS 22 / 25

A∗ -based
algorithm

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)
Given a set of elements U and a collection of subsets C = {sj}
with sj ⊆ U and |sj | = 3. Is there a sub-collection of subsets
C′ ⊆ C such that

⋃
s∈C′ s = U and all subsets in C′ are pairwise

disjoint, i.e., sa∩ sb = /0 for each sa,sb ∈ C′ with sa 6= sb?

X3C is NP-complete.

Example
U = {1,2,3,4,5,6}
C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}
C′1 = {{1,2,3},{2,3,4}} is not a cover.
C′2 = {{1,2,3},{2,3,4},{1,5,6}} is not an exact cover.
C′3 = {{2,3,4},{1,5,6}} is an exact cover.

Nebel, Engesser, Bergdoll – MAS 22 / 25

A∗ -based
algorithm

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)
Given a set of elements U and a collection of subsets C = {sj}
with sj ⊆ U and |sj | = 3. Is there a sub-collection of subsets
C′ ⊆ C such that

⋃
s∈C′ s = U and all subsets in C′ are pairwise

disjoint, i.e., sa∩ sb = /0 for each sa,sb ∈ C′ with sa 6= sb?

X3C is NP-complete.

Example
U = {1,2,3,4,5,6}

C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}
C′1 = {{1,2,3},{2,3,4}} is not a cover.
C′2 = {{1,2,3},{2,3,4},{1,5,6}} is not an exact cover.
C′3 = {{2,3,4},{1,5,6}} is an exact cover.

Nebel, Engesser, Bergdoll – MAS 22 / 25

A∗ -based
algorithm

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)
Given a set of elements U and a collection of subsets C = {sj}
with sj ⊆ U and |sj | = 3. Is there a sub-collection of subsets
C′ ⊆ C such that

⋃
s∈C′ s = U and all subsets in C′ are pairwise

disjoint, i.e., sa∩ sb = /0 for each sa,sb ∈ C′ with sa 6= sb?

X3C is NP-complete.

Example
U = {1,2,3,4,5,6}
C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}

C′1 = {{1,2,3},{2,3,4}} is not a cover.
C′2 = {{1,2,3},{2,3,4},{1,5,6}} is not an exact cover.
C′3 = {{2,3,4},{1,5,6}} is an exact cover.

Nebel, Engesser, Bergdoll – MAS 22 / 25

A∗ -based
algorithm

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)
Given a set of elements U and a collection of subsets C = {sj}
with sj ⊆ U and |sj | = 3. Is there a sub-collection of subsets
C′ ⊆ C such that

⋃
s∈C′ s = U and all subsets in C′ are pairwise

disjoint, i.e., sa∩ sb = /0 for each sa,sb ∈ C′ with sa 6= sb?

X3C is NP-complete.

Example
U = {1,2,3,4,5,6}
C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}
C′1 = {{1,2,3},{2,3,4}} is not a cover.

C′2 = {{1,2,3},{2,3,4},{1,5,6}} is not an exact cover.
C′3 = {{2,3,4},{1,5,6}} is an exact cover.

Nebel, Engesser, Bergdoll – MAS 22 / 25

A∗ -based
algorithm

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)
Given a set of elements U and a collection of subsets C = {sj}
with sj ⊆ U and |sj | = 3. Is there a sub-collection of subsets
C′ ⊆ C such that

⋃
s∈C′ s = U and all subsets in C′ are pairwise

disjoint, i.e., sa∩ sb = /0 for each sa,sb ∈ C′ with sa 6= sb?

X3C is NP-complete.

Example
U = {1,2,3,4,5,6}
C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}
C′1 = {{1,2,3},{2,3,4}} is not a cover.
C′2 = {{1,2,3},{2,3,4},{1,5,6}} is not an exact cover.

C′3 = {{2,3,4},{1,5,6}} is an exact cover.

Nebel, Engesser, Bergdoll – MAS 22 / 25

A∗ -based
algorithm

The Exact Cover By 3-Sets (X3C) Problem

Definition (Exact Cover By 3-Sets (X3C) Problem)
Given a set of elements U and a collection of subsets C = {sj}
with sj ⊆ U and |sj | = 3. Is there a sub-collection of subsets
C′ ⊆ C such that

⋃
s∈C′ s = U and all subsets in C′ are pairwise

disjoint, i.e., sa∩ sb = /0 for each sa,sb ∈ C′ with sa 6= sb?

X3C is NP-complete.

Example
U = {1,2,3,4,5,6}
C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}
C′1 = {{1,2,3},{2,3,4}} is not a cover.
C′2 = {{1,2,3},{2,3,4},{1,5,6}} is not an exact cover.
C′3 = {{2,3,4},{1,5,6}} is an exact cover.

Nebel, Engesser, Bergdoll – MAS 22 / 25

A∗ -based
algorithm

NP-hardness of MAPF: Reduction from X3C

C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}

a1
b1

b1

a1
a2
b2

b2

a2
a3
b3

b3

a3
a4
b4

b4

a4
a5
b5

b5

a5
a6
b6

b6

a6

s1s1 s2s2 s3 s3 s4 s4

Claim: There is an exact cover by 3-sets iff the constructed
MAPF instance can be solved in at most k = 11/3|U| moves.

Nebel, Engesser, Bergdoll – MAS 23 / 25

A∗ -based
algorithm

NP-hardness of MAPF: Reduction from X3C

C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}

a1
b1

b1

a1
a2
b2

b2

a2
a3
b3

b3

a3
a4
b4

b4

a4
a5
b5

b5

a5
a6
b6

b6

a6

s1s1 s2s2 s3 s3 s4 s4

Claim: There is an exact cover by 3-sets iff the constructed
MAPF instance can be solved in at most k = 11/3|U| moves.

Nebel, Engesser, Bergdoll – MAS 23 / 25

A∗ -based
algorithm

NP-hardness of MAPF: Reduction from X3C

C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}

a1
b1

b1

a1
a2
b2

b2

a2
a3
b3

b3

a3
a4
b4

b4

a4
a5
b5

b5

a5
a6
b6

b6

a6

s1s1 s2s2 s3 s3 s4 s4

Claim: There is an exact cover by 3-sets iff the constructed
MAPF instance can be solved in at most k = 11/3|U| moves.

Nebel, Engesser, Bergdoll – MAS 23 / 25

A∗ -based
algorithm

NP-hardness of MAPF: Reduction from X3C

C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}

a1
b1

b1

a1
a2
b2

b2

a2
a3
b3

b3

a3
a4
b4

b4

a4
a5
b5

b5

a5
a6
b6

b6

a6

s1s1 s2s2 s3 s3 s4 s4

Claim: There is an exact cover by 3-sets iff the constructed
MAPF instance can be solved in at most k = 11/3|U| moves.

Nebel, Engesser, Bergdoll – MAS 23 / 25

A∗ -based
algorithm

NP-hardness of MAPF: Reduction from X3C

C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}

a1
b1

b1

a1
a2
b2

b2

a2
a3
b3

b3

a3
a4
b4

b4

a4
a5
b5

b5

a5
a6
b6

b6

a6

s1s1 s2s2 s3 s3 s4 s4

Claim: There is an exact cover by 3-sets iff the constructed
MAPF instance can be solved in at most k = 11/3|U| moves.

Nebel, Engesser, Bergdoll – MAS 23 / 25

A∗ -based
algorithm

NP-hardness of MAPF: Reduction from X3C

C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}

a1
b1

b1

a1
a2
b2

b2

a2
a3
b3

b3

a3
a4
b4

b4

a4
a5
b5

b5

a5
a6
b6

b6

a6

s1s1 s2s2 s3 s3 s4 s4

Claim: There is an exact cover by 3-sets iff the constructed
MAPF instance can be solved in at most k = 11/3|U| moves.

Nebel, Engesser, Bergdoll – MAS 23 / 25

A∗ -based
algorithm

NP-hardness of MAPF: Reduction from X3C

C = {{1,2,3},{2,3,4},{2,5,6},{1,5,6}}

a1
b1

b1

a1
a2
b2

b2

a2
a3
b3

b3

a3
a4
b4

b4

a4
a5
b5

b5

a5
a6
b6

b6

a6

s1s1 s2s2 s3 s3 s4 s4

Claim: There is an exact cover by 3-sets iff the constructed
MAPF instance can be solved in at most k = 11/3|U| moves.

Nebel, Engesser, Bergdoll – MAS 23 / 25

A∗ -based
algorithm

Literature (1)

D. Kornhauser, G. L. Miller, and P. G. Spirakis.
Coordinating pebble motion on graphs, the diameter of permutation
groups, and applications.
In 25th Annual Symposium on Foundations of Computer Science
(FOCS-84), pages 241–250, 1984.

O. Goldreich.
Finding the shortest move-sequence in the graph-generalized 15-puzzle
is NP-hard.
In Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation, pages 1–5. 2011.

Nebel, Engesser, Bergdoll – MAS 24 / 25

A∗ -based
algorithm

Literature (2)

H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. HÃűnig, T. K. Satish Kumar,
T. Uras, H. Xu, C. A. Tovey, G. Sharon:
Overview: Generalizations of Multi-Agent Path Finding to Real-World
Scenarios.
CoRR abs/1702.05515, 2017.
A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg, G.
Sharon, N. R. Sturtevant, G. Wagner, and P. Surynek.
Search-Based Optimal Solvers for the Multi-Agent Pathfinding Problem:
Summary and Challenges.
In Proceedings of the Tenth International Symposium on Combinatorial
Search (SOCS-17), pages 29–37, 2017.

P Surynek.
A novel approach to path planning for multiple robots in bi-connected
graphs.
In Proc. 2009 IEEE International Conference on Robotics and
Automation, ICRA 2009, pages 3613–3619, 2009.

Nebel, Engesser, Bergdoll – MAS 25 / 25

