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Epistemic Planning

Remark: Epistemic planning can also be based on formalisms
other than DEL. We only focus on DEL here, though.

Before we begin: We first want to introduce to extensions to our
DEL models:

Multipointed models
Action models with ontic effects
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Multipointed Models

So far: State and action models only had a unique designated
world/event.

The actual world
The event that actually takes place

Now: We also allow state and action models with more than one
designated world/event.

The set of worlds that may be the actual world
(from some agent’s perspective)
The set of events that may actually take place
(nondeterministically)
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Multipointed Models

closure under indistinguishability
Let M = (W ,∼,V ) be an epistemic model, W ′ ⊆W , and a ∈I .
Then W ′ is closed under indistinguishability of agent a if w ∈W ′
and w ∼a w ′ implies w ′ ∈W ′ for all w,w ′ ∈W .

multipointed epistemic model
Let M = (W ,∼,V ) be an epistemic model, and /0 6= Wd ⊆W .
Then (M,Wd) is a multipointed model. If Wd = {w}, then (M,Wd)
is a global state. If Wd is closed under indistinguishability for
some agent a ∈I , then (M,Wd) is local for agent a. Given a
global state (M,{w}), the associated local state for agent a is the
model (M,{w})a = (M,{w ′ ∈W |w ′ ∼a w}). Similarly,
(M,Wd)a = (M,W ′d), for
W ′d = {w ′ ∈W |w ′ ∼a w for some w ∈Wd}).
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Multipointed Models

Example
Global state (M,{w2}):

p
w1

p

w2

¬p
w3

a b

Associated local state for agent a: (M,{w2})a = (M,{w1,w2})

p
w1

p

w2

¬p
w3

a b
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Multipointed Models

Truth condition in multipointed models
Given a formula ϕ and a multipointed model (M,Wd), we define:

M,Wd |= ϕ iff M,w |= ϕ for all w ∈Wd.

Note: If (M,Wd) is local for some agent a, then M,Wd |= Kaϕ iff
M,Wd |= ϕ .
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Multipointed Models

multipointed action model
Let A = (E,∼,pre) be an action model and /0 6= Ed ⊆ E. Then we
call (A,Ed) a multipointed action model.

Note: Definitions of closure under indistinguishability,
local/global/associated local (action) models similar to those for
multipointed epistemic models.
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Multipointed Models

Remark: Multipointed action models show up if
an action is actually nondeterministic, or
an action appears nondeterministic from some agent’s
perspective.
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Multipointed Models

Example (Nondeterministic action)
Action model (Mayread,{e1,e2,e3}):

p

e1
¬p

e2

>

e3

b

b b

Alice may or may not read the letter, nondeterministically.
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Multipointed Models

Example (Seemingly nondeterministic action)
Action model (Read,e1):

p
e1

¬p
e2

b

Associated action model (Read,{e1,e2}) for agent b:

p
e1

¬p
e2

b

Although the Read action is deterministic (in every state, only
one of the events can possibly take place), it appears
nondeterministic to agent b, since he does not know which event
occurs.
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Ontic Effects

So far: Actions only affect knowledge (via announcements, other
forms of communication, sensing, . . . ).

Now: We also want actions to change ontic facts (opening a
door, tossing a coin, toggling a switch, moving from A to B, . . . ).
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Ontic Effects

Action model with ontic effects
An action model with ontic effects A = (E,∼,pre,eff ) is an action
model (E,∼,pre) together with a function eff , where for all e ∈ E,
eff (e) is a conjunction of atoms and negated atoms from P.

Example
eff (e) = p∧q∧¬r ∧¬x means that event e makes p and q true
and r and x false.

Note: This corresponds to add and delete lists in STRIPS
planning.
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Ontic Effects

Graphical notation: Label (ϕ,ψ) means that pre(e) = ϕ and
eff (e) = ψ .

Example (Toggling a switch)
The truth value of p is complemented. Agent a sees p, agent b
does not.

(p,¬p)
e1

(¬p,p)
e2

b

Example (Tossing a coin)
A coin is tossed (p means heads, ¬p means tails). The coin toss
happens in public.

(>,p)
e1

(>,¬p)

e2
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Ontic Effects

In order to correctly reflect ontic effects in our semantics, we
need to make the product update take them into account.

Product update
Let M = (W ,∼,V ) be an epistemic state with designated worlds
Wd ⊆W , and let A = (E,∼,pre,eff ) be an action model with
designated events Ed ⊆ E. Then the product update
(M,Wd)⊗ (A,Ed) is the epistemic state M′ = (W ′,∼′,V ′) with with
designated worlds W ′d ⊆W ′, where:

W ′ = {(w,e) ∈W ×E |M,w |= pre(e)},
(w,e)∼′a (t,ε) iff w ∼a t and e∼a ε , for a ∈I ,
(w,e) ∈ V ′p iff (w ∈ Vp and eff (e) 6|= ¬p) or eff (e) |= p, for all
p ∈ P, and
(w,e) ∈W ′d iff w ∈Wd and e ∈ Ed.
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Ontic Effects

applicability
Action (A,Ed) is applicable in local state (M,Wd) iff, for all
w ∈Wd, there is at least one e ∈ E with M,w |= pre(e).

Everything else stays more or less the same.
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Ontic Effects

Example
Initially, a knows p and considers it possible that b does not
know p.

p
w1

p

w2

¬p
w3

a b

We then apply the toggling action.

(p,¬p)
e1

(¬p,p)
e1

b

Resulting epistemic state: like initially, but with p toggled.

¬p
w1

¬p

w2

p
w3

a b
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Ontic Effects

Recall the funniest joke in the world:

Two hunters are out in the woods when one of them
collapses. He doesn’t seem to be breathing and his eyes are
glazed. The other guy whips out his phone and calls the
emergency services. He gasps, “My friend is dead! What
can I do?” The operator says, “Calm down. I can help. First,
let’s make sure he’s really dead.” There is a silence; then a
gun shot is heard. Back on the phone, the guy says, “OK,
now what?”

Homework:
DEL action model for the “epistemic reading” of making
sure he’s really dead?
DEL action model for the “ontic reading” of making sure
he’s really dead?
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What is planning?

Planning
“Planning is the art and practice of thinking before acting.”

— Patrik Haslum

intelligent decision making: What actions to take?
general-purpose problem representation
algorithms for solving any problem expressible in the
representation
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Transition systems

transition system
A transition system is a 5-tuple T = (S,L,T ,s0,S?) where

S is a finite set of states,
L is a finite set of (transition) labels,
T ⊆ S×L×S is the transition relation,
s0 ∈ S is the initial state, and
S? ⊆ S is the set of goal states.

We say that T has the transition (s, `,s′) if (s, `,s′) ∈ T .
We also write this s `−→ s′, or s→ s′ when not interested in `.

T is called deterministic if for all states s and labels `, there is at
most one state s′ with s `−→ s′.

Nebel, Engesser, Bergdoll – MAS 19 / 64



Transition systems: example

Transition systems are often depicted as directed arc-labeled
graphs with marks to indicate the initial state and goal states.

A

BC

D

E F
initial state

goal states
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Transition system terminology

We use common graph theory terms for transition systems:
s′ successor of s if s→ s′

s predecessor of s′ if s→ s′

s′ reachable from s if there exists a sequence of transitions
from s to s′.
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Compact representations

Classical (i. e.„ deterministic) planning is in essence the
problem of finding solutions in huge transition systems.
The transition systems we are usually interested in are
too large to explicitly enumerate all states or transitions.
Hence, the input to a planning algorithm must be given
in a more concise form.
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State variables

How to represent huge state sets without enumerating them?
represent different aspects of the world in terms of different
state variables

; a state is a valuation of state variables
n state variables with m possible values each
induce mn different states

; exponentially more compact than “flat” representations
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Boolean state variables

Problem:
How to succinctly represent transitions and goal states?

Idea: Use propositional logic
state variables: propositional variables (0 or 1)
goal states: defined by a propositional formula
transitions: defined by actions given by

precondition: when is the action applicable?
effect: how does it change the valuation?

Note: general finite-domain state variables can be compactly
encoded as Boolean variables
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Operators

Transitions for state sets described by propositions P can be
concisely represented as operators or actions o = (pre,eff )
where

the precondition pre is a propositional formula over P
describing the set of states in which the transition can be
taken (states in which a transition starts), and
the effect eff describes how the resulting successor states
are obtained from the state where the transitions is taken
(where the transition goes).
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Effects (for deterministic operators)

effects
(Deterministic) effects are recursively defined as follows:

If p ∈ P is a state variable, then p and ¬p are effects
(atomic effect).
If eff1, . . . ,effn are effects, then eff1∧·· ·∧effn is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect >.
If pre is a propositional formula and eff is an effect, then
preB eff is an effect (conditional effect).

Atomic effects p and ¬p are best understood as assignments
p := 1 and p := 0, respectively.
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Operator semantics

changes caused by an operator
For each effect eff and state s, we define the change set of eff in
s, written [eff ]s, as the following set of literals:

[p]s = {p} and [¬p]s = {¬p} for atomic effects p, ¬p
[eff1∧·· ·∧effn]s = [eff1]s∪·· ·∪ [effn]s
[preB eff ]s = [eff ]s if s |= pre and [preB eff ]s = /0 otherwise

applicable operators
Operator (pre,eff ) is applicable in a state s iff s |= pre and [eff ]s is
consistent (i. e.„ does not contain two complementary literals).
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Operator semantics (ctd.)

successor state
The successor state appo(s) of s with respect to operator
o = (pre,eff ) is the state s′ with s′ |= [eff ]s and s′(p) = s(p) for all
state variables p not mentioned in [eff ]s.
This is defined only if o is applicable in s.
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Deterministic planning tasks

deterministic planning task
A deterministic planning task is a 4-tuple Π = (P, I,Act,γ) where

P is a finite set of state variables (propositions),
I is a valuation over P called the initial state,
Act is a finite set of operators over P, and
γ is a formula over P called the goal.
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Mapping planning tasks to transition systems

induced transition system of a planning task
Every planning task Π = (P, I,Act,γ) induces a corresponding
deterministic transition system T (Π) = (S,L,T ,s0,S?):

S is the set of all valuations of P,
L is the set of operators Act,
T = {(s,o,s′) | s ∈ S, o applicable in s, s′ = appo(s)},
s0 = I, and
S? = {s ∈ S | s |= γ}
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Planning tasks: terminology

Terminology for transitions systems is also applied to the
planning tasks that induce them.
A sequence of operators that forms a goal path of T (Π) is
called a plan of Π.
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Planning

By planning, we mean the following two algorithmic problems:

Satisficing planning
Given: a planning task Π
Output: a plan for Π, or unsolvable if no plan for Π exists

Optimal planning
Given: a planning task Π
Output: a plan for Π with minimal length among all plans

for Π, or unsolvable if no plan for Π exists
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Nondeterministic operators

Nondeterministic operator
A nondeterministic operator is a pair o = (pre,Eff ), where

pre is a conjunction of atoms (the precondition), and
Eff = {eff1, . . . ,effn} is a finite set of possible effects of o,
each eff i being a conjunction of atomic finite-domain effects.
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Nondeterministic operators

Nondeterministic operator application
Let o = (pre,Eff ) be a nondeterministic operator and s a state.

Applicability of o in s is definied as in the deterministic case, i.e.,
o is applicable in s iff s |= pre and the change set of each effect
eff ∈ Eff is consistent.

If o is applicable in s, then the application of o in s leads to one
of the states in the set appo(s) := {app(pre,eff )(s) |eff ∈ Eff}
nondeterministically.
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Nondeterministic planning tasks and
transition systems

Nondeterministic planning task: Like a deterministic planning
task, but now possibly with nondeterministic actions.

Induced transition system: Like before, but now possibly with
nondeterministic transitions.
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What is a plan?

In nondeterministic planning, plans are more complicated
objects than in the deterministic case:

The best action to take may depend on nondeterministic effects
of previous operators.

Nondeterministic plans thus often require branching.
Sometimes, they even require looping.

Here: Only consider branching, no looping.
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Nondeterministic plans: formal definition

Strategy
Let Π = (P, I,Act,γ) be a nondeterministic planning task with
state set S and goal states S?.

A strategy (or policy) for Π is a function π : Sπ → Act for some
subset Sπ ⊆ S such that for all states s ∈ Sπ the action π(s) is
applicable in s.

The set of states reachable in T (Π) starting in state s and
following π is denoted by Sπ (s).
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Nondeterministic plans: formal definition

Proper and acyclic strategies
Let Π = (P, I,Act,γ) be a nondeterministic planning task with
state set S and goal states S?, and let π be a strategy for Π.
Then π is called

proper iff Sπ (s′)∩S? 6= /0 for all s′ ∈ Sπ (s0), and
acyclic iff there is no state s′ ∈ Sπ (s0) such that s′ is
reachable from s′ following π in a strictly positive number of
steps.

Strongness
Let Π = (P, I,Act,γ) be a nondeterministic planning task with
state set S and goal states S?.
A strategy for Π is called a strong plan if it is proper and acyclic.
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Strong Planning

strong planning
Given: a nondeterministic planning task Π
Output: a strong plan for Π, or unsolvable

if no strong plan for Π exists
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From Classical to Epistemic Planning

Summary: Classical planning on one slide:
Given:

Initial world state
Goal description
Available actions

Wanted:
Plan leading from initial state to goal state

Assumptions:
Single agent
Full observability
Deterministic actions
Static and discrete environment
Reachability goal
. . .
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From Classical to Epistemic Planning

Classical, FOND, POND, epistemic planning, . . .

Det

Obs

Ag

Goal

full

uniform partial

non-uniform partial

12> 2

reachability

cooperative

competitive

det ndet prob
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Example: Robot Collaborating with Human

Epistemic planning useful if we want the agents to
coordinate implicitly
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Cooperative Epistemic Planning

Cooperative epistemic planning:
Task: Collaboratively reach joint goal
Challenge: Required knowledge and capabilities distributed
among agents
Idea: Communication / coordination as part of the plan

Nebel, Engesser, Bergdoll – MAS 43 / 64



Cooperative Epistemic Planning Tasks

From now on: Multi-pointed models, ontic effects.
Fix a finite set of agents I .

A
cooperative epistemic planning task Π = (P, I,Act,γ,ω) consists
of

a finite set of state variables (atomic propositions) P,
an initial global epistemic state I = (M0,w0) over P,
a finite set Act of epistemic actions over P,
a goal formula γ over P, and
an owner function ω : Act→I , such that each action
α ∈ Act is local for ω(α).

Assumption: Act is common knowledge among all agents.
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Centralized Sequential Plans

An epistemic model (M,Wd) is a goal state iff (M,Wd) |= γ iff
(M,w) |= γ for all w ∈Wd.

Terminology: In the following, we abbreviate “cooperative
epistemic planning task” as “planning task”.

Centralized sequential epistemic plan
A centralized sequential (or linear) epistemic plan for a planning
task Π = (P, I,Act,γ,ω) is a sequence of actions from Act,
π = α1, . . . ,αn such that

for each i = 1, . . . ,n, action αi is applicable in
I⊗α1⊗ . . .⊗αi−1, and
I⊗α1⊗ . . .⊗αn |= γ .
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Centralized Sequential Plans

In order to simplify and to highlight the simplicity to the definition
of implicitly coordinated sequential plans (see below), we give an
equivalent definition of centralized sequential epistemic plans:

Proposition
Let Π = (P, I,Act,γ,ω) be a planning task and π = α1, . . . ,αn be a
sequence of actions from Act. Then π is a centralized sequential
epistemic plan for Π iff

n = 0 and I |= γ , or
n> 0 and α1 is applicable in I and α2, . . . ,αn is a
centralized sequential epistemic plan for
Π′ = (P, I⊗α1,Act,γ,ω).
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Centralized Sequential Plans

For convenience, we add a new modality as an abbreviation:

Modality ((α)) is defined such that, for all formulas ϕ , we have

((α))ϕ ≡ 〈α〉>∧ [α ]ϕ

Truth condition:

M,w |= ((α))ϕ iff α is applicable in M,w and (M,w)⊗α |= ϕ
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Centralized Sequential Plans

Proposition
Let Π = (P, I,Act,γ,ω) be a planning task and π = α1, . . . ,αn a
sequence of actions from Act. Then π is a centralized sequential
epistemic plan for Π if and only if I |= ((α1))((α2)) . . . ((αn))γ .

Proof by straightforward induction of the length of the plan.
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Example

Example
Initial state:

p,¬q
w1

¬p,¬q
w2

a

Actions of agent a:

α1 : (p,q)
e1

(¬p,>)

e2
a

α2 : (p,>)
e1

(¬p,q)

e2
a

Actions of agent b:

β1 : (p,>)
e1

(¬p,>)

e2

Goal: q. Centralized plan: 〈α1〉
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Plantime vs. Runtime Indistinguishability

Plantime vs. runtime indistinguishability
Let A = (E,∼,pre,eff ), Ed ⊆ E, and assume that (A,Ed) is local
to some agent a ∈I . Let e1,e2 ∈ Ed. Then e1 and e2 are called
runtime indistinguishable for agent a if e1 ∼a e2. Otherwise (if
e1 6∼a e2), they are runtime distinguishable for a, but plantime
indistinguishable for a.

Above, we defined plantime and runtime indistinguishability of
events. Plantime and runtime indistinguishability of worlds in
epistemic states can be defined similarly.
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Plantime vs. Runtime Indistinguishability

Example (for I = {a})
Model (Before,{w1,w2}):

p
w1

¬p
w2

a

Worlds w1 and w2 both plantime and runtime indistinguishable to
agent a.
Action model (Reada,{e1,e2}):

(p,>)
e1

(¬p,>)

e2

Events e1 and e2 plantime indistinguishable, but runtime
distinguishable to agent a.
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Plantime vs. Runtime Indistinguishability

Example (ctd.)
Model (After,Wd) = (Before,{w1,w2})⊗ (Reada,{e1,e2}):

p
(w1,e1)

¬p
(w2;e2)

Worlds (w1,e1) and (w2,e2) plantime indistinguishable, but
runtime distinguishable to agent a.
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Implicitly Coordinated Sequential Plans

Recall (local perspective of an agent):
If (M,Wd) is an epistemic state and a is an agent, then
(M,Wd)a = (M,W ′d) is agent a’s associated local state, where
W ′d = {w ′ ∈W |w ′ ∼a w for some w ∈Wd}).

Example
Global state (M,{w2}):

p
w1

p

w2

¬p
w3

a b

Associated local state for agent a: (M,{w2})a = (M,{w1,w2})

p
w1

p

w2

¬p
w3

a b
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Implicitly Coordinated Sequential Plans

In an implicitly coordinated plan, an agent knows that its chosen
action is applicable and makes progress towards the goal.

Implicitly coordinated sequential plan
Let Π = (P, I,Act,γ,ω) be a planning task and π = α1, . . . ,αn a
sequence of actions from Act. Then π is an implicitly coordinated
sequential epistemic plan (ICSEP) for Π iff either

n = 0 and I |= γ , or
n> 0 and α1 is applicable in Iω(α1) and α2, . . . ,αn is a
ICSEP for Π′ = (P, Iω(α1)⊗α1,Act,γ,ω).
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Implicitly Coordinated Sequential Plans

Recall the previous example:
1 (α1) is not an ICSEP.
2 (β1,α1) is an ICSEP.

Ad (1) α1 is applicable in Iω(α1), but Iω(α1)⊗α1:

p,q
w1

¬p,¬q
w2

a

So, a was successful but does not know it!

Ad (2) β1 is applicable in Iω(β1) leading to:

p,¬q
w1

¬p,¬q
w2

From this state, a knowing that p, α1 is a ICSEP!
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Implicitly Coordinated Sequential Plans

A simple lemma we will need in a moment.

Proposition (knowledge and associated local states)
(M,Wd)a |= ϕ iff M,Wd |= Kaϕ .

Proof.
(M,Wd)a |= ϕ iff (M,{w ′ |w ′ ∼a w for some w ∈Wd}) |= ϕ

iff M,w ′ |= ϕ f.a. w ′ s.t. ex. w ∈Wd s.t. w ′ ∼a w
iff M,w |= Kaϕ for all w ∈Wd

iff M,Wd |= Kaϕ
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Implicitly Coordinated Sequential Plans

Proposition
Let Π = (P, I,Act,γ,ω) be a planning task and π = α1, . . . ,αn a
sequence of actions from Act. Then π is an implicitly coordinated
sequential epistemic plan for Π if and only if
I |= Kω(α1)((α1))Kω(α2)((α2)) . . .Kω(αn)((αn))γ .

Proof.
Induction on plan length n.

Base case (n = 0): Then π is an implicitly coordinated
sequential epistemic plan iff I |= γ .
Inductive case (n> 0): [. . . ]
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Implicitly Coordinated Sequential Plans

Proof (ctd.)
Inductive case (n> 0): Let π = α1, . . . ,αn.
Then π is an implicitly coordinated epistemic plan for Π iff
(definition)
α1 is applicable in Iω(α1) and α2, . . . ,αn is an implicitly
coordinated epistemic plan for Π′ = (P, Iω(α1)⊗α1,Act,γ,ω)
iff (induction hypothesis!)
α1 is applicable in Iω(α1) and
Iω(α1)⊗α1 |= Kω(α2)((α2)) . . .Kω(αn)((αn))γ iff
(truth condition of ((·)))
Iω(α1) |= ((α1))Kω(α2)((α2)) . . .Kω(αn)((αn))γ iff
(knowledge and associated local states)
I |= Kω(α1)((α1))Kω(α2)((α2)) . . .Kω(αn)((αn))γ .
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Implicitly Coordinated Sequential Plans

Example
Initial state

p,¬q,¬r,¬t

w1

Actions of a:

α1 : (p,¬p∧q)

e1

(p,¬p∧ r)

e2

a

Actions of b:

β1 : (q, t)

e1

β2 : (r, t)

e1

Goal: γ = t
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Implicitly Coordinated Sequential Plans

Example (ctd.)
There is no ICSEP for this planning task. Reason: if there were
one, it would have to start with α1 (nothing else is applicable).

Then, Iω(α1)⊗α1 = ¬p,q,¬r,¬t

(w1,e1)

¬p,¬q, r,¬t

(w1,e2)

a =: (M1,W1
d ).

In (M1,W1
d ), none of the available actions is applicable, and it is

not a goal state.

This task would be solvable with a branching or conditional plan:
start with α1, and depending on the outcome, continue with β1 or
β2. This would even be implicitly coordinated in the sense that at
each point in the plan, the agent to move knows that it can move
and that this leads to progress.
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Branching Plans

Notation: In the following, we use w not only to refer to worlds in
epistemic models, but also to (single-pointed) epistemic models
themselves. Will be clear from the context.

Policy
Let Π = (P, I,Act,γ,ω) be an epistemic planning task and let Wgl

be the set of global epistemic states of Π. Then a policy is a
mapping π : Wgl→ 2Act such that:

Applicability (APP): for all w ∈Wgl and all α ∈ π(w), α is
applicable in w.
Determinism (DET): for all w ∈Wgl and all α,α ′ ∈ π(w)
with ω(α) = ω(α ′), we have α = α ′.
Uniformity (UNIF): for all w, t ∈Wgl and all α ∈ π(w) with
wω(α) = tω(α), we have α ∈ π(t).
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Branching Plans

Note:
APP and UNIF together imply knowledge of preconditions
(KOP): for all w ∈Wgl and all α ∈ π(w), α is applicable in wω(α),
i. e., agents supposed to act know that their action is applicable.

Note:
We also need to require that the policy is strong in the sense that
one always achieves the goal (which we will not do here).
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Summary

Multipointed models and ontic effects
Review of classical planning
Centralied vs. implicitly coordinated plans
Sequential vs. branching plans
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