Multi-Agent Systems
 Dynamic Epistemic Logic

Bernhard Nebel, Rolf Bergdoll, and Thorsten Engesser
Winter Term 2019/20

Action Models

So far: Only public announcements.

Now: How to model other ways of knowledge changes, such as private announcements, sensing, or ontic (world-changing) actions that affect knowledge along the way?

Idea: Action models similar to Kripke models.

Action Models

Example

Agents a and b both don't know the value of proposition p. This is common knowledge among them. In fact, p is true. Then agent a receives a letter containing the value of p and reads it. Agent b observes a reading the letter and knows that it is about p, but b does not learn the value of p.

Action Models

Example

Agents a and b both don't know the value of proposition p. This is common knowledge among them. In fact, p is true. Then agent a receives a letter containing the value of p and reads it. Agent b observes a reading the letter and knows that it is about p, but b does not learn the value of p.

Model Before:

Model After:

Action Models

Question: How to get from Before to After?

Answer: Action models.

Remark: After, $w_{1}^{\prime}=$
$K_{a} p \wedge\left(\neg K_{b} p \wedge \neg K_{b} \neg p\right) \wedge K_{b}\left(K_{a} p \vee K_{a} \neg p\right) \wedge K_{a}\left(\neg K_{b} p \wedge \neg K_{b} \neg p\right)$
\sim action model needs to achieve exactly that!

Action Models

Question: How to get from Before to After?

Answer: Action models.

Remark: After, $w_{1}^{\prime}=$
$K_{a} p \wedge\left(\neg K_{b} p \wedge \neg K_{b} \neg p\right) \wedge K_{b}\left(K_{a} p \vee K_{a} \neg p\right) \wedge K_{a}\left(\neg K_{b} p \wedge \neg K_{b} \neg p\right)$
\sim action model needs to achieve exactly that!
Action model Read:

With this action model, After $=$ Before \otimes Read, for an appropriate definition of \otimes.

Action Models

Product update, informally
The product update \otimes denotes a restricted modal update with component worlds (w, e) only present if $(M, w)=$ pre (e).

Action Models

Product update, informally

The product update \otimes denotes a restricted modal update with component worlds (w, e) only present if $(M, w)=$ pre (e).

Model Before \otimes Read:

Action Models

Product update, informally

The product update \otimes denotes a restricted modal update with component worlds (w, e) only present if $(M, w)=$ pre (e).

Model Before \otimes Read:

Action Models

Product update, informally

The product update \otimes denotes a restricted modal update with component worlds (w, e) only present if $(M, w)=$ pre (e).

Model Before \otimes Read:

- $\left(w_{1}, e_{1}\right) \sim_{b}\left(w_{2}, e_{2}\right)$ because $w_{1} \sim_{b} w_{2}$ and $e_{1} \sim_{b} e_{2}$.
$\square\left(w_{1}, e_{2}\right)$ and $\left(w_{2}, e_{1}\right)$ were eliminated because e_{2} cannot be applied in w_{1} and e_{1} cannot be applied in w_{2}.

Action Models

Action model

Let \mathscr{L} be any logical language for a set of agents \mathscr{I} and a set of atoms P. Then an $S 5$ action model A is a structure ($E, \sim, p r e$) such that:

- E is the domain of events,
- \sim_{a} is an equivalence relation on E for all $a \in \mathscr{I}$, the indistinguishability relation for agent a, and
- pre: $E \rightarrow \mathscr{L}$ is the precondition function that assigns a precondition pre $(e) \in \mathscr{L}$ to all $e \in E$.

A pointed action model is such a structure (A, e) with $e \in E$.

Example (Action model Read, formally)

Read is the action model $\left(\left\{e_{1}, e_{2}\right\}, \sim\right.$, pre $)$ with

$$
\begin{array}{ll}
\sim_{a}=\left\{\left(e_{1}, e_{1}\right),\left(e_{2}, e_{2}\right)\right\} & \text { pre }\left(e_{1}\right)=p \\
\sim_{b}=\left\{\left(e_{1}, e_{1}\right),\left(e_{1}, e_{2}\right),\left(e_{2}, e_{1}\right),\left(e_{2}, e_{2}\right)\right\} & \operatorname{pre}\left(e_{2}\right)=\neg p .
\end{array}
$$

(and with pointed event e_{1}).

Remark: Public announcements are a special case of action models.

Example (Public announcements)

Action model for the public announcement of φ :

Action Models

Fix agents \mathscr{I} and atomic propositions P.

Example (Skip)

Action skip (or 1) is the pointed action model ($(\{e\}, \sim, p r e), e)$ with pre $(e)=T$ and $\sim_{a}=\{(e, e)\}$ for all $a \in \mathscr{I}$.

Example (Crash)

Action crash (or $\mathbf{0}$) is the pointed action model ($(\{e\}, \sim, p r e), e)$ with pre $(e)=\perp$ and $\sim_{a}=\{(e, e)\}$ for all $a \in \mathscr{I}$.

Language

Let P be a countable set of atomic propositions and \mathscr{I} a finite set of agent symbols. Then the language of action model logic is the union of the formulas φ and the actions α defined by the following BNF:

$$
\begin{aligned}
& \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|K_{a} \varphi\right| C_{B} \varphi \mid[\alpha] \varphi \\
& \alpha::=(A, e) \mid \alpha \cup \alpha
\end{aligned}
$$

where $p \in P, a \in \mathscr{I}, B \subseteq \mathscr{I}$, and (A, e) is a pointed action model with a finite domain E, and

- for all events $e^{\prime} \in E$, the precondition pre(e^{\prime}) is a formula that has already been constructed in a previous step of the induction.

Action Models

Intuition:

$\square[\alpha] \varphi$: After (every) application of action α, φ is true.
Abbreviations:

- $\langle\alpha\rangle \varphi:=\neg[\alpha] \neg \varphi$

After (some) application of action α, φ is true.

- $A:=\bigcup_{e \in E}(A, e)$

Action Models

Deterministic vs. nondeterministic actions:

$\square \alpha=(A, e)$: Deterministic action α with unique pointed event e. Example: $\alpha=\left(\right.$ Read, $\left.e_{1}\right)$.
$\square \alpha=\alpha_{1} \cup \alpha_{2}$: Nondeterministic choice, i. e., either α_{1} or α_{2} happens. Example: $\alpha=\left(\right.$ Read, $\left.e_{1}\right) \cup\left(\right.$ Read,$\left.e_{2}\right)=$ Read.

- Remark 1a: $\alpha=$ Read not properly nondeterministic, since preconditions of e_{1} and e_{2} are mutually exclusive.
- Remark 1b: We will see a properly nondeterministic action later (action Mayread).
- Remark 2: If, for $\alpha=\left(A_{1}, e_{1}\right) \cup\left(A_{2}, e_{2}\right)$, we have $A_{1}=A_{2}$, then we can depict α as a multi-pointed model, like $\left(\right.$ Read,$\left.e_{1}\right) \cup\left(\right.$ Read, $\left.e_{2}\right)$:

Action Models

Product update

Let $M=(W, \sim, V)$ be an epistemic (i.e., S5) model and let $A=(E, \sim, p r e)$ be an action model. Then the product update $M \otimes A$ is the epistemic model $M^{\prime}=\left(W^{\prime}, \sim^{\prime}, V^{\prime}\right)$ with:

- $W^{\prime}=\{(w, e) \in W \times E|M, w|=\operatorname{pre}(e)\}$,
$=(w, e) \sim_{a}^{\prime}(t, \varepsilon)$ iff $w \sim_{a} t$ and $e \sim_{a} \varepsilon$, for $a \in \mathscr{I}$, and
$\square(w, e) \in V_{p}^{\prime}$ iff $w \in V_{p}$.

Example

$\left(\right.$ Before,$\left.w_{1}\right) \otimes\left(\operatorname{Read}, e_{1}\right)=\left(\operatorname{After},\left(w_{1}, e_{1}\right)\right)$

Action Models

Semantics of formulas and actions

Let (M, w) be an epistemic state, φ be a formula and α an action model.
$M, \boldsymbol{w} \vDash p, \neg \varphi, \varphi \wedge \psi, K_{a} \varphi, C_{B} \varphi$ as usual
$M, w \vDash[\alpha] \varphi \quad$ iff \quad for all $\left(M^{\prime}, w^{\prime}\right)$:

$$
(M, w) \llbracket \alpha \rrbracket\left(M^{\prime}, w^{\prime}\right) \text { implies }\left(M^{\prime}, w^{\prime}\right) \mid=\varphi
$$

where

- $(M, w) \llbracket(A, e) \rrbracket\left(M^{\prime}, w^{\prime}\right)$ iff
$(M, w)=\operatorname{pre}(e)$ and $\left(M^{\prime}, w^{\prime}\right)=(M \otimes A,(w, e))$, and
$\square \llbracket \alpha \cup \alpha^{\prime} \rrbracket=\llbracket \alpha \rrbracket \cup \llbracket \alpha^{\prime} \rrbracket$.

Action Models

Remarks:

\square For $\alpha=(A, e), \llbracket \alpha \rrbracket$ is functional, i. e., for each (M, w), there is at most one $\left(M^{\prime}, w^{\prime}\right)$ with $(M, w) \llbracket(A, e) \rrbracket\left(M^{\prime}, w^{\prime}\right)$.

- For $\alpha=\alpha_{1} \cup \alpha_{2}$, this is no longer necessarily the case. Careful with duality between $[\alpha]$ and $\langle\alpha\rangle$, then.

Special case $\alpha=(A, e)$: Then $M, w=[\alpha] \varphi$ iff $M, w \mid=\operatorname{pre}(e)$ implies $(M \otimes A,(w, e))=\varphi$.
Dual $\langle\alpha\rangle$, for $\alpha=(A, e)$:
$M, w \vDash\langle\alpha\rangle \varphi \quad$ iff
$M, w \not \forall[\alpha] \neg \varphi$ iff
$M, w \vDash \operatorname{pre}(e)$ does not imply $(M \otimes A,(w, e)) \vDash \neg \varphi \quad$ iff
$M, w \vDash \operatorname{pre}(e)$ and $(M \otimes A,(w, e)) \not \vDash \neg \varphi$ iff
$M, w \vDash \operatorname{pre}(e)$ and $(M \otimes A,(w, e)) \models \varphi$

Action Models

Remark: This is very similar to the semantics of $[\varphi] \psi$ and $\langle\varphi\rangle \psi$ in public announcement logic.

For completeness, dual $\langle\alpha\rangle$, for general α :
$M, w \mid=\langle\alpha\rangle \varphi \quad$ iff
$M, w \not \vDash[\alpha] \neg \varphi$ iff
not f. a. $\left(M^{\prime}, w^{\prime}\right):(M, w) \llbracket \alpha \rrbracket\left(M^{\prime}, w^{\prime}\right)$ implies $\left(M^{\prime}, w^{\prime}\right) \vDash \neg \varphi \quad$ iff there ex. $\left(M^{\prime}, w^{\prime}\right):(M, w) \llbracket \alpha \rrbracket\left(M^{\prime}, w^{\prime}\right)$ and $\left(M^{\prime}, w^{\prime}\right) \not \vDash \neg \varphi \quad$ iff there ex. $\left(M^{\prime}, w^{\prime}\right):(M, w) \llbracket \alpha \rrbracket\left(M^{\prime}, w^{\prime}\right)$ and $\left(M^{\prime}, w^{\prime}\right) \vDash \varphi$

Action Models

Example

Model $\left(\right.$ Before,$\left.w_{1}\right) \otimes\left(\right.$ Read,$\left.e_{1}\right)$:

Then:

- Before, $w_{1}=\left[\right.$ Read, $\left.e_{1}\right] K_{a} p$
- Before, $w_{1}=\left[\right.$ Read, $\left.e_{1}\right] \neg K_{b} K_{a} p$
\square Before, $w_{1}=\left[\right.$ Read, $\left.e_{1}\right] C_{a b}\left(K_{a} p \vee K_{a} \neg p\right)$

Action Models

Example

Now, a may only read the letter, but does not have to. Agent b does not know whether a will read it or not. Actually, a does not read the letter.

From b's perspective, there are three possibilities:

- a reads the letter and learns that p is true.
- a reads the letter and learns that p is false.
- a does not read the letter and learns nothing about p.

Action Models

Example (ctd.)

Action model (Mayread, e_{3}):

Mayread $=\left(\right.$ Mayread, $\left.e_{1}\right) \cup\left(\right.$ Mayread,$\left.e_{2}\right) \cup\left(\right.$ Mayread,$\left.e_{3}\right)$

Action Models

Example (ctd.)

Model (Before, $\left.w_{1}\right) \otimes\left(\right.$ Mayread, $\left.e_{3}\right)$:

Example (ctd.)

Model (Before, $\left.w_{1}\right) \otimes\left(\right.$ Mayread, $\left.e_{3}\right)$:

- Before, $w_{1} \vDash\left[\right.$ Mayread, $\left.e_{3}\right] \neg\left(K_{a} p \vee K_{a} \neg p\right) \wedge \hat{K}_{b}\left(K_{a} p \vee K_{a} \neg p\right)$
- Before $=p \rightarrow$ $\left(\langle\right.$ Mayread $\rangle K_{a} p \wedge\langle$ Mayread $\rangle \neg K_{a} p \wedge \neg\langle$ Mayread $\left.\rangle K_{a} \neg p\right)$
- Action models allow more epistemic change than just public announcements.
- Action models similar to Kripke structures. State update by product update operator.
- Axiomatization similar to public announcement logic. Actions and (common) knowledge slightly trickier.

Literature

L. S. Moss, Dynamic Epistemic Logic, Chapter 6, In H. van Dithmarschen, J. Y. Halpern, W. van der Hoek, B. Kooi (eds.) Handbook of Epistemic Logic, College Publications, 2015.Hans P. van Ditmarsch and Wiebe van der Hoek and Barteld Kooi, Dynamic Epistemic Logic, Springer, 2007.

