Multi-Agent Systems

Dynamic Epistemic Logic

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Rolf Bergdoll, and Thorsten Engesser Winter Term 2019/20

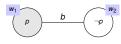
Action Models

Example

Agents a and b both don't know the value of proposition p. This is common knowledge among them. In fact, p is true. Then agent a receives a letter containing the value of p and reads it. Agent b observes a reading the letter and knows that it is about p, but b does not learn the value of p.

Model Before:

Model After:



Nebel, Engesser, Bergdoll - MAS

3 / 22

Action Models

So far: Only public announcements.

Now: How to model other ways of knowledge changes, such as private announcements, sensing, or ontic (world-changing) actions that affect knowledge along the way?

Idea: Action models similar to Kripke models.

Nebel, Engesser, Bergdoll - MAS

2 / 22

Action Models

Question: How to get from Before to After?

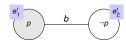
Answer: Action models.

Remark: After, $w_1' \models$

 $\mathcal{K}_{a}p \wedge (\neg \mathcal{K}_{b}p \wedge \neg \mathcal{K}_{b} \neg p) \wedge \mathcal{K}_{b}(\mathcal{K}_{a}p \vee \mathcal{K}_{a} \neg p) \wedge \mathcal{K}_{a}(\neg \mathcal{K}_{b}p \wedge \neg \mathcal{K}_{b} \neg p)$

 \rightsquigarrow action model needs to achieve exactly that!

Action model Read:



With this action model, After = Before \otimes Read, for an appropriate definition of \otimes .

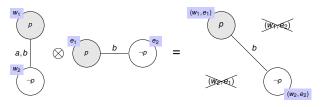
Nebel, Engesser, Bergdoll – MAS

4 / 22

Product update, informally

The product update \otimes denotes a restricted modal update with component worlds (w,e) only present if $(M,w) \models pre(e)$.

Model Before \otimes Read:



- $(w_1, e_1) \sim_b (w_2, e_2)$ because $w_1 \sim_b w_2$ and $e_1 \sim_b e_2$.
- (w_1, e_2) and (w_2, e_1) were eliminated because e_2 cannot be applied in w_1 and e_1 cannot be applied in w_2 .

Nebel, Engesser, Bergdoll - MAS

5 / 22

Action Models

Action model

Let $\mathscr L$ be any logical language for a set of agents $\mathscr I$ and a set of atoms P. Then an S5 action model A is a structure (E, \sim, pre) such that:

- E is the domain of events,
- \sim_a is an equivalence relation on E for all $a \in \mathcal{I}$, the indistinguishability relation for agent a, and
- \blacksquare pre : $E \to \mathscr{L}$ is the precondition function that assigns a precondition $pre(e) \in \mathcal{L}$ to all $e \in E$.

A pointed action model is such a structure (A, e) with $e \in E$.

Nebel, Engesser, Bergdoll - MAS

6 / 22

Action Models

7 / 22

Example (Action model Read, formally)

Read is the action model ($\{e_1, e_2\}, \sim, pre$) with

$$\sim_a = \{(e_1, e_1), (e_2, e_2)\}$$
 $pre(e_1) = p$
 $\sim_b = \{(e_1, e_1), (e_1, e_2), (e_2, e_1), (e_2, e_2)\}$ $pre(e_2) = \neg p$.

(and with pointed event e_1).

Remark: Public announcements are a special case of action models.

Example (Public announcements)

Action model for the public announcement of φ :

Example (Crash)

Action crash (or **0**) is the pointed action model $((\{e\}, \sim, pre), e)$ with $pre(e) = \bot$ and $\sim_a = \{(e, e)\}$ for all $a \in \mathscr{I}$.

Action Models

Fix agents \mathscr{I} and atomic propositions P.

Example (Skip)

Action skip (or 1) is the pointed action model $((\{e\}, \sim, pre), e)$ with $pre(e) = \top$ and $\sim_a = \{(e, e)\}$ for all $a \in \mathscr{I}$.

Language

Let P be a countable set of atomic propositions and \mathcal{I} a finite set of agent symbols. Then the language of action model logic is the union of the formulas φ and the actions α defined by the following BNF:

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_a \varphi \mid C_B \varphi \mid [\alpha] \varphi$$
$$\alpha ::= (A, e) \mid \alpha \cup \alpha$$

where $p \in P$, $a \in \mathcal{I}$, $B \subseteq \mathcal{I}$, and (A, e) is a pointed action model with a finite domain E, and

 \blacksquare for all events $e' \in E$, the precondition pre(e') is a formula that has already been constructed in a previous step of the induction.

Nebel, Engesser, Bergdoll - MAS

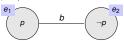
9/22

Action Models

11 / 22

Deterministic vs. nondeterministic actions:

- $\alpha = (A, e)$: Deterministic action α with unique pointed event e. Example: $\alpha = (\text{Read}, e_1)$.
- $\alpha = \alpha_1 \cup \alpha_2$: Nondeterministic choice, i. e., either α_1 or α_2 happens. Example: $\alpha = (\text{Read}, e_1) \cup (\text{Read}, e_2) = \text{Read}$.
 - Remark 1a: α = Read not properly nondeterministic, since preconditions of e_1 and e_2 are mutually exclusive.
 - Remark 1b: We will see a properly nondeterministic action later (action Mayread).
 - Remark 2: If, for $\alpha = (A_1, e_1) \cup (A_2, e_2)$, we have $A_1 = A_2$, then we can depict α as a multi-pointed model, like $(Read, e_1) \cup (Read, e_2)$:



Nebel, Engesser, Bergdoll - MAS

Action Models

Intuition:

 \blacksquare [α] φ : After (every) application of action α , φ is true.

Abbreviations:

After (some) application of action α , φ is true.

$$\blacksquare$$
 $A := \bigcup_{e \in F} (A, e)$

Nebel, Engesser, Bergdoll - MAS

10 / 22

Action Models

Product update

Let $M = (W, \sim, V)$ be an epistemic (i.e., S5) model and let $A = (E, \sim, pre)$ be an action model. Then the product update $M \otimes A$ is the epistemic model $M' = (W', \sim', V')$ with:

$$\blacksquare$$
 $W' = \{(w,e) \in W \times E \mid M, w \models pre(e)\},$

$$\blacksquare$$
 $(w,e) \sim'_a (t,\varepsilon)$ iff $w \sim_a t$ and $e \sim_a \varepsilon$, for $a \in \mathscr{I}$, and

$$\blacksquare$$
 $(w,e) \in V_p'$ iff $w \in V_p$.

Example

$$(Before, w_1) \otimes (Read, e_1) = (After, (w_1, e_1))$$

UNI

Semantics of formulas and actions

Let (M, w) be an epistemic state, φ be a formula and α an action model.

$$M, w \models \rho, \neg \varphi, \varphi \land \psi, K_a \varphi, C_B \varphi$$
 as usual $M, w \models [\alpha] \varphi$ iff for all (M', w') :
$$(M, w) \llbracket \alpha \rrbracket (M', w') \text{ implies } (M', w') \models \varphi$$

where

(M,w)[(A,e)](M',w') iff $(M,w) \models pre(e) \text{ and } (M',w') = (M \otimes A,(w,e)), \text{ and}$ $(M,w) \models [\alpha] \cup [\alpha].$

Nebel, Engesser, Bergdoll - MAS

13 / 22

15 / 22

Action Models

Remark: This is very similar to the semantics of $[\varphi]\psi$ and $\langle \varphi \rangle \psi$ in public announcement logic.

For completeness, dual $\langle \alpha \rangle$, for general α :

$$\begin{split} M,w &\models \langle \alpha \rangle \varphi \quad \text{iff} \\ M,w &\not\models [\alpha] \neg \varphi \quad \text{iff} \\ \text{not f. a. } (M',w') : (M,w) \llbracket \alpha \rrbracket (M',w') \text{ implies } (M',w') \models \neg \varphi \quad \text{iff} \\ \text{there ex. } (M',w') : (M,w) \llbracket \alpha \rrbracket (M',w') \text{ and } (M',w') \not\models \neg \varphi \quad \text{iff} \\ \text{there ex. } (M',w') : (M,w) \llbracket \alpha \rrbracket (M',w') \text{ and } (M',w') \models \varphi \end{split}$$

Action Models

Remarks:

- For $\alpha = (A, e)$, $[\![\alpha]\!]$ is functional, i. e., for each (M, w), there is at most one (M', w') with $(M, w)[\![(A, e)]\!](M', w')$.
- For $\alpha = \alpha_1 \cup \alpha_2$, this is no longer necessarily the case. Careful with duality between $[\alpha]$ and $\langle \alpha \rangle$, then.

Special case $\alpha = (A, e)$: Then $M, w \models [\alpha] \varphi$ iff $M, w \models pre(e)$ implies $(M \otimes A, (w, e)) \models \varphi$.

Dual $\langle \alpha \rangle$, for $\alpha = (A, e)$:

$$M, w \models \langle \alpha \rangle \varphi$$
 iff

$$M, w \not\models [\alpha] \neg \varphi$$
 iff

$$M, w \models pre(e)$$
 does not imply $(M \otimes A, (w, e)) \models \neg \varphi$ iff

$$M, w \models pre(e)$$
 and $(M \otimes A, (w, e)) \not\models \neg \varphi$ iff

$$M, w \models pre(e)$$
 and $(M \otimes A, (w, e)) \models \varphi$

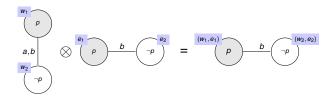
Nebel, Engesser, Bergdoll - MAS

14 / 22

Action Models

Example

Model (Before, w_1) \otimes (Read, e_1):



Then:

- Before, $w_1 \models [Read, e_1]K_ap$
- Before, $w_1 \models [\text{Read}, e_1] \neg K_b K_a p$
- Before, $w_1 \models [\text{Read}, e_1]C_{ab}(K_ap \lor K_a \neg p)$

Example

Now, a may only read the letter, but does not have to. Agent b does not know whether a will read it or not. Actually, a does not read the letter.

From *b*'s perspective, there are three possibilities:

- \blacksquare a reads the letter and learns that p is true.
- \blacksquare a reads the letter and learns that p is false.
- *a* does not read the letter and learns nothing about *p*.

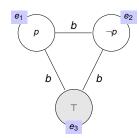
Nebel, Engesser, Bergdoll - MAS

17 / 22

Action Models

Example (ctd.)

Action model (Mayread, e₃):



Mayread = $(Mayread, e_1) \cup (Mayread, e_2) \cup (Mayread, e_3)$

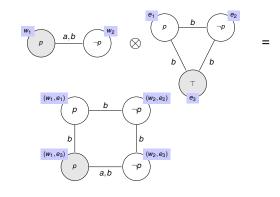
Nebel, Engesser, Bergdoll - MAS

18 / 22

Action Models

Example (ctd.)

Model (Before, w_1) \otimes (Mayread, e_3):



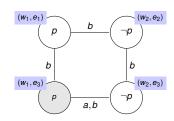
Nebel, Engesser, Bergdoll - MAS

19 / 22

Action Models

Example (ctd.)

Model (Before, w_1) \otimes (Mayread, e_3):



- Before, $w_1 \models [Mayread, e_3] \neg (K_a p \lor K_a \neg p) \land \hat{K}_b (K_a p \lor K_a \neg p)$
- Before $\models p \rightarrow (\langle \mathsf{Mayread} \rangle K_a p \land \langle \mathsf{Mayread} \rangle K_a p \land \neg \langle \mathsf{Mayread} \rangle K_a \neg p)$

Nebel, Engesser, Bergdoll - MAS

20 / 2

Summary

- Action models allow more epistemic change than just public announcements.
- Action models similar to Kripke structures. State update by product update operator.
- Axiomatization similar to public announcement logic. Actions and (common) knowledge slightly trickier.

Nebel, Engesser, Bergdoll - MAS

21 / 22

Literature

L. S. Moss, Dynamic Epistemic Logic, Chapter 6, In H. van Dithmarschen, J. Y. Halpern, W. van der Hoek, B. Kooi (eds.) **Handbook** of Epistemic Logic, College Publications, 2015.

Hans P. van Ditmarsch and Wiebe van der Hoek and Barteld Kooi, Dynamic Epistemic Logic, Springer, 2007.

Nebel, Engesser, Bergdoll - MAS

22 / 22