Multi-Agent Systems

Modal Logic for Multi-Agent Systems, Syntax and Semantics

Bernhard Nebel, Rolf Bergdoll, and Thorsten Engesser

Winter Term 2019/20
Overview

Recap
- Situations from various domains (Programs, Knowledge, Belief, Desire, Obligation) can nicely be modeled using graphical models.
- Kripke models formalize graphical models.
- By constraining the accessibility relations of Kripke frames we obtain classes that correspond to above concepts (Knowledge, Belief etc.)

Today
- Introducing formal languages to talk about Kripke models and thus generally about Knowledge, Belief, Desire, Obligation ...

Modal Logics
Kripke Models

Kripke Frame

Given a countable set of edge labels \mathcal{I}, a Kripke Frame is a tuple (W, R) such that:

- W is a non-empty set of possible worlds, and
- $R : I \rightarrow 2^{W \times W}$ maps each $I \in \mathcal{I}$ to a binary relation $R(I)$ on W (called the accessibility relation of I).

Kripke Model

$M = (W, R, V)$ is a Kripke Model where:

- (W, R) is a Kripke frame, and
- $V : \mathcal{P} \rightarrow 2^W$ is called the valuation of a set of node labels \mathcal{P}.
The language \mathcal{F} of modal logic is inductively defined as follows:

- $\mathcal{P} \subseteq \mathcal{F}$.
- $\{\top, \bot\} \subseteq \mathcal{F}$.
- If $\varphi \in \mathcal{F}$, then $\neg \varphi \in \mathcal{F}$.
- If $\varphi, \psi \in \mathcal{F}$ then $(\varphi \land \psi), (\varphi \lor \psi), (\varphi \rightarrow \psi), (\varphi \leftrightarrow \psi) \in \mathcal{F}$
- If $\varphi \in \mathcal{F}$ and $I \in \mathcal{I}$, then $[I]\varphi, \langle I \rangle \varphi \in \mathcal{F}$.
Different Variants of Languages

- Alethic logic (Necessity): \square, \Diamond
- Epistemic logic (Knowledge): K, \hat{K}
- Doxastic logic (Belief): B, \hat{B}
- Deontic logic (Obligation): O, P
- Multi-Agent Epistemic logic: Agent name as subscript, e.g., $K_{mary} \hat{K}_{john} sun_shining$

Notation: Sometimes, we will decide that $[I]$ shall be read in context of epistemic logic, sometimes we will decide to read it in context of deontic logic. We then may also sometimes write K_I (i.e., Agent I knows), and O_I (i.e., Agent I ought to) instead of $[I]$.
Semantics: Truth Conditions

Given a Kripke model M, a possible world w of M, and a formula φ. We define when φ is true at w, written $M, w \models \varphi$:

- $M, w \models p$ iff $w \in V(p)$, for atomic formulae $p \in P$.
- $M, w \not\models \bot$.
- $M, w \models \top$.
- $M, w \models \neg \varphi$ iff $M, w \not\models \varphi$.
- $M, w \models (\varphi \land \psi)$ iff $M, w \models \varphi$ and $M, w \models \psi$.
- $M, w \models (\varphi \lor \psi)$ iff $M, w \models \varphi$ or $M, w \models \psi$.
- $M, w \models (\varphi \rightarrow \psi)$ iff $M, w \not\models \varphi$ or $M, w \models \psi$.
- $M, w \models (\varphi \leftrightarrow \psi)$ iff $M, w \models (\varphi \rightarrow \psi)$ and $M, w \models (\psi \rightarrow \varphi)$.
- $M, w \models [I]\varphi$ iff for every u: if $(w, u) \in R(I)$ then $M, u \models \varphi$.
- $M, w \models <I> \varphi$ iff for some u: $(w, u) \in R(I)$ and $M, u \models \varphi$.
Duality

1. \(M, w \models [I] \varphi \) iff \(M, w \models \neg <I> \neg \varphi \)

2. \(M, w \models <I> \varphi \) iff \(M, w \models \neg [I] \neg \varphi \)

To see that (1):

- \(M, w \models [I] \varphi \)
- iff for every \(u \): if \((w, u) \in R(I) \) then \(M, u \models \varphi \)
- iff it is not the case that for some \(u \): \((w, u) \in R(I) \) and \(M, u \models \neg \varphi \)
- iff not \(M, w \models <I> \neg \varphi \)
- iff \(M, w \models \neg <I> \neg \varphi \)
Model Checking

- **Question**: Is a given formula φ true in world w in model M?
- **Input**: A Kripke model M, a world w in M, and a formula φ.
- **Output**: “Yes” if $M, w \models \varphi$, “No” else.
Model Checking: Example

\[
M: \quad \text{light}_{\text{on}} \xrightarrow{\text{toggle}} \text{light}_{\text{off}} \xrightarrow{\text{toggle}} \text{light}_{\text{on}}
\]

- \(M, w_1 \models < \text{toggle} > \top \land [\text{toggle}][\text{toggle}]\text{light}_{\text{on}} \)

 1. \(M, w_1 \models < \text{toggle} > \top \)

 1.1 for some \(u: (w_1, u) \in R(\text{toggle}) \) and \(M, u \models \top \).

 1.1.1 we find \((w_1, w_2) \in R(\text{toggle}) \) and \(M, w_2 \models \top \).

 2. \(M, w_1 \models [\text{toggle}][\text{toggle}]\text{light}_{\text{on}} \)

 2.1 for every \(u: (w_1, u) \in R(\text{toggle}) \) then \(M, u \models [\text{toggle}]\text{light}_{\text{on}} \)

 2.1.1 \(M, w_2 \models [\text{toggle}]\text{light}_{\text{on}} \).

 2.1.1.1 for every \(u: (w_2, u) \in R(\text{toggle}) \) then \(M, u \models \text{light}_{\text{on}} \)

 2.1.1.1.1 \(M, w_1 \models \text{light}_{\text{on}} \).
A formula φ is **satisfiable in a model** $M = (W, R, V)$, if there exists a world $w \in W$ such that $M, w \models \varphi$.

A formula φ is **satisfiable in a frame** if it is satisfiable in a model based on that frame.

A formula φ is **satisfiable in a class of frames** if it is satisfiable in a model based on some frame from the class of frames.

A formula φ is **true in a model** M ($M \models \varphi$) if φ is true in all worlds of M.
A formula is **valid in a frame** if \(\varphi \) is true in all models based on that frame.

We say that a formula \(\varphi \) is **valid in a class of frames** \(\mathcal{C} \) (\(K, T, D, 4, 5 \), and combinations thereof), written \(\models_{\mathcal{C}} \varphi \), iff

\[
(W, R, V), w \models \varphi
\]

for every frame \((W, R)\),

- every valuation \(V \) over \((W, R)\),
- every world \(w \) in \(W \).
A Lattice of Classes

weak-S5

K

K4

K5

KD

KD4

K45

KD5

S4

S5

T

Nebel, Engesser, Bergdoll – MAS
Validity in a Class of Frames

- Valid formulas give us an idea of how the classes differ, and thus what is and is not specific to the general behavior of our modalities (Knowledge, Belief, Obligation etc.).

- Correspondences between classes of frames and formulas
 - \([\mathcal{I}] (\varphi \rightarrow \psi) \rightarrow (\mathcal{I}\varphi \rightarrow \mathcal{I}\psi)\) (for every formulae \(\varphi, \psi\)) is \(K\)-valid (valid in the class of all frames)
 - \([\mathcal{I}]\varphi \rightarrow \varphi\) (for every formulae \(\varphi\)) is \(T\)-valid (exactly valid in the class of reflexive frames)
 - \([\mathcal{I}]\varphi \rightarrow <\mathcal{I}>\varphi\) (for every formulae \(\varphi\)) is \(D\)-valid (exactly valid in the class of serial frames)
 - \([\mathcal{I}]\varphi \rightarrow [\mathcal{I}][\mathcal{I}]\varphi\) (for every formulae \(\varphi\)) is \(4\)-valid (exactly valid in the class of transitive frames)
 - \(<\mathcal{I}>\varphi \rightarrow [\mathcal{I}]<\mathcal{I}>\varphi\) (for every formulae \(\varphi\)) is \(5\)-valid (exactly valid in the class of Euclidean frames)
Validity in a Class of Frames: Example I

- \([I](\varphi \rightarrow \psi) \rightarrow ([I]\varphi \rightarrow [I]\psi)\) is \(K\)-valid:
 1. Let \(M\) be an arbitrarily chosen Kripke model and \(w\) be an arbitrary world in \(M\).
 1.1 Assume \(M, w \models [I](\varphi \rightarrow \psi)\) (otherwise the formula is true anyway 😊). Thus, for every world \(u\): if \((w, u) \in R(I)\) then \(M, u \models \varphi \rightarrow \psi\).
 1.1.1 If \([I]\varphi\) is false in \(w\), then \([I]\varphi \rightarrow [I]\psi\) is true in \(w\), and the overall formula is true in \(w\). 😊
 1.1.2 If \([I]\varphi\) is true in \(w\), then both \([I]\varphi \rightarrow \psi\) and \([I](\varphi)\) are true in \(w\). Thus, in every world \(u\) accessible from \(w\), also \(\psi\) is true, i.e., \([I](\psi)\) is true in \(w\). Therefore, the overall formula is true in \(w\). 😊
Validity in a Class of Frames: Example II

- \([I]\varphi \rightarrow \varphi\) is not \(K\)-valid:
 - Consider Kripke model \(M = (W, R, V)\) from class \(K\):
 - \(W = \{w\}\)
 - \(R(I) = \{\}\)
 - \(V(p) = \{\}\)
 - Check that \(M, w \models [I]p\) and \(M, w \not\models p\). Thus, \(M, w \not\models [I]p \rightarrow p\).
A formula φ entails ψ in the class \mathcal{C} (written $\varphi \models_{\mathcal{C}} \psi$) iff for every model M based on some frame in \mathcal{C} and every possible world w of M:

- if $M, w \models_{\mathcal{C}} \varphi$ then $M, w \models_{\mathcal{C}} \psi$

Entailment can be reduced to validity:

- $\varphi \models_{\mathcal{C}} \psi$ iff $\models_{\mathcal{C}} \varphi \rightarrow \psi$
- $\Theta \models_{\mathcal{C}} \psi$ iff $\models_{\mathcal{C}} \varphi \land \Theta \rightarrow \psi$
Reducing Validity to Satisfiability

The validity problem can be reduced to the satisfiability problem:

Instead of asking whether φ is true in all worlds in all Kripke models in a class, we can ask if $\neg \varphi$ is true in some world in some Kripke model in the class.

Problem formulation:

- **Input**: A formula φ.
- **Output**: “Yes” if there is a Kripke model M and a world w of M such that $M, w \models \varphi$, “No” otherwise.

It turns out that we can systematically search for Kripke models that satisfy some formula. With this tool at hand, we can algorithmically decide validity.