Multi-Agent Systems
 Propositional Logic

Bernhard Nebel, Rolf Bergdoll, and Thorsten Engesser
Winter Term 2019/20

The logical approach

Define a formal language: logical \& non-logical symbols, syntax rules

The logical approach

- Define a formal language: logical \& non-logical symbols, syntax rules
- Provide language with compositional semantics:
- Fix universe of discourse
- Specify how the non-logical symbols can be interpreted: interpretation
- Rules how to combine interpretation of single symbols
- Satisfying interpretation = model
- Semantics often entails concept of logical implication / entailment

The logical approach

- Define a formal language: logical \& non-logical symbols, syntax rules
- Fix universe of discourse
- Specify how the non-logical symbols can be interpreted: interpretation
- Rules how to combine interpretation of single symbols
- Satisfying interpretation = model
- Semantics often entails concept of logical implication / entailment
- Specify a calculus that allows to derive new formulae from old ones - according to the entailment relation

Motivation: Deductive Agent

1: function action in $(\Delta \in D)$ out $(\alpha \in A c)$
2: for all $\alpha \in A c$ do
3: if $\Delta \vdash_{\rho} D o(\alpha)$ then
4: return α
5: end if
6: end for
for all $\alpha \in A c$ do
8: if $\Delta \nvdash_{\rho} \neg \operatorname{Do}(\alpha)$ then return α
end if
end for
12: return null
$\square \Delta$: Set of formulae written in some logic.
$\square \vdash$: Relation that holds between Δs and formulae that can be derived from Δ.

Proposi-
tional Logic
Syntax
Semantics

Propositional Logic

Propositional logic: main ideas

- Non-logical symbols: propositional variables or atoms
- representing propositions which cannot be decomposed
- which can be true or false (for example: "Snow is white", "It rains")

Propositional logic: main ideas

- Non-logical symbols: propositional variables or atoms
- representing propositions which cannot be decomposed
- which can be true or false (for example: "Snow is white", "It rains")
- Logical symbols: propositional connectives such as: and (\wedge), or (\vee), and not (\neg)

Propositional logic: main ideas

- Non-logical symbols: propositional variables or atoms
- representing propositions which cannot be decomposed
- which can be true or false (for example: "Snow is white", "It rains")
- Logical symbols: propositional connectives such as: and (\wedge), or (\vee), and not (\neg)
- Formulae: built out of atoms and connectives
- Universe of discourse: truth values

Proposi-
tional Logic
Syntax
Semantics
Syntax
Terminology

Countable alphabet Σ of propositional variables: a, b, c, \ldots Propositional formulae are built according to the following rule:

φ ::=	a	atomic formula
	\perp	falsity
	T	truth
	$\neg \varphi^{\prime}$	negation
	$\left(\varphi^{\prime} \wedge \varphi^{\prime \prime}\right)$	conjunction
	$\left(\varphi^{\prime} \vee \varphi^{\prime \prime}\right)$	disjunction
	$\left(\varphi^{\prime} \rightarrow \varphi^{\prime \prime}\right)$	implication
	$\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$	equivalence

Semantics
Terminology
$\neg \varphi^{\prime} \quad$ negation
($\left.\varphi^{\prime} \wedge \varphi^{\prime \prime}\right) \quad$ conjunction
($\varphi^{\prime} \vee \varphi^{\prime \prime}$) disjunction
($\varphi^{\prime} \rightarrow \varphi^{\prime \prime}$) implication
($\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}$) equivalence

Countable alphabet Σ of propositional variables: a, b, c, \ldots Propositional formulae are built according to the following rule:

$\varphi \quad::=$	a	atomic formula
	\perp	falsity
	\top	truth
	$\neg \varphi^{\prime}$	negation
	$\left(\varphi^{\prime} \wedge \varphi^{\prime \prime}\right)$	conjunction
	$\left(\varphi^{\prime} \vee \varphi^{\prime \prime}\right)$	disjunction
	$\left(\varphi^{\prime} \rightarrow \varphi^{\prime \prime}\right)$	implication
	$\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$	equivalence

Parentheses can be omitted if no ambiguity arises.
Operator precedence: $\neg>\wedge>\vee>\rightarrow=\leftrightarrow$.

Language and meta-language

$\square(a \vee b)$ is an expression of the language of propositional logic.

- $\varphi::=a|\ldots|\left(\varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}\right)$ is a statement about how expressions in the language of propositional logic can be formed. It is stated using meta-language.
- In order to describe how expressions (in this case formulae) can be formed, we use meta-language.
- When we describe how to interpret formulae, we use meta-language expressions.

Proposi-
tional Logic
Syntax
Semantics

Semantics

Semantics: idea

- Atomic propositions can be true $(1, T)$ or false $(0, F)$.
- Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a formula can be computed from the truth values of the atoms and the connectives.
- Example:

$$
(a \vee b) \wedge c
$$

is true iff c is true and, additionally, a or b is true.

Semantics: idea

- Atomic propositions can be true $(1, T)$ or false $(0, F)$.
- Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a formula can be computed from the truth values of the atoms and the connectives.
- Example:

$$
(a \vee b) \wedge c
$$

is true iff c is true and, additionally, a or b is true.
Logical implication can then be defined as follows:

- φ is implied by a set of formulae Θ iff φ is true for all truth assignments (world states) that make all formulae in Θ true.

Formal semantics

An interpretation (or truth assignment) over Σ is a function:

$$
\mathscr{I}: \Sigma \rightarrow\{T, F\} .
$$

Formal semantics

An interpretation (or truth assignment) over Σ is a function:

$$
\mathscr{I}: \Sigma \rightarrow\{T, F\} .
$$

Proposi-
tional Logic
Syntax
Semantics
Terminology

$$
\begin{aligned}
& \mathscr{I} \neq \top \\
& \mathscr{I} \not \models \perp
\end{aligned}
$$

$$
\mathscr{I} \vDash \neg \varphi \quad \text { iff } \quad \mathscr{I} \not \models \varphi
$$

$$
\mathscr{I} \vDash \varphi \wedge \varphi^{\prime} \quad \text { iff } \quad \mathscr{I} \vDash \varphi \text { and } \mathscr{I} \mid=\varphi^{\prime}
$$

$$
\mathscr{I} \vDash \varphi \vee \varphi^{\prime} \quad \text { iff } \quad \mathscr{I} \vDash \varphi \text { or } \mathscr{I} \vDash \varphi^{\prime}
$$

$$
\mathscr{I} \vDash \varphi \rightarrow \varphi^{\prime} \quad \text { iff } \quad \text { if } \mathscr{I} \vDash \varphi \text { then } \mathscr{I} \vDash \varphi^{\prime}
$$

$$
\mathscr{I} \vDash \varphi \leftrightarrow \varphi^{\prime} \quad \text { iff } \quad \mathscr{I} \vDash \varphi \text { if and only if } \mathscr{I} \vDash \varphi^{\prime}
$$

Example

Given

$$
\begin{gathered}
\mathscr{I}: a \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T, \\
\text { Is }((a \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d)) \text { true or false? }
\end{gathered}
$$

Example

Given

$$
\mathscr{I}: a \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T,
$$

$$
((\mathbf{a} \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d))
$$

$$
\text { Is }((a \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d)) \text { true or false? }
$$

Example

Given

$$
\mathscr{I}: a \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T,
$$

Is $((a \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d))$ true or false?

$$
((\mathbf{a} \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(a \wedge c) \vee(c \wedge \neg d))
$$

$$
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
$$

Example

Given

$$
\mathscr{I}: a \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T,
$$

Proposi-
tional Logic
Syntax
Semantics
Terminology

$$
\begin{aligned}
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
& ((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
\end{aligned}
$$

Example

Given

$$
\begin{gathered}
\mathscr{I}: \mathbf{a} \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T, \\
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(c \wedge \neg \mathbf{c})) \text { true or false? } \\
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
\\
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
\end{gathered}
$$

Proposi-
tional Logic
Syntax
Semantics
Terminology

Example

Given

$$
\begin{gathered}
\mathscr{I}: \mathbf{a} \mapsto T, b \mapsto F, c \mapsto F, d \mapsto T, \\
\text { Is }((\mathbf{a} \vee b) \leftrightarrow(c \vee d)) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(c \wedge \neg \mathbf{c})) \text { true or false? } \\
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d})) \\
((\mathbf{a} \vee \mathbf{b}) \leftrightarrow(\mathbf{c} \vee \mathbf{d})) \wedge(\neg(\mathbf{a} \wedge \mathbf{c}) \vee(\mathbf{c} \wedge \neg \mathbf{d}))
\end{gathered}
$$

Proposi-
tional Logic
Syntax

Terminology

Terminology

An interpretation \mathscr{I} is a model of φ iff $\mathscr{I} \vDash \varphi$. A formula φ is

- satisfiable if there is an \mathscr{I} such that $\mathscr{I} \vDash \varphi$;
- unsatisfiable, otherwise; and
- valid if $\mathscr{I} \vDash \varphi$ for each \mathscr{I} (or tautology);
- falsifiable, otherwise.

Terminology

An interpretation \mathscr{I} is a model of φ iff $\mathscr{I} \vDash \varphi$.
A formula φ is

- satisfiable if there is an \mathscr{I} such that $\mathscr{I} \vDash \varphi$;
- unsatisfiable, otherwise; and
- valid if $\mathscr{I}=\varphi$ for each \mathscr{I} (or tautology);
- falsifiable, otherwise.

Formulae φ and ψ are logically equivalent (symb. $\varphi \equiv \psi$) if for all interpretations \mathscr{I},

$$
\mathscr{I} \vDash \varphi \text { iff } \mathscr{I} \vDash \psi .
$$

Examples

Satisfiable, unsatisfiable, falsifiable, valid?

$(a \vee b \vee \neg c) \wedge(\neg a \vee \neg b \vee d) \wedge(\neg a \vee b \vee \neg d)$

Proposi-

Examples

Satisfiable, unsatisfiable, falsifiable, valid?
$(a \vee b \vee \neg c) \wedge(\neg a \vee \neg b \vee d) \wedge(\neg a \vee b \vee \neg d)$
satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \ldots$

Proposi-
tional Logic
Syntax
Semantics
Terminology

Examples

Satisfiable, unsatisfiable, falsifiable, valid?
$(a \vee b \vee \neg c) \wedge(\neg a \vee \neg b \vee d) \wedge(\neg a \vee b \vee \neg d)$
satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \ldots$
falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \ldots$

Proposi-
tional Logic
Syntax
Semantics
Terminology

Examples

Satisfiable, unsatisfiable, falsifiable, valid?

$$
(a \vee b \vee \neg c) \wedge(\neg a \vee \neg b \vee d) \wedge(\neg a \vee b \vee \neg d)
$$

satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \ldots$
falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \ldots$

Proposi-
tional Logic
Syntax
Semantics
Terminology
$((\neg a \rightarrow \neg b) \rightarrow(b \rightarrow a))$

Examples

Satisfiable, unsatisfiable, falsifiable, valid?
$(a \vee b \vee \neg c) \wedge(\neg a \vee \neg b \vee d) \wedge(\neg a \vee b \vee \neg d)$
\leadsto satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \ldots$
\leadsto falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \ldots$
Proposi-
tional Logic
Syntax
$((\neg a \rightarrow \neg b) \rightarrow(b \rightarrow a))$
\leadsto satisfiable: $a \mapsto T, b \mapsto T$

Examples

Satisfiable, unsatisfiable, falsifiable, valid?
$(a \vee b \vee \neg c) \wedge(\neg a \vee \neg b \vee d) \wedge(\neg a \vee b \vee \neg d)$
$~$ satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \ldots$
\leadsto falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \ldots$
$((\neg a \rightarrow \neg b) \rightarrow(b \rightarrow a))$
\sim satisfiable: $a \mapsto T, b \mapsto T$
$~$ valid: Consider all interpretations or argue about falsifying ones.

Examples

Satisfiable, unsatisfiable, falsifiable, valid?
$(a \vee b \vee \neg c) \wedge(\neg a \vee \neg b \vee d) \wedge(\neg a \vee b \vee \neg d)$
$~$ satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \ldots$
\sim falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \ldots$
$((\neg a \rightarrow \neg b) \rightarrow(b \rightarrow a))$
$~$ satisfiable: $a \mapsto T, b \mapsto T$
\leadsto valid: Consider all interpretations or argue about falsifying ones.

Equivalence? $\neg(a \vee b) \equiv \neg a \wedge \neg b$

Examples

Satisfiable, unsatisfiable, falsifiable, valid?
$(a \vee b \vee \neg c) \wedge(\neg a \vee \neg b \vee d) \wedge(\neg a \vee b \vee \neg d)$
$~$ satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \ldots$
$~$ falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \ldots$

Proposi-
tional Logic
$((\neg a \rightarrow \neg b) \rightarrow(b \rightarrow a))$
$~$ satisfiable: $a \mapsto T, b \mapsto T$
$~$ valid: Consider all interpretations or argue about falsifying ones.

Equivalence? $\neg(a \vee b) \equiv \neg a \wedge \neg b$
\sim Of course, equivalent (de Morgan).

Some obvious consequences

$2 \stackrel{24}{4}$

Proposition

φ is valid iff $\neg \varphi$ is unsatisfiable.
φ is satisfiable iff $\neg \varphi$ is falsifiable.

Proposi-
tional Logic
Syntax
Semantics
Terminology

Some obvious consequences

2푼

Proposition

φ is valid iff $\neg \varphi$ is unsatisfiable.
φ is satisfiable iff $\neg \varphi$ is falsifiable.

Proposition

$\varphi \equiv \psi$ iff $\varphi \leftrightarrow \psi$ is valid.

Some obvious consequences

Proposition

φ is valid iff $\neg \varphi$ is unsatisfiable.
φ is satisfiable iff $\neg \varphi$ is falsifiable.

Proposi-
tional Logic

Proposition

$\varphi \equiv \psi$ iff $\varphi \leftrightarrow \psi$ is valid.
Theorem
If $\varphi \equiv \psi$, and χ^{\prime} results from substituting φ by ψ in χ, then $\chi^{\prime} \equiv \chi$.

Some equivalences

simplifications	$\varphi \rightarrow \psi \equiv$	$\neg \varphi \vee \psi$	$\varphi \leftrightarrow \psi>$	$\begin{aligned} & (\varphi \rightarrow \psi) \wedge \\ & (\psi \rightarrow \varphi) \end{aligned}$	Propositional Logic
idempotency	$\varphi \vee \varphi \equiv$	φ	$\varphi \wedge \varphi \equiv$	φ	Syntax
commutativity	$\varphi \vee \psi \equiv$	$\psi \vee \varphi$	$\varphi \wedge \psi \equiv$	$\psi \wedge \varphi$	Semantics
associativity	$(\varphi \vee \psi) \vee \chi \equiv$	$\varphi \vee(\psi \vee \chi)$	$(\varphi \wedge \psi) \wedge \chi \equiv$	$\varphi \wedge(\psi \wedge \chi)$	Terminology
absorption	$\varphi \vee(\varphi \wedge \psi) \equiv$	φ	$\varphi \wedge(\varphi \vee \psi) \equiv$	φ	
distributivity	$\varphi \wedge(\psi \vee \chi) \equiv$	$\begin{aligned} & (\varphi \wedge \psi) \vee \\ & (\varphi \wedge \chi) \end{aligned}$	$\varphi \vee(\psi \wedge \chi) \equiv$	$\begin{aligned} & (\varphi \vee \psi) \wedge \\ & (\varphi \vee \chi) \end{aligned}$	
double negation	$\neg \neg \varphi \equiv$	φ			
constants	$\neg \top \equiv$	\perp	$\neg \perp \equiv$	T	
De Morgan	$\neg(\varphi \vee \psi) \equiv$	$\neg \varphi \wedge \neg \psi$	$\neg(\varphi \wedge \psi) \equiv$	$\neg \varphi \vee \neg \psi$	
truth	$\varphi \vee \top \equiv$	T	$\varphi \wedge \top \equiv$	φ	
falsity	$\varphi \vee \perp \equiv$	φ	$\varphi \wedge \perp \equiv$	\perp	
taut./contrad.	$\varphi \vee \neg \varphi \equiv$	T	$\varphi \wedge \neg \varphi \equiv$	\perp	

How many different formulae are there ...

...for a given finite alphabet Σ ?

How many different formulae are there ...

...for a given finite alphabet Σ ?

- Infinitely many: $a, a \vee a, a \wedge a, a \vee a \vee a, \ldots$

How many different formulae are there ...

...for a given finite alphabet Σ ?

- Infinitely many: $a, a \vee a, a \wedge a, a \vee a \vee a, \ldots$
- How many different logically distinguishable (not equivalent) formulae?

How many different formulae are there ...

...for a given finite alphabet Σ ?
■ Infinitely many: $a, a \vee a, a \wedge a, a \vee a \vee a, \ldots$

- How many different logically distinguishable (not equivalent) formulae?
- A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).

How many different formulae are there ...

...for a given finite alphabet Σ ?

- Infinitely many: $a, a \vee a, a \wedge a, a \vee a \vee a, \ldots$
- How many different logically distinguishable (not equivalent)

Proposi-
tional Logic formulae?

- A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
- For Σ with $n=|\Sigma|$, there are 2^{n} different interpretations.

How many different formulae are there ...

...for a given finite alphabet Σ ?

- Infinitely many: $a, a \vee a, a \wedge a, a \vee a \vee a, \ldots$
- How many different logically distinguishable (not equivalent) formulae?
- A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
- For Σ with $n=|\Sigma|$, there are 2^{n} different interpretations.
- There are $2^{\left(2^{n}\right)}$ different sets of interpretations.

How many different formulae are there ...

...for a given finite alphabet Σ ?

- Infinitely many: $a, a \vee a, a \wedge a, a \vee a \vee a, \ldots$
- How many different logically distinguishable (not equivalent) formulae?
- A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
- For Σ with $n=|\Sigma|$, there are 2^{n} different interpretations.
- There are $2^{\left(2^{n}\right)}$ different sets of interpretations.
- There are $2^{\left(2^{n}\right)}$ (logical) equivalence classes of formulae.

Logical implication

Proposi-
tional Logic
Syntax

- φ is logically implied by Θ (symbolically $\Theta \vDash \varphi$) iff φ is true in all models of Θ :

Semantics
Terminology

$$
\Theta \vDash \varphi \text { iff } \mathscr{I} \vDash \varphi \text { for all } \mathscr{I} \text { such that } \mathscr{I} \models \Theta
$$

Logical implication

- φ is logically implied by Θ (symbolically $\Theta \mid \varphi$) iff φ is true in all models of Θ :

$$
\Theta \vDash \varphi \text { iff } \mathscr{I} \vDash \varphi \text { for all } \mathscr{I} \text { such that } \mathscr{I} \models \Theta
$$

- Deduction theorem: $\Theta \cup\{\varphi\} \vDash \psi$ iff $\Theta \mid=\varphi \rightarrow \psi$

Deciding entailment

- We want to decide $\Theta \mid=\varphi$.

Deciding entailment

- We want to decide $\Theta \mid=\varphi$.
- Use deduction theorem and reduce to validity:

$$
\Theta \vDash \varphi \text { iff } \bigwedge \Theta \rightarrow \varphi \text { is valid. }
$$

- Now negate and test for unsatisfiability using tableaux.

Deciding entailment

- We want to decide $\Theta \mid=\varphi$.
- Use deduction theorem and reduce to validity:

$$
\Theta \vDash \varphi \text { iff } \bigwedge \Theta \rightarrow \varphi \text { is valid. }
$$

■ Now negate and test for unsatisfiability using tableaux.

- Different approach: Try to derive φ from Θ - find a proof of φ from Θ.

Deciding entailment

- We want to decide $\Theta \mid=\varphi$.
- Use deduction theorem and reduce to validity:

$$
\Theta \vDash \varphi \text { iff } \bigwedge \Theta \rightarrow \varphi \text { is valid. }
$$

- Now negate and test for unsatisfiability using tableaux.
- Different approach: Try to derive φ from Θ - find a proof of φ from Θ.
- Use inference rules to derive new formulae from Θ. Continue to deduce new formulae until φ can be deduced.

Propositional Tableaux

- Goal: Prove the unsatisfiability of a formula by trying to construct a model.
- General principle: Break each formula into its components up to the simplest one, where contradiction is easy to spot.
- Tableaux algorithm for propositional logic always terminates, and is sound and complete.

Propositional Tableaux

- A tableaux is a tree. Each branch of that tree corresponds to one attempt to find a model for the input formula.
- Initial Tableaux consists of the node: $\wedge \Theta \wedge \neg \varphi$
$■ \Theta=\varphi$ iff $\wedge \Theta \rightarrow \varphi$ is valid iff $\neg(\wedge \Theta \rightarrow \varphi)$ is unsatisfiable iff $\wedge \Theta \wedge \neg \varphi$ is unsatisfiable
- The tableaux can be incrementally extended by applying rules:
- And-Rule: If $\varphi \wedge \psi$ is in a branch, then add φ and ψ to it.
- Or-Rule: If $\varphi \vee \psi$ is in a branch, then add φ to it, add a new branch, and add ψ to it.
- Implication: If $\varphi \rightarrow \psi$ is in a branch, then add $\neg \varphi$ to it, add a new branch, and add ψ to it.

Propositional Tableaux

- NotNot: If $\neg \neg \varphi$ is in a branch, then add φ to it.
- NotAnd: If $\neg(\varphi \wedge \psi)$ is in a branch, then add $\neg \varphi$ to it, add a new branch, and add $\neg \psi$ to it.
\square NotOr: If $\neg(\varphi \vee \psi)$ is in a branch, then add $\neg \varphi$ and $\neg \psi$ to it.
■ Notlmplication: If $\neg(\varphi \rightarrow \psi$ is in a branch, then add φ and $\neg \psi$ to that branch.

Propositional Tableaux: Closed Tableaux

- A branch is saturated if no more rule can be applied.
- A branch is closed if it contains formulae φ and $\neg \varphi$.
- A tableaux is closed if all branches are closed.
- If the tableaux is closed, this means no model for the input formula could be found, hence, its negation is valid.

