Multi-Agent Systems

Introduction

Albert-Ludwigs-Universität Freiburg

Z

Bernhard Nebel, Rolf Bergdoll, and Thorsten Engesser

Winter Term 2019/20

Lectures

Where

Building 101, Room 01-018

When

Tuesday 16-17, Friday 14-16

Web page

http://gki.informatik.uni-freiburg.de/teaching/ws1920/multiagent-systems/

Lecturers

Prof. Dr. Bernhard Nebel Room 52-00-028

Phone: 0761/203-8221

email: nebel@informatik.uni-freiburg.de

Thorsten Engesser Room 52-00-041

Phone: 0761/203-67489

email: engesser@informatik.uni-freiburg.de

Rolf Bergdoll Room 52-00-041

Phone: 0761/203-67489

email: bergdolr@informatik.uni-freiburg.de

Nebel, Engesser, Bergdoll – MAS

2 / 22

Exercises: Dates

Where

Building 101, Room 01-018

When

Tuesday 17 - 18

Exercises: Procedure

- Exercises will be handed out and posted on the web page the day of the Friday lecture.
- You work in groups of size 2–3.
- Each group hands in one solution (in English or in German).
- Solutions to previous week's exercise sheet have to be handed in until Friday 14:00 to
 - Thorsten Engesser, engesser@informatik.uni-freiburg.de

Nebel, Engesser, Bergdoll - MAS

5/22

Examination

- Studienleistung: you must reach at least 50% of the points on exercises.
- Prüfungsleistung: An oral or written examination takes place during the semester break. The examination is obligatory for all Bachelor students (oral) and Master students (oral or written depends on the number of students taking the exam).

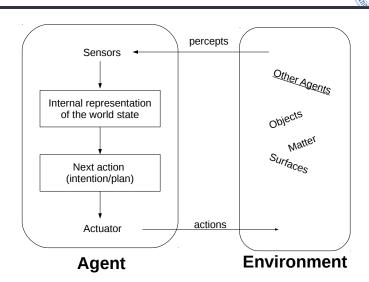
Nebel, Engesser, Bergdoll - MAS

6 / 22

UNI FREIBURG

Course goals

7 / 22


Goals

- You can read and understand MAS research literature
- You can formulate problems as multi-agent problems
- You know about MAS algorithms and some of their formal properties
- You can complete a project/thesis in this research area

Helpful

- Basic knowledge in general Computer Science, i.e., programming, algorithms, and computational complexity
- Basic knowledge in the area of Al
- Basic knowledge in formal logics

Agents: Standard View

Nebel, Engesser, Bergdoll - MAS

8 / 2

Nebel, Engesser, Bergdoll - MAS

Agents: Examples

UNI

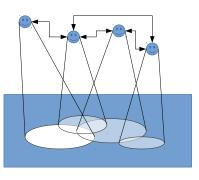
Which of these entities qualify as agents:

- Human beings
- Animals
- Plants
- (Non-)Self-driving cars
- Light switches
- Tables

Nebel, Engesser, Bergdoll - MAS

9 / 22

Multi-Agent Systems: Example


- Video: Kilobots Formation
- Common goal, different local views, different capabilities
- Cooperation, Communication protocol, Assembly

Multi-Agent Systems

Shoham, Layton-Brown, 2009

Multi-agent systems are those systems that include multiple autonomous entities with either diverging information or diverging interests, or both.

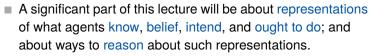
Nebel, Engesser, Bergdoll - MAS

10 / 22

Agent-oriented paradigm versus Object-oriented paradigm

- "Objects do it for free; agents do it for money." (Jennings, Sycara, Wooldridge, 1998)
- "Objects do it because they have to; agents because they want to." (Joseph, Kawamura, 2001)
- Objects are passive service providers but agents are:
 - autonomous: Decide themselves whether or not to perform an action
 - smart: reactive, pro-active, social behavior
 - active: MAS is inherently multi-threaded (at least one thread per agent)
- (However, this does not imply that agents cannot be implemented in an OOP framework; actually, they are most of the time.)

Connection to other areas


- Distributed/Concurrent Systems
 - Similarity: Agents too are autonomous systems capable of making independent decisions \rightarrow need for mechanisms to synchronize and coordinate at run time
- Economics/Game Theory
 - Game theory is heavily used in MAS, but
 - MAS is more concerned with computational aspects in context of resource-bounded agents
 - Some assumptions (such as rational agency) may not entirely match with requirements of some kinds of artificial agents
- Artificial Intelligence
 - MAS often seen as a sub-field of AI
 - Historically, MAS stresses the social aspect of agency more than classical AI does

Nebel, Engesser, Bergdoll - MAS

13 / 22

Why Logic?

- Logic is one of the best developed systems for knowledge representation and reasoning.
- Logic can be used for analysis, design, specification, and implementation.
- Understanding formal logic is a prerequisite for understanding much of MAS research.

Course outline

- Introduction to MAS
- 2 Recap. propositional logic
- Modal logic for MAS
- Epistemic logic for MAS
- 5 Public annoucement logic and the muddy children
- Epistemic MAS planning
- Multi-agent pathfinding
- Speech acts
- 9 Deontic logic
- 10 Belif, Desire, Intention
- 111 Distributed constraint satisfation
- 12 Cooperative game theory

Nebel, Engesser, Bergdoll - MAS

14 / 22

Knowledge

- Factual knowledge: Deriving knowledge from a given knowledge base to determine what to do next.
 - Because Tina knows that it is raining, she takes an umbrella
- Knowledge about knowledge: Deriving what other agents know.
 - Because Tina knows that Ben knows that it is raining, Tina knows that it is raining.
- System level: Distributed knowledge and common knowledge.
 - Tina knows that it is raining. Ben knows that if it is raining, then the street gets wet. Together, they know that the street is wet.

Communication

- Agents can communicate with other agents thereby causing changes of other agent's knowledge.
- E.g., if both Tina announces the fact it is raining and Ben announces the rule if it is raining, then the street gets wet, then it is common knowledge that the street is wet.
- Other types of speech acts: Request, CauseToWant, ...

Nebel, Engesser, Bergdoll - MAS

17 / 22

Beliefs, Desires, Intentions

■ Cohen & Levesque's logic for Beliefs, Desires, Intentions

■ The GOAL Agent Programming Framework (Koen Hindriks, TU Delft https://goalapl.atlassian.net/wiki/)

Nebel, Engesser, Bergdoll - MAS

18 / 22

Norms and Duties

- Socialization is the process of internalizing the norms and ideologies of society, e.g., Kohlberg (1996):
 - Pre-conventional phase
 - Conventional phase
 - Post-conventional phase
- Modal logics for obligations, permissions, prohibitions
- Brief outlook on machine ethics

Coordination and Decision Making

- Multi-Agent Path Finding
- Distributed Constraint Satisfaction
- Cooperative Games: Distributing value among group members (Optimality & Fairness)

Literature I

Nebel, Engesser, Bergdoll - MAS

21 / 22

Credits

This course has evolved over the years. The following people have contributed to its development and the design of the slides:

- Dr. Alexander Kleiner (Bosch)
- Prof. Dr. Christian Becker-Asano (Hochschule der Medien, Stuttgart)
- Prof. Dr. Felix Kleiner (Univ. Ulm)

Nebel, Engesser, Bergdoll - MAS

22 / 22