
Multi-Agent Systems

B. Nebel, R. Bergdoll, T. Engesser
Winter Semester 2019/20

University of Freiburg
Department of Computer Science

Exercise Sheet 13
Due: February 7, 2020, 14:00

Exercise 13.1 (Argumentation Frameworks, 2+1+2)

Consider the following argumentation framework:

a b c d e

(a) Generate the grounded labeling using the grounded labeling algorithm.

(b) List all complete labelings. Identify all stable and preferred labelings.

(c) Use admissible discussions to verify that

• e is in the in set of some preferred labeling,

• d is in the in set of some preferred labeling,

• c is in the in set of some preferred labeling,

• b is not in the in set of any preferred labeling, and

• a is in the in set of some preferred labeling.

Exercise 13.2 (Admissible Discussions, 2+1+1)

We want to write a program that reads a single argumentation framework from a JSON specification file
and decides for one given argument whether or not it is part of the in-set of some preferred labeling. The
JSON object with which we represent an argumentation framework is a single dictionary where the keys
are exactly the (names of the) arguments in the framework. The value assigned to each key is a list of
exactly the attacked arguments. Both the filename of the JSON specification file and the name of the
argument a for which the admissible discussions is to be performed should be passed to your program as
command line parameters. The program should then write the following onto the standard output:

(a) all possible admissible discussions starting with in(a), each on its own line,

(b) the winner of each discussion in brackets, at the end of the respective line, as well as

(c) one final line stating whether a is in for (some|no) preferred labeling.

Consider the following example, where the discussion framework specified in df.json is the JSON ob-
ject {"a": ["b"], "b": ["c", "d"], "c": ["d", "e"], "d": ["c", "e"], "e": []} and the ar-
gument of interest is d. A call of python3 discuss.py df.json d could yield the following output:

in(d), out(b), in(a), out(c), in(b) [S]

in(d), out(b), in(a), out(c), in(d) [M]

in(d), out(c), in(b), out(b) [S]

in(d), out(c), in(b), out(a) [S]

in(d), out(c), in(d), out(b), in(a) [M]

d is in for some preferred labeling

Exercise 13.3 (CSPs and Admissible Discussions, 2+1)

(a) Generate a JSON specification file for the argumentation framework representing the constraint
satisfaction problem from Exercise 11.2.

(b) Use your implementation and identify an admissible discussion in which M wins and which contains
an assignment for each of the variables. Hint: You might have to try different initial in-arguments.


