Principles of AI Planning

Prof. Dr. B. Nebel, Dr. R. Mattmüller
University of Freiburg
D. Speck, T. Schulte, M. Kantz

Department of Computer Science
Winter Semester 2019/2020

Exercise Sheet 12

Due: Friday, January 31th, 2020
Send your solution to mario.kantz@gmail.com (PDF only) or submit a hardcopy before the lecture. The exercise sheets may and should be worked on and handed in in groups of two or three students. Please indicate all names on your solution.

Exercise 12.1 (BDDs, 4 points)

Let B be the BDD over the variables v_{1}, \ldots, v_{5} depicted on the right. Reduce B as much as possible. Give intermediate results after each reduction step. Give representations of B as a formula in conjunctive normal form and as a set of states.

Exercise 12.2 (Planning with BDDs, $1+1+2+2$ points)
Let $\Pi=\langle V, I, O, \gamma\rangle$ be a propositional planning task with the following components.

- $V=\left\{v_{1}, v_{2}, v_{3}\right\}$
- $I\left(v_{1}\right)=1, I\left(v_{2}\right)=0$ and $I\left(v_{3}\right)=0$
- $O=\left\{o_{1}, o_{2}\right\}$
$-o_{1}=\left\langle v_{1}, v_{2} \wedge \neg v_{3}\right\rangle$
$-o_{2}=\left\langle v_{2}, \neg v_{2} \wedge v_{3}\right\rangle$
- $\gamma=v_{3}$

Furthermore, we assume a variable order $v_{1} \prec v_{1}^{\prime} \prec v_{2} \prec v_{2}^{\prime} \prec v_{3} \prec v_{3}^{\prime}$.
(a) Draw the reduced ordered BDD for I, i.e., bdd-singleton (I).
(b) Draw the reduced ordered BDD for γ, i.e., bdd-formula (γ).
(c) Draw the reduced ordered BDD for o_{1} and o_{2}, i.e., bdd-formula $\left(\tau_{V}\left(o_{1}\right)\right)$ and bdd-formula $\left(\tau_{V}\left(o_{2}\right)\right)$.
(d) Describe the next steps necessary to find a solution based on the symbolic representation of planning task Π created in (a)-(c). In other words, describe the idea of symbolic breadth-first search by means of planning task Π.

