SAT Modelling
Idea: Problem Transformation

Planning Problem → Planner → Plan
Idea: Problem Transformation

Planning Problem → Transformer → XYZ Problem
Idea: Problem Transformation

Planning Problem → Transformer → XYZ Problem → XYZ Solver

Invariants
∀-step
∃-step
Idea: Problem Transformation

Planning Problem → Transformer → SAT problem → SAT Solver
Definition (SAT)

Given a propositional formula \(\mathcal{F} \), decide whether \(\mathcal{F} \) has a satisfying valuation.
Definition (SAT)

Given a propositional formula \(\mathcal{F} \), decide whether \(\mathcal{F} \) has a satisfying valuation.

Definition (CNF-SAT)

Given a propositional formula \(\mathcal{F} \) in conjunctive normal form, decide whether \(\mathcal{F} \) has a satisfying valuation.
Definition (SAT)

Given a propositional formula \mathcal{F}, decide whether \mathcal{F} has a satisfying valuation.

Definition (CNF-SAT)

Given a propositional formula \mathcal{F} in conjunctive normal form, decide whether \mathcal{F} has a satisfying valuation.

A valuation is an assignment of decision variables to $\{\top, \bot\}$.
Definition (SAT)

Given a propositional formula \mathcal{F}, decide whether \mathcal{F} has a satisfying valuation.

Definition (CNF-SAT)

Given a propositional formula \mathcal{F} in conjunctive normal form, decide whether \mathcal{F} has a satisfying valuation.

A valuation is an assignment of decision variables to $\{\top, \bot\}$.

CNF:

$$\mathcal{F} = \bigwedge_{C \in \mathcal{C}} \bigvee_{\ell \in C} \ell$$

(\mathcal{C} is the set of clauses; C is a clause, a set of literals.)
SAT solvers are programs that determine whether a satisfying valuation exists and if so output it.
SAT Solvers

- SAT solvers are programs that determine whether a satisfying valuation exists and if so output it.
- A lot of research in recent years (annual competitions since 2002).
SAT Solvers

- SAT solvers are programs that determine whether a satisfying valuation exists and if so output it.
- A lot of research in recent years (annual competitions since 2002).
- Usable OSes have minisat in their package manager.
SAT Solvers

- SAT solvers are programs that determine whether a satisfying valuation exists and if so output it.
- A lot of research in recent years (annual competitions since 2002).
- Usable OSes have minisat in their package manager.
- Standardised input format DIMACS:

```
p cnf 5 3  
1 -5 4 0  
-1 5 3 4 0  
-3 -4 0  
≡

CNF with 5 vars and 3 clauses:

(ν₁ ∨ ¬ν₅ ∨ ν₄) ∧
(¬ν₁ ∨ ν₅ ∨ ν₃ ∨ ν₄) ∧
(¬ν₃ ∨ ¬ν₄)
```
Definition

Given a graph $G = (V, E)$ and a number k. Is there an assignment of k colours to the vertices of G, such that all adjacent vertices have different colours?
Colouring

Definition

Given a graph $G = (V, E)$ and a number k. Is there an assignment of k colours to the vertices of G, such that all adjacent vertices have different colours?
Colouring

Variables for choosing the colour of each node

\[\text{colour}_v^i \quad \text{where} \quad v \in V \quad \text{and} \quad i \in \{1, \ldots, k\}\]
Colouring

Variables for choosing the colour of each node

\[\text{colour}^i_v \text{ where } v \in V \text{ and } i \in \{1, \ldots, k\} \]

If a node has a colour, all adjacent nodes have a different colour

\[\text{colour}^i_v \rightarrow \neg\text{colour}^i_w \quad \forall (v, w) \in E \]
Colouring

Variables for choosing the colour of each node

\[\text{colour}_v^i \text{ where } v \in V \text{ and } i \in \{1, \ldots, k\} \]

If a node has a colour, all adjacent nodes have a different colour

\[\text{colour}_v^i \rightarrow \neg\text{colour}_w^i \quad \forall(v, w) \in E \]
\[\neg\text{colour}_v^i \lor \neg\text{colour}_w^i \quad \forall(v, w) \in E \]
Colouring

Variables for choosing the colour of each node

\[\text{colour}_v^i \text{ where } v \in V \text{ and } i \in \{1, \ldots, k\} \]

If a node has a colour, all adjacent nodes have a different colour

\[\text{colour}_v^i \rightarrow \neg \text{colour}_w^i \quad \forall (v, w) \in E \]
\[\neg \text{colour}_v^i \vee \neg \text{colour}_w^i \quad \forall (v, w) \in E \]

Every node has a colour

\[\bigvee_{i=1}^{k} \text{colour}_v^i \quad \forall v \in V \]
Colouring

Variables for choosing the colour of each node
\[\text{colour}^i_v \text{ where } v \in V \text{ and } i \in \{1, \ldots, k\} \]

If a node has a colour, all adjacent nodes have a different colour
\[\text{colour}^i_v \rightarrow \neg \text{colour}^i_w \quad \forall (v, w) \in E \]
\[\neg \text{colour}^i_v \lor \neg \text{colour}^i_w \quad \forall (v, w) \in E \]

Every node has a colour
\[\bigvee_{i=1}^{k} \text{colour}^i_v \quad \forall v \in V \]

Every node has at most one colour
\[\bigwedge_{i=1}^{k} \left[\text{colour}^i_v \rightarrow \bigwedge_{j=1, i \neq j}^{k} \neg \text{colour}^j_v \right] \quad \forall v \in V \]
Theoretical Background
Definition (PLANEx)

Given a planning problem \mathcal{P}. Is there a solution π of \mathcal{P}.
Computational Complexity

Definition (PlanEx)
Given a planning problem \(\mathcal{P} \).
Is there a solution \(\pi \) of \(\mathcal{P} \).

Theorem (Bylander’94)
PlanEx is PSPACE-complete.
Computational Complexity

Definition (PlanEx)

Given a planning problem \mathcal{P}. Is there a solution π of \mathcal{P}.

Theorem (Bylander’94)

PlanEx is PSPACE-complete.

Theorem (Bylander’94)

PlanEx with bounded plan length k is PSPACE-complete.
Definition (PLANEx)
Given a planning problem \(\mathcal{P} \).
Is there a solution \(\pi \) of \(\mathcal{P} \).

Theorem (Bylander’94)
PLANEx is PSPACE-complete.

Theorem (Bylander’94)
PLANEx with bounded plan length \(k \) is PSPACE-complete.

PSPACE with NP calculus?
Transformation Idea

- Bounded plan length assumes binary encoding of k.
Transformation Idea

- Bounded plan length assumes binary encoding of k.
- What if we assume k in *unary* encoding?
Transformation Idea

- Bounded plan length assumes binary encoding of k.
- What if we assume k in unary encoding?
- PLANEx “becomes” \mathbb{NP}-“complete”.

For full PLANEx: how to choose the plan length?

Theoretical limit: $2^{|V|}$.
Practical limit: usually smaller (sometimes polynomially bounded).

Start with a small k and increase until a solution is found.
Transformation Idea

- Bounded plan length assumes binary encoding of k.
- What if we assume k in \textit{unary} encoding?
- PLANEx “becomes” NP-“complete”.
- For full PLANEx: how to choose the plan length?
Transformation Idea

- Bounded plan length assumes binary encoding of k.
- What if we assume k in unary encoding?
- PLANEx “becomes” NP-“complete”.
- For full PLANEx: how to choose the plan length?
 - Theoretical limit: $2^{|V|}$.
Transformation Idea

- Bounded plan length assumes binary encoding of k.
- What if we assume k in unary encoding?
- PlanEx “becomes” NP-“complete”.
- For full PlanEx: how to choose the plan length?
 - Theoretical limit: $2^{|\mathcal{V}|}$.
 - Practical limit: usually smaller (sometimes polynomially bounded).
Transformation Idea

- Bounded plan length assumes binary encoding of k.
- What if we assume k in unary encoding?
- PlanEx “becomes” NP-“complete”.
- For full PlanEx: how to choose the plan length?
 - Theoretical limit: $2^{|V|}$.
 - Practical limit: usually smaller (sometimes polynomially bounded).
- Start with a small k and increase until a solution is found.
Bound Iteration

Planning Problem → Transformer $k = 1$ → SAT problem → SAT Solver
Bound Iteration

Planning Problem \rightarrow Transformer $k = 1$ \rightarrow SAT problem \rightarrow SAT Solver \rightarrow Solution

\emptyset Unsolvable
Bound Iteration

Planning Problem → Transformer $k = 1$ → SAT problem → SAT Solver

Solution → Unsolvable
Bound Iteration

Planning Problem → Transformer $k = 2$ → SAT problem → SAT Solver

Solution

\emptyset Unsolvable
Bound Iteration

Planning Problem → Transformer $k = 3$ → SAT problem → SAT Solver

Solution → Unsolvable

∀-step

∃-step

February 5th, 2020 B. Nebel, R. Mattmüller, G. Behnke – AI Planning
Bound Iteration

Planning Problem → Transformer $k = \ldots$ → SAT problem → SAT Solver

Solution → Unsolvable
Bound Iteration

Planning Problem → Transformer $k = 2^{|V|}$ → SAT problem → SAT Solver

Solution → \emptyset Unsolvable

February 5th, 2020 B. Nebel, R. Mattmüller, G. Behnke – AI Planning
Sequential Classical Planning in SAT
A plan is just a sequence of state transitions.

- "Mechanics" is identical in all timesteps.
- Just model one timestep and copy’n’paste.
- Edge constraints!
Decision Variables

We only need two types of decision variables!

1. a_t – Action i is executed at time t.
2. v_t – State variable i is true at time t.
Decision Variables

We only need two types of decision variables!

\[s_I = s_0 \quad s_1 \quad s_2 \quad s_3 \quad s_4 \quad s_5 \quad s_6 \quad s_7 \quad s_8 \quad s_9 \]

\[a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5 \quad a_6 \quad a_7 \quad a_8 \quad a_9 \quad g \]
We only need two types of decision variables!

1. a_i^t – Action i is executed at time t.
We only need two types of decision variables!

1. a_i^t – Action i is executed at time t.
2. v_i^t – State variable i is true at time t.
Overall Formula

$s_i = s_0 \quad s_1 \quad s_2 \quad s_3 \quad s_4 \quad s_5 \quad s_6 \quad s_7 \quad s_8 \quad s_9$

$s_i \Rightarrow a_1 \Rightarrow a_2 \Rightarrow a_3 \Rightarrow a_4 \Rightarrow a_5 \Rightarrow a_6 \Rightarrow a_7 \Rightarrow a_8 \Rightarrow a_9 \Rightarrow g$

Overall Formula

s_i and g must be respected.

$F = k - 1 \land \bigwedge_{t=0} \tau(t) \land \bigwedge_{v_i \in s_I} v_0_i \land \bigwedge_{v_i \in V \setminus s_I} \neg v_0_i \land \bigwedge_{v_i \in g} v_k_i$

Correctly applying actions at each time step (τ).

At-most-one

Invariants

\forall-step

\exists-step
Overall Formula

Constraints to check:

- Correctly applying actions at each time step ($τ$).

$$\mathcal{F} = \bigwedge_{t=0}^{k-1} τ(t)$$

here: $k = 9$
Overall Formula

Constraints to check:
- Correctly applying actions at each time step (τ).
- s_I and g must be respected.

$$
\mathcal{F} = \bigwedge_{t=0}^{k-1} \tau(t) \land \bigwedge_{v_i \in s_I} v_i^0 \land \bigwedge_{v_i \in V \setminus s_I} \lnot v_i^0 \land \bigwedge_{v_i \in g} v_i^k \quad \text{here: } k = 9
$$
Classical Planning via SAT

Constraints to check by $\tau(t)$:
Classical Planning via SAT

Constraints to check by $\tau(t)$:

F_1 Preconditions must hold (in s).
Classical Planning via SAT

Constraints to check by $\tau(t)$:

F_1 Preconditions must hold (in s).

F_2 Effects must occur (in s').
Classical Planning via SAT

Constraints to check by $\tau(t)$:

F_1 Preconditions must hold (in s).

F_2 Effects must occur (in s').

F_3 Unaffected state variables stay unchanged.
Classical Planning via SAT

Constraints to check by $\tau(t)$:

F_1 Preconditions must hold (in s).

F_2 Effects must occur (in s').

F_3 Unaffected state variables stay unchanged.

F_4 At most one action per timestep.
Classical Planning via SAT

$\begin{array}{c} s \quad a \quad s' \\ \bullet \quad \quad \quad \quad \quad \bullet \end{array}$

Constraints to check by $\tau(t)$:

F_1 Preconditions must hold (in s).

F_2 Effects must occur (in s').

F_3 Unaffected state variables stay unchanged.

F_4 At most one action per timestep.

F_5 At least one action per timestep. Necessary?
Classical Planning via SAT

Constraints to check by $\tau(t)$:

F_1 Preconditions must hold (in s).
F_2 Effects must occur (in s').
F_3 Unaffected state variables stay unchanged.
F_4 At most one action per timestep.
F_5 At least one action per timestep. Necessary? No.
Classical Planning via SAT

- Preconditions must hold:

- Effects must occur:
Classical Planning via SAT

- Preconditions must hold:

\[F_1 = \bigwedge_{a \in A} a^{t+1} \rightarrow \bigwedge_{v \in \text{pre}(a)} v^t \]

- Effects must occur:
Classical Planning via SAT

- Preconditions must hold:

\[F_1 = \bigwedge_{a \in A} a^{t+1} \rightarrow \bigwedge_{v \in \text{pre}(a)} v^t \]

- Effects must occur:

\[F_2 = \left[\bigwedge_{a \in A} a^{t+1} \rightarrow \bigwedge_{v \in \text{add}(a)} v^{t+1} \right] \land \left[\bigwedge_{a \in A} a^{t+1} \rightarrow \bigwedge_{v \in \text{del}(a)} \neg v^{t+1} \right] \]
Classical Planning via SAT

- Variables not affected by the executed action must stay the same.

- Only one action at a time:
Classical Planning via SAT

- Variables not affected by the executed action must stay the same.
 → Frame Problem!

- Only one action at a time:
Classical Planning via SAT

- Variables not affected by the executed action must stay the same.
 → Frame Problem!

\[F_3 = \bigwedge_{v \in V} \left((\neg v^t \land v^{t+1}) \rightarrow \bigvee_{a \in A \text{ with } v \in \text{add}(a)} a^{t+1} \right) \land \]
\[\bigwedge_{v \in V} \left(v^t \land \neg v^{t+1} \rightarrow \bigvee_{a \in A \text{ with } v \in \text{del}(a)} a^{t+1} \right) \]

- Only one action at a time:
Classical Planning via SAT

- Variables not affected by the executed action must stay the same.
 - Frame Problem!

\[
F_3 = \bigwedge_{v \in V} \left(\neg v^t \land v^{t+1} \right) \rightarrow \bigvee_{a \in A \text{ with } v \in \text{add}(a)} a^{t+1} \right) \land \bigwedge_{v \in V} \left(v^t \land \neg v^{t+1} \right) \rightarrow \bigvee_{a \in A \text{ with } v \in \text{del}(a)} a^{t+1} \right)
\]

- Only one action at a time:

\[
F_4 = \text{at-most-one}\left(\{a^t \mid a \in A\}\right)
\]
Given a set of decision variables $X = \{x_1, \ldots, x_{|X|}\}$. Find a set of clauses that, if satisfied, will ensure that at most one $x \in X$ is true.
At-most-one

Given a set of decision variables \(X = \{x_1, \ldots, x_{|X|}\} \). Find a set of clauses that, if satisfied, will ensure that at most one \(x \in X \) is true.

Naive encoding:

\[
\bigwedge_{x_1 \in X} \bigwedge_{x_2 \in X \setminus \{x_1\}} \neg x_1 \lor \neg x_2 \\
\neg x_1 \implies \neg x_2 \\
(x_1 \implies \neg x_2) \land (x_2 \implies \neg x_1)
\]
At-most-one

Idea: Introduce new variables!
At-most-one

Idea: Introduce new variables!

\(f_i \) – from index \(i \) on all \(x_i \) will be false

i.e. it is forbidden to use any \(x_i \) after \(i \)
At-most-one

Idea: Introduce new variables!

\(f_i \) – from index \(i \) on all \(x_i \) will be false
i.e. it is forbidden to use any \(x_i \) after \(i \)

Sequential encoding:

\[
\bigwedge_{i=1}^{|X|-1} \neg x_i \lor f_i \\
\quad x_i \Rightarrow f_i
\]

\[
\bigwedge_{i=2}^{|X|-1} \neg f_{i-1} \lor f_i \\
\quad f_{i-1} \Rightarrow f_i
\]

\[
\bigwedge_{i=1}^{|X|} \neg x_i \lor \neg f_{i-1} \\
\quad (x_i \Rightarrow \neg f_{i-1}) \land \\
\quad (f_{i-1} \Rightarrow \neg x_i)
\]
At-most-one

Maybe this is a bit much ...
At-most-one

Maybe this is a bit much ...

\[n_i \] – bit \(i \) (0-index) of a \(\lceil \log(|X|) \rceil \)-digit binary number if one
At-most-one

Maybe this is a bit much ...

\(n_i \) – bit \(i \) (0-index) of a \(\lceil \log(|X|) \rceil \)-digit binary number if one

Binary encoding:

\[
\neg x_i \lor n_j \\
\neg x_i \lor \neg n_j
\]

if \(\frac{i}{2^j} \) mod 2 = 1

if \(\frac{i}{2^j} \) mod 2 = 0
Different AMO Implementations

<table>
<thead>
<tr>
<th>encoding</th>
<th>#clauses</th>
<th>#new variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>binomial</td>
<td>n^2</td>
<td>0</td>
</tr>
<tr>
<td>binary</td>
<td>$n \log n$</td>
<td>$\log n$</td>
</tr>
<tr>
<td>sequential</td>
<td>$3n$</td>
<td>n</td>
</tr>
<tr>
<td>commander</td>
<td>$\frac{7}{2}n$</td>
<td>$\frac{n}{2}$</td>
</tr>
<tr>
<td>product</td>
<td>$2(n + n^{\frac{1}{m+1}})$</td>
<td>$2n^{\frac{1}{2}}$</td>
</tr>
</tbody>
</table>

where n is the number of atoms, i.e., $|X|$

\(^1\) Frisch and Giannaros; SAT Encodings of the At-Most-k Constraint – Some Old, Some New, Some Fast, Some Slow; 2010
Bound Iteration

Planning Problem → Transformer $k = 1$ → SAT problem → SAT Solver
Bound Iteration

Planning Problem → Transformer \(k = 1 \) → SAT problem → SAT Solver

Solution

\(\emptyset \) Unsolvable

February 5th, 2020 B. Nebel, R. Mattmüller, G. Behnke – AI Planning
Bound Iteration

Planning Problem → Transformer \(k = 1 \) → SAT problem → SAT Solver → Solution

\(\emptyset \) → Unsolvable

\(\forall \)-step

\(\exists \)-step

At-most-one

Sequential Classical Planning in SAT

∀-step

∃-step

Invariants

Sat Modelling

Theoretical Background

February 5th, 2020 B. Nebel, R. Mattmüller, G. Behnke – AI Planning 23 / 44
Bound Iteration

Planning Problem → Transformer $k = 2$ → SAT problem → SAT Solver → Solution

\emptyset Unsolvable
Bound Iteration

Planning Problem → Transformer $k = 3$ → SAT problem → SAT Solver → Solution

\emptyset → Unsolvable
Bound Iteration

Planning Problem → Transformer $k = \ldots$ → SAT problem → SAT Solver

Solution

\emptyset

Unsolvable

February 5th, 2020 B. Nebel, R. Mattmüller, G. Behnke – AI Planning 23 / 44
Bound Iteration

Planning Problem \rightarrow Transformer $k = 2^{|\mathcal{V}|}$ \rightarrow SAT problem \rightarrow SAT Solver \rightarrow Solution

\emptyset Unsolvable

∀-step

∃-step

February 5th, 2020
Classical Planning via SAT

There are a lot of improvements to this formula.
Classical Planning via SAT

There are **a lot** of improvements to this formula.

- Invariants.
There are a lot of improvements to this formula.

- Invariants.
- \forall-step semantics.
There are a lot of improvements to this formula.

- Invariants.
- \forall-step semantics.
- \exists-step semantics.
Invariants
What are Invariants?

Is there **anything** we know about states in a planning problem?

Definition (Invariant)

An invariant I is a formula over the state variables such that for all states s reachable from s, $I = I$.
What are Invariants?

Is there anything we know about states in a planning problem?

Definition (Invariant)

An invariant \mathcal{I} is a formula over the state variables such that for all states s reachable from s_i, it holds $s \models \mathcal{I}$.
What are Invariants?

Predicates:

- \(\text{on}(x, y) \) – \(x \) lies directly on \(y \).
- \(\text{free}(x) \) – \(x \) has no block above it.

Actions:

- \(\text{pickup}(x) \) – pick up \(x \), if it is free.
- \(\text{putdown}(x, y) \) – put \(x \) on \(y \), if \(y \) is free (\(\text{table} \) is always free).
What are Invariants?

Predicates:
- \(on(x, y) \) – \(x \) lies directly on \(y \).
- \(free(x) \) – \(x \) has no block above it.

Actions:
- \(pickup(x) \) – pick up \(x \), if it is free.
- \(putdown(x, y) \) – put \(x \) on \(y \), if \(y \) is free (\(table \) is always free).

Are the following formulae invariants?

1. \(\forall b \in Block : (\exists b' \in Block : on(b', b)) \lor free(b) \)
2. \(\forall b \in Block : on(b, table) \)
3. \(\forall b, b' \in Block : \neg on(b', b) \lor \neg on(b, b') \)
What are Invariants?

Predicates:

- \(\text{on}(x, y) \) – \(x \) lies directly on \(y \).
- \(\text{free}(x) \) – \(x \) has no block above it.

Actions:

- \(\text{pickup}(x) \) – pick up \(x \), if it is free.
- \(\text{putdown}(x, y) \) – put \(x \) on \(y \), if \(y \) is free (\textit{table} is always free).

Are the following formulae invariants?

1. \(\forall b \in \text{Block} : (\exists b' \in \text{Block} : \text{on}(b', b)) \lor \text{free}(b) \) — \textbf{Yes}.
2. \(\forall b \in \text{Block} : \text{on}(b, \text{table}) \)
3. \(\forall b, b' \in \text{Block} : \neg \text{on}(b', b) \lor \neg \text{on}(b, b') \)
What are Invariants?

Predicates:

- \(\text{on}(x, y) \) – \(x \) lies directly on \(y \).
- \(\text{free}(x) \) – \(x \) has no block above it.

Actions:

- \(\text{pickup}(x) \) – pick up \(x \), if it is free.
- \(\text{putdown}(x, y) \) – put \(x \) on \(y \), if \(y \) is free (\textit{table} is always free).

Are the following formulae invariants?

1. \(\forall b \in \text{Block} : (\exists b' \in \text{Block} : \text{on}(b', b)) \lor \text{free}(b) \) — \textbf{Yes}.
2. \(\forall b \in \text{Block} : \text{on}(b, \text{table}) \) — \textbf{No}.
3. \(\forall b, b' \in \text{Block} : \neg \text{on}(b', b) \lor \neg \text{on}(b, b') \)
What are Invariants?

Predicates:
- \(\text{on}(x,y) \) – \(x \) lies directly on \(y \).
- \(\text{free}(x) \) – \(x \) has no block above it.

Actions:
- \(\text{pickup}(x) \) – pick up \(x \), if it is free.
- \(\text{putdown}(x,y) \) – put \(x \) on \(y \), if \(y \) is free (\textit{table} is always free).

Are the following formulae invariants?

1. \(\forall b \in \text{Block} : (\exists b' \in \text{Block} : \text{on}(b',b)) \lor \text{free}(b) \) — Yes.
2. \(\forall b \in \text{Block} : \text{on}(b,\text{table}) \) — No.
3. \(\forall b, b' \in \text{Block} : \neg \text{on}(b',b) \lor \neg \text{on}(b,b') \) — Yes.
Invariants are Difficult

How hard is verifying an invariant?
How hard is verifying an invariant?
As hard as planning.
How hard is verifying an invariant?
As hard as planning.
Also there are too many invariants.
How hard is verifying an invariant?
As hard as planning.
Also there are too many invariants.

- Compute an approximation of all invariants of a fixed form.
How hard is verifying an invariant?
As hard as planning.
Also there are too many invariants.

- Compute an approximation of all invariants of a fixed form.
- Restrict to binary-or invariants:

\[\ell_1 \lor \ell_2 \]
Computing Invariants [Rintanen’98]

Note: Here we consider some action $a = (\text{pre}, add, del)$ and denote with $\text{eff} = add(a) \cup \{\neg v \mid v \in del(a)\}$ its effects (as a literal set).
Note: Here we consider some action $a = (pre, add, del)$ and denote with $eff = add(a) \cup \{\neg v \mid v \in del(a)\}$ its effects (as a literal set).

$\neg V = \{\neg v \mid v \in V\}$ \hspace{1cm}(\ell \in V^\neg V$ denotes a literal.)
Computing Invariants [Rintanen’98]

Note: Here we consider some action \(a = (pre, add, del) \) and denote with \(eff = add(a) \cup \{ \neg v \mid v \in del(a) \} \) its effects (as a literal set).

\[
\neg V = \{\neg v \mid v \in V\} \quad (\ell \in V^{\neg V} \text{ denotes a literal.})
\]

\(U_{\langle pre, eff \rangle}(\mathcal{I}) \) gives all properties (positive or negative state variables) that hold after the execution of an action \(a = \langle pre, eff \rangle \)

\[
U_{\langle pre, eff \rangle}(\mathcal{I}) = (\{\ell \in V \cup \neg V \mid \mathcal{I} \cup pre \models \ell\} \ \setminus \ \{\neg \ell \mid \ell \in eff\}) \cup eff
\]

\(\equiv (\{\neg v \mid v \in add\} \cup del) \)
Computing Invariants [Rintanen’98]

Note: Here we consider some action \(a = (pre, add, del) \) and denote with \(\text{eff} = add(a) \cup \{-v \mid v \in del(a)\} \) its effects (as a literal set).

\[\neg V = \{\neg v \mid v \in V\} \quad (\ell \in V^{\neg V} \text{ denotes a literal.}) \]

\(U_{\langle pre, eff \rangle}(\mathcal{I}) \) gives all properties (positive or negative state variables) that hold after the execution of an action \(a = \langle pre, eff \rangle \)

\[
\equiv (\{-v \mid v \in add\} \cup del) \\
U_{\langle pre, eff \rangle}(\mathcal{I}) = (\{\ell \in V \cup \neg V \mid \mathcal{I} \cup pre \models \ell\} \setminus \{-\ell \mid \ell \in \text{eff}\}) \cup \text{eff}
\]

\(F_{\langle pre, eff \rangle}(\mathcal{I}) \) is a filter for invariants, returning those that hold after the execution of an action \(a = \langle pre, eff \rangle \)

\[
F_{\langle pre, eff \rangle}(\mathcal{I}) = \begin{cases}
\mathcal{I} & \text{if } \mathcal{I} \cup pre \models \bot \text{ and otherwise:} \\
\{l_1 \lor l_2 \in \mathcal{I} \mid (\neg l_1 \not\in \text{eff} \text{ or } l_2 \in U_{\langle pre, eff \rangle}(\mathcal{I})) \text{ and } (\neg l_2 \not\in \text{eff} \text{ or } l_1 \in U_{\langle pre, eff \rangle}(\mathcal{I})) \}
\end{cases}
\]
Call $R_A(\mathcal{I}) := F_{a_1}(F_{a_2}(\cdots F_{a_n}(\mathcal{I}) \cdots))$ with initial invariant $I_{\text{init}} = \{v \lor \ell \mid v \in s_I, \ell \in V \cup \neg V\} \cup \{\neg v \lor \ell \mid v \not\in s_I, \ell \in V \cup \neg V\}$ and arbitrary linearization of action set A, a_1, \ldots, a_n, until \mathcal{I} does not change anymore.

R stands for “reduce invariant set”.
How to Use Invariants

What to do with an invariant $\ell_1 \lor \ell_2$?
How to Use Invariants

What to do with an invariant $\ell_1 \lor \ell_2$?

Add it to every timestep t as $\ell_t^1 \lor \ell_t^2$.
∀-step
Linear Plans are Bad!

Consider the following (single) planning problem:

\[
\begin{align*}
&\text{drive}(A, B), \text{load}(B), \text{drive}(B, C), \text{unload}(C), \\
&\text{drive}(E), \text{load}(D), \text{drive}(D, E), \text{unload}(E), \\
&\text{drive}(A, B), \text{load}(B), \text{drive}(B, C), \text{unload}(C), \\
&\text{drive}(F, D), \text{load}(D), \text{drive}(D, E), \text{unload}(E)
\end{align*}
\]
Linear Plans are Bad!

Consider the following (single) planning problem:

\[
\text{drive}(A, B), \text{load}(B), \text{drive}(B, C), \text{unload}(C), \text{drive}(F, D), \text{load}(D), \text{drive}(D, E), \text{unload}(E)
\]
Linear Plans are Bad!

Consider the following (single) planning problem:

![Diagram of a planning problem with nodes A, B, C, D, E, F and edges representing movements and actions.]

\[
\text{drive}(A, B), \text{load}(B), \text{drive}(B, C), \text{unload}(C), \text{drive}(F, D), \text{load}(D), \text{drive}(D, E), \text{unload}(E)
\]

\[
\text{drive}(A, B) \quad \text{load}(B) \quad \text{drive}(B, C) \quad \text{unload}(C) \\
\text{drive}(F, D) \quad \text{load}(D) \quad \text{drive}(D, E) \quad \text{unload}(E)
\]
Allow parallel execution of actions.
But when?

Let \forall be some set of actions.
∀-step [Kautz&Selman’96]

Allow parallel execution of actions.
But when?

- Let \(\mathcal{A} \) be some set of actions.
- Parallel execution of \(\mathcal{A} \) is safe, if all (\(\forall \)) linearisations of \(\mathcal{A} \) are executable.
Allow parallel execution of actions.
But when?

- Let A be some set of actions.
- Parallel execution of A is safe, if all (\forall) linearisations of A are executable.
- Necessary conditions:
Allow parallel execution of actions.
But when?

- Let \mathcal{A} be some set of actions.
- Parallel execution of \mathcal{A} is safe, if all (\forall) linearisations of \mathcal{A} are executable.
- Necessary conditions:
 - All actions are executable in the previous state as all could be the first.
Allow parallel execution of actions.
But when?

- Let \mathbb{A} be some set of actions.
- Parallel execution of \mathbb{A} is safe, if all (\forall) linearisations of \mathbb{A} are executable.
- Necessary conditions:
 - All actions are executable in the previous state as all could be the first.
 - No action can have a delete-effect that is a precondition of another action, i.e., $\forall a_1 \neq a_2 \in \mathbb{A}: \text{del}(a_1) \cap \text{prec}(a_2) = \emptyset$, as a_1 can occur before a_2.

\forall-step [Kautz & Selman’96]
Allow parallel execution of actions.
But when?

- Let \(\mathcal{A} \) be some set of actions.
- Parallel execution of \(\mathcal{A} \) is safe, if all (\(\forall \)) linearisations of \(\mathcal{A} \) are executable.
- Necessary conditions:
 - All actions are executable in the previous state as all could be the first.
 - No action can have a delete-effect that is a precondition of another action, i.e., \(\forall a_1 \neq a_2 \in \mathcal{A} : \text{del}(a_1) \cap \text{prec}(a_2) = \emptyset \), as \(a_1 \) can occur before \(a_2 \).
∀-step [Kautz&Selman’96]

Allow parallel execution of actions.
But when?

- Let \mathcal{A} be some set of actions.
- Parallel execution of \mathcal{A} is safe, if all (\forall) linearisations of \mathcal{A} are executable.

Necessary conditions:

- All actions are executable in the previous state as all could be the first.
- No action can have a delete-effect that is a precondition of another action, i.e., $\forall a_1 \neq a_2 \in \mathcal{A} : \text{del}(a_1) \cap \text{prec}(a_2) = \emptyset$, as a_1 can occur before a_2.

Sufficient conditions:
Allow parallel execution of actions.
But when?

- Let \mathcal{A} be some set of actions.
- Parallel execution of \mathcal{A} is safe, if all \forall linearisations of \mathcal{A} are executable.
- Necessary conditions:
 - All actions are executable in the previous state as all could be the first.
 - No action can have a delete-effect that is a precondition of another action, i.e., $\forall a_1 \neq a_2 \in \mathcal{A} : del(a_1) \cap prec(a_2) = \emptyset$, as a_1 can occur before a_2.
- Sufficient conditions: Necessary conditions are already sufficient.
Encoding \forall-step

Remove the at-most-one constraints. Two options:

- Remove at-most-one constraints. Two options:
 - $a_t \rightarrow \neg a_{t+1}$
 - $a_t \rightarrow \neg a_{t+2}$

Further implications:
The resulting state must always be the same!
Thus we forbid two actions a_1, a_2 with $\text{del}(a_1) \cap \text{add}(a_2) \neq \emptyset$ to be executed in parallel.
(Otherwise the resulting state would not be unique.)
Remove the at-most-one constraints. Two options:

\[a_1^t \rightarrow \neg a_2^t \quad \forall a_1, a_2 \in A \text{ with } \text{del}(a_1) \cap \text{pre}(a_2) \neq \emptyset \]
\[\rightarrow \text{ quadratic effort.} \]
Encoding \forall-step

Remove the at-most-one constraints. Two options:

$$a^t_1 \rightarrow \neg a^t_2 \quad \forall a_1, a_2 \in A \text{ with } \text{del}(a_1) \cap \text{pre}(a_2) \neq \emptyset$$

\rightarrow quadratic effort.

$$a^t \rightarrow \text{del}^t_v \quad \forall a \in A, v \in \text{del}(a)$$

$$\text{del}^t_v \rightarrow \neg a^t \quad \forall a \in A, v \in \text{pre}(a)$$

\rightarrow linear effort.
Encoding \forall-step

Remove the at-most-one constraints. Two options:

$$a_1^t \rightarrow \neg a_2^t \quad \forall a_1, a_2 \in A \text{ with } \text{del}(a_1) \cap \text{pre}(a_2) \neq \emptyset$$

\rightarrow quadratic effort.

$$a^t \rightarrow \text{del}^t_v \quad \forall a \in A, v \in \text{del}(a)$$

$$\text{del}^t_v \rightarrow \neg a^t \quad \forall a \in A, v \in \text{pre}(a)$$

\rightarrow linear effort.

Further implications?
Encoding \(\forall\)-step

Remove the at-most-one constraints. Two options:

\[
a^t_1 \rightarrow \neg a^t_2 \quad \forall a_1, a_2 \in A \text{ with } del(a_1) \cap pre(a_2) \neq \emptyset
\]

\(\rightarrow\) quadratic effort.

\[
a^t \rightarrow del^t_v \quad \forall a \in A, v \in del(a)
\]

\[
del^t_v \rightarrow \neg a^t \quad \forall a \in A, v \in pre(a)
\]

\(\rightarrow\) linear effort.

Further implications?

The resulting state must always be the same!

Thus we forbid two actions \(a_1, a_2\) with \(del(a_1) \cap add(a_2) \neq \emptyset\) to be executed in parallel.

(Otherwise the resulting state would not be unique.)
∃-step
Parallel Plans are (Still) Bad!

(Re-)Consider the following (single) planning problem:

\begin{itemize}
 \item drive(A, B)
 \item load(B)
 \item drive(B, C)
 \item unload(C)
 \item drive(F, D)
 \item load(D)
 \item drive(D, E)
 \item unload(E)
\end{itemize}
Parallel Plans are (Still) Bad!

(Re-)Consider the following (single) planning problem:

\[
\begin{align*}
\text{drive}(A, B) & \quad \text{load}(B) & \quad \text{drive}(B, C) & \quad \text{unload}(C) \\
\text{drive}(F, D) & \quad \text{load}(D) & \quad \text{drive}(D, E) & \quad \text{unload}(E) \\
\end{align*}
\]

\[
\begin{align*}
\text{drive}(A, B) & \quad \text{load}(B) & \quad \text{unload}(C) \\
\text{drive}(B, C) & \quad & \quad \\
\text{drive}(F, D) & \quad \text{load}(D) & \quad \text{unload}(E) \\
\text{drive}(D, E) & \quad & \\
\end{align*}
\]
What Kind of Parallelism do we Look for?

- Absolutely safe parallelism.
 - All linearisations will always be executable and lead to the same state.

- (Sometimes) Safe parallelism.
 - At least one linearisation is executable and all executable linearisations lead to the same state.
What Kind of Parallelism do we Look for?

- Absolutely safe parallelism.
What Kind of Parallelism do we Look for?

- Absolutely safe parallelism.
 - All linearisations will always be executable and lead to the same state.
 - \forall-step.

- (Sometimes) Safe parallelism.
 - At least one linearisation is executable and all executable linearisations lead to the same state.
 - \exists-step.
What Kind of Parallelism do we Look for?

- Absolutely safe parallelism.
 - All linearisations will always be executable and lead to the same state.
 - \(\forall \)-step.
- (Sometimes) Safe parallelism.
What Kind of Parallelism do we Look for?

- Absolutely safe parallelism.
 - All linearisations will always be executable and lead to the same state.
 - \forall-step.

- (Sometimes) Safe parallelism.
 - At least one linearisation is executable and all executable linearisations lead to the same state.
 - \exists-step.
∃-step Parallelism

- Given a set of actions \(\mathcal{A} \). We call them \(\exists \)-step executable if a linearisation exists that is executable and all executable linearisations lead to the same state.
Given a set of actions \mathcal{A}. We call them \exists-step executable if a linearisation exists that is executable and all executable linearisations lead to the same state.

How difficult to determine?
∃-step Parallelism

- Given a set of actions A. We call them $∃$-step executable if a linearisation exists that is executable and all executable linearisations lead to the same state.
- How difficult to determine? First part is NP-complete.
Given a set of actions \(\mathcal{A} \). We call them \(\exists \)-step executable if a linearisation exists that is executable and all executable linearisations lead to the same state.

How difficult to determine? First part is \(\text{NP} \)-complete.

How to encode?
∃-step Parallelism

- Given a set of actions \mathcal{A}. We call them \exists-step executable if a linearisation exists that is executable and all executable linearisations lead to the same state.

- How difficult to determine? First part is \mathbf{NP}-complete.

- How to encode?

- Results in the Kautz&Selman encoding ...
Disabling Graph
[Rintanen, Heljanko, Niemelä’06]

- Approximate \exists-step semantics.
Disabling Graph
[Rintanen, Heljanko, Niemelä’06]

- Approximate Ǝ-step semantics.
- Analyse dependency between actions.
Disabling Graph
[Rintanen, Heljanko, Niemelä’06]

- Approximate \exists-step semantics.
- Analyse dependency between actions.
- Similar to \forall-step:

\[\text{If } \text{del}(a) \cap \text{pre}(a') \neq \emptyset, \text{ execute } a' \text{ before } a. \]
\[\text{Ignore if } I \cup \text{pre}(a) \cup \text{pre}(a') \text{ is inconsistent.} \]
Disabling Graph
[Rintanen, Heljanko, Niemelä’06]

- Approximate \exists-step semantics.
- Analyse dependency between actions.
- Similar to \forall-step:
 - If $\text{del}(a) \cap \text{pre}(a') \neq \emptyset$, execute a' before a.
Disabling Graph
[Rintanen, Heljanko, Niemelä’06]

- Approximate \exists-step semantics.
- Analyse dependency between actions.
- Similar to \forall-step:
 - If $\text{del}(a) \cap \text{pre}(a') \neq \emptyset$, execute a' before a.
 - Ignore if $\mathcal{I} \cup \text{pre}(a) \cup \text{pre}(a')$ is inconsistent.
∃-step [Rintanen, Heljanko, Niemelä’06]

- Disabling Graph: \(a \rightarrow b \) iff after executing \(a \) it may not be possible to execute \(b \).
\exists\text{-step} \ [\text{Rintanen, Heljanko, Niemelä’06}]

- Disabling Graph: $a \rightarrow b$ iff after executing a it may not be possible to execute b.
- We can safely execute actions in reverse topological order.

$\exists\text{-step}$

$\exists\text{-step}$

Disabling Graph: $a \rightarrow b$ iff after executing a it may not be possible to execute b.

We can safely execute actions in reverse topological order.

\[a_5, a_4, a_2, a_3, a_1 \]
∃-step [Rintanen, Heljanko, Niemelä’06]

- Disabling Graph: $a \rightarrow b$ iff after executing a it may not be possible to execute b.
- We can safely execute actions in reverse topological order.
- DG may not be acyclic.

![Disabling Graph Diagram](image)
∃-step [Rintanen, Heljanko, Niemelä’06]

- Disabling Graph: \(a \rightarrow b \) iff after executing \(a \) it may not be possible to execute \(b \).
- We can safely execute actions in reverse topological order.
- DG may not be acyclic.
- Guess an order in every SCC and order SCCs in reverse topological order.

\[(a_5), (a_2, a_3, a_4), (a_1)\]
∃-step [Rintanen, Heljanko, Niemelä’06]

- Disabling Graph: \(a \rightarrow b \) iff after executing \(a \) it may not be possible to execute \(b \).
- We can safely execute actions in reverse topological order.
- DG may not be acyclic.
- Guess an order in every SCC and order SCCs in reverse topological order.
- If executed in parallel, we will always execute actions in this order.

\[(a_5), (a_2, a_3, a_4), (a_1)\]
∃-step

What do we have to assert inside the propositional formula?
∃-step

What do we have to assert inside the propositional formula?

- Parallel actions must result in a consistent state.
What do we have to assert inside the propositional formula?

- Parallel actions must result in a consistent state. ✓
What do we have to assert inside the propositional formula?

- Parallel actions must result in a consistent state. ✓
- Parallel actions must be executable.

Actions must be applicable in the previous state.

1. Reverse topological order of DG ensures that later actions are still applicable.
2. In SCCs there might be edges opposite to the chosen order.
3. SCC can be treated separately.
4. If a_2 is executed, then a_4 must not.
5. Enforced via chaines a_5, a_2, a_3, a_4, a_1.

February 5th, 2020 B. Nebel, R. Mattmüller, G. Behnke – AI Planning 42 / 44
What do we have to assert inside the propositional formula?

- Parallel actions must result in a consistent state. ✓
- Parallel actions must be executable.

1. Actions must be applicable in the previous state.
What do we have to assert inside the propositional formula?

- Parallel actions must result in a consistent state. ✓
- Parallel actions must be executable.

1. Actions must be applicable in the previous state.
2. Reverse topological order of DG ensures that later actions are still applicable.

\[a_5, a_2, a_3, a_4, a_1 \]
We have to assert inside the propositional formula:

- Parallel actions must result in a consistent state. ✓
- Parallel actions must be executable.

1. Actions must be applicable in the previous state.
2. Reverse topological order of DG ensures that later actions are still applicable.
3. In SCCs there might be edges opposite to the chosen order.

\[(a_5), (a_2, a_3, a_4), (a_1)\]
What do we have to assert inside the propositional formula?

- Parallel actions must result in a consistent state. ✓
- Parallel actions must be executable.

1. Actions must be applicable in the previous state.
2. Reverse topological order of DG ensures that later actions are still applicable.
3. In SCCs there might be edges opposite to the chosen order.
4. SCC can be treated separately.

\[(a_5), (a_2, a_3, a_4), (a_1)\]
What do we have to assert inside the propositional formula?

- Parallel actions must result in a consistent state. ✓
- Parallel actions must be executable.

1. Actions must be applicable in the previous state.
2. Reverse topological order of DG ensures that later actions are still applicable.
3. In SCCs there might be edges opposite to the chosen order.
4. SCC can be treated separately.
5. If \(a_2 \) is executed, then \(a_4 \) must not.

\[(a_5), (a_2, a_3, a_4), (a_1)\]
What do we have to assert inside the propositional formula?

- Parallel actions must result in a consistent state. ✓
- Parallel actions must be executable.

1. Actions must be applicable in the previous state.
2. Reverse topological order of DG ensures that later actions are still applicable.
3. In SCCs there might be edges opposite to the chosen order.
4. SCC can be treated separately.
5. If a_2 is executed, then a_4 must not.
6. Enforced via *chaines*.

(a_5), (a_2, a_3, a_4), (a_1)
We are given an SCC and an ordering of its vertices.

\[\pi = (a_5, a_4, a_3, a_2, a_1) \]
We are given an SCC and an ordering of its vertices.

\[\pi = (a_5, a_4, a_3, a_2, a_1) \]

- We want choose an acyclic subsequence of \(\pi \).
Chains

We are given an SCC and an ordering of its vertices.

\[\pi = (a_5, a_4, a_3, a_2, a_1) \]

- We want choose an acyclic subsequence of \(\pi \).
- Approx.: Do not choose both ends of a forward edge.
We are given an SCC and an ordering of its vertices.

\[\pi = (a_5, a_4, a_3, a_2, a_1) \]

- We want choose an acyclic subsequence of \(\pi \).
- Approx.: Do not choose both ends of a forward edge.
- Iterate over causes of these edges: \(\nu \in \text{del}(a_1) \cap \text{pre}(a_2) \).
Chains

We are given an SCC and an ordering of its vertices.

\[\pi = (a_5, a_4, a_3, a_2, a_1) \]

- We want choose an acyclic subsequence of \(\pi \).
- Approx.: Do not choose both ends of a forward edge.
- Iterate over causes of these edges: \(\nu \in \text{del}(a_1) \cap \text{pre}(a_2) \)
 - \(E_\nu \) – subsequence of \(\pi \) with \(\nu \in \text{del}(a) \) (Erasing)
We are given an SCC and an ordering of its vertices.

\[
\pi = (a_5, a_4, a_3, a_2, a_1)
\]

- We want to choose an acyclic subsequence of \(\pi\).
- Approx.: Do not choose both ends of a forward edge.
- Iterate over causes of these edges: \(v \in del(a_1) \cap pre(a_2)\)
 - \(E_v\) – subsequence of \(\pi\) with \(v \in del(a)\) (Erasing)
 - \(R_v\) – subsequence of \(\pi\) with \(v \in pre(a)\) (Requiring)
Chains

We are given an SCC and an ordering of its vertices.\[\pi = (a_5, a_4, a_3, a_2, a_1)\]

- We want to choose an acyclic subsequence of π.
- Approx.: Do not choose both ends of a forward edge.
- Iterate over causes of these edges: $v \in del(a_1) \cap pre(a_2)$
 - E_v – subsequence of π with $v \in del(a)$ (Erasing)
 - R_v – subsequence of π with $v \in pre(a)$ (Requiring)

\[
\bigwedge \{ \pi^i \rightarrow f^j_v \mid i < j, \pi^i \in E_v, \pi^j \in R_v, \{a_{i+1}, \ldots, a_{j-1}\} \cap R_v = \emptyset \} \cup
\{f^i_v \rightarrow f^j_v \mid i < j, \{\pi^i, \pi^j\} \in R_v, \{a_{i+1}, \ldots, a_{j-1}\} \cap R_v = \emptyset \} \cup
\{f^i_v \rightarrow \neg \pi^i \mid \pi^i \in R_v \}
\]
Further Improvements

Improvements for classical planning:

- Extension to conditional effects [Rintanen, Heljanko, Niemelä’06].
- Relaxed \exists-step [Wehrle & Rintanen’07].
- Parallel SAT search [Rintanen’04] [Rintanen, Heljanko, Niemelä’06].
- Specialised heuristics for SAT solvers [Rintanen’10a] [Rintanen’10b].
- Improved memory management [Rintanen’12].
- Incremental SAT-solving [Gocht & Balyo’17].
Further Improvements

Improvements for classical planning:

- Extension to conditional effects [Rintanen, Heljanko, Niemelä’06].
- Relaxed \exists-step [Wehrle & Rintanen’07].
- Parallel SAT search [Rintanen’04, Rintanen, Heljanko, Niemelä’06].
- Specialised heuristics for SAT solvers [Rintanen’10a, Rintanen’10b].
- Improved memory management [Rintanen’12].
- Incremental SAT-solving [Gocht & Balyo’17].

Extensions to non-classical planning:

- LTL [Mattmüller & Rintanen’07, Behnke & Biundo’18].
- Partial Observability [Pandey & Rintanen’18].
- Temporal Planning [Rintanen’17].
- HTN Planning [Behnke, Höller, Biundo’17’18].
Further Improvements

Improvements for classical planning:

- Extension to conditional effects [Rintanen, Heljanko, Niemelä’06].
- Relaxed \exists-step [Wehrle & Rintanen’07].
- Parallel SAT search [Rintanen’04] [Rintanen, Heljanko, Niemelä’06].
- Specialised heuristics for SAT solvers [Rintanen’10a] [Rintanen’10b].
- Improved memory management [Rintanen’12].
- Incremental SAT-solving [Gocht & Balyo’17].

Extensions to non-classical planning:

- LTL [Mattmüller & Rintanen’07] [Behnke & Biundo’18].
- Partial Observability [Pandey & Rintanen’18].
- Temporal Planning [Rintanen’17].
- HTN Planning [Behnke, Höller, Biundo’17’18].

→ https://users.aalto.fi/~rintanj1/satplan.html