Principles of AI Planning
13. Planning with binary decision diagrams

Albert-Ludwigs-Universität Freiburg
Binary decision diagrams

Bernhard Nebel and Robert Mattmüller and David Speck
January 15th, 2018

Dealing with large state spaces	
- One way to explore very large state spaces is to use selective exploration methods (such as heuristic search) that only explore a fraction of states. - Another method is to concisely represent large sets of states and deal with large state sets at the same time.	
	Operations
	Symbolic Breadth-first Search
	Discussion
	Summary

Breadth-first search with progression and state sets

Symbolic progression breadth-first search
UNIIBURG
def bfs-progression(V,I, O, γ):
goal $:=\operatorname{models}(\gamma)$
reached := \{l\}

loop:

if reached \cap goal $\neq \emptyset$:
return solution found
new-reached := reached \cup image(reached, O)
if new-reached = reached:
return no solution exists reached := new-reached
\rightsquigarrow If we can implement operations models, $\{/\}, \cap, \neq \emptyset, \cup, i m g$ and $=$ efficiently, this is a reasonable algorithm.

January 15th, 2018
B. Nebel, R. Mattmüller, D. Speck - Al Planning

Which operations are important?

■ Explicit representations such as hash tables are not suitable because their size grows linearly with the number of represented states.
■ Formulae are very efficient for some operations, but not very well suited for other important operations needed by the progression algorithm.

- Examples: $S \neq \emptyset$?, $S=S^{\prime}$?

Canonical Representations

- One of the sources of difficulty is that formulae allow many different representations for a given set.
- For example, all unsatisfiable formulae represent \emptyset.

This makes equality tests expensive.

- We are interested in canonical representations, i.e. representations for which there is only one possible representation for every state set.
- Reduced ordered binary decision diagrams (BDDs) are an example of an efficient canonical representation.
BDD example

Performance characteristics
Formulae vs. BDDs

Let k be the number of state variables, $|S|$ the number of states in S and $\|S\|$ the size of the representation of S.

	Formula	BDD				
$s \in S ?$	$O(\\|S\\|)$	$O(k)$				
$S:=S \cup\{s\}$	$O(k)$	$O(k)$				
$S:=S \backslash\{s\}$	$O(k)$	$O(k)$				
$S \cup S^{\prime}$	$O(1)$	$O\left(\\|S\\|\left\\|S^{\prime}\right\\|\right)$				
$S \cap S^{\prime}$	$O(1)$	$O\left(\\|S\\|\left\\|S^{\prime}\right\\|\right)$				
$S \backslash S^{\prime}$	$O(1)$	$O\left(\\|S\\|\left\\|S^{\prime}\right\\|\right)$				
S	$O(1)$	$O(\\|S\\|)$				
$\{s \mid s(v)=1\}$	$O(1)$	$O(1)$				
$S=\emptyset ?$	co-NP-complete	$O(1)$				
$S=S^{\prime} ?$	co-NP-complete	$O(1)$				
$\|S\|$	\#P-complete	$O(\\|S\\|)$				

Remark: Optimizations allow BDDs with complementation (\bar{S}) in constant time, but we will not discuss this here.
January 15th, 2018
B. Nebel, R. Mattmüller, D. Speck - AI Planning

Binary decision diagrams
Definition

- There is exactly one node without incoming arcs.
\square All sinks (nodes without outgoing arcs) are labeled 0 or 1.
\square All other nodes are labeled with a variable $v \in V$ and have exactly two outgoing arcs, labeled 0 and 1.

Binary decision diagrams
Terminology

BDD terminology

- The node without incoming arcs is called the root.
- The labeling variable of an internal node is called the decision variable of the node.
- The nodes reached from node n via the arc labeled $i \in\{0,1\}$ is called the i-successor of n.
- The BDDs which only consist of a single sink are called the zero BDD and one BDD, respectively.

Observation: If B is a BDD and n is a node of B, then the subgraph induced by all nodes reachable from n is also a BDD.

- This BDD is called the BDD rooted at n.

January 15th, 2018
B. Nebel, R. Mattmüller, D. Speck - Al Planning
Set represemted by a BDD
Example

BDD semantics

Testing whether a BDD includes a variable assignment
def bdd-includes(B : BDD, I: variable assignment):
Set n to the root of B.
while n is not a sink:
Set v to the decision variable of n.
Set n to the $I(v)$-successor of n.

return true if n is labeled 1 , false if it is labeled 0 .
Definition (set represented by a BDD)
Let B be a BDD over variables V. The set represented by B, in symbols $r(B)$ consists of all variable assignments $I: V \rightarrow\{0,1\}$ for which bdd-includes (B, I) returns true.

January 15th, 2018

Ordered BDDs
Motivation

In general, BDDs are not a canonical representation for sets of valuations. Here is a simple counter-example ($V=\{u, v\})$):

BDDs for $u \wedge \neg v$ with different variable order

Both BDDs represent the same state set, namely the singleton set $\{\{u \mapsto 1, v \mapsto 0\}\}$.

January 15th, 2018

| Ordered BDDs |
| :--- | :--- |
| Example |

According to our definitions, the left BDD is ordered, the right one is not.
Note: Often in literature, a BDD is called ordered if on all paths from the root to a sink variables appear in the same order.

Ordered BDDs
Definition

- As a first step towards a canonical representation, we will in the following assume that the set of variables V is totally ordered by some ordering \prec.
■ In particular, we will only use variables $v_{1}, v_{2}, v_{3}, \ldots$ and assume the ordering $v_{i} \prec v_{j}$ iff $i<j$.

Definition (ordered BDD)
A BDD is ordered with respect to \prec iff for each arc from an internal node with decision variable u to an internal node with decision variable v, we have $u \prec v$.

- Ordered BDDs are not canonical: Both ordered BDDs represent the same set.
- However, ordered BDDs can easily be made canonical.

Reduced ordered BDDs
 Reductions

Isomorphism reduction

January 15th, 2018
Reduced ordered BDDS
Reductions

Reduced ordered BDDs
Reductions

BDDs $\begin{aligned} & \text { Movivaion } \\ & \text { Definition }\end{aligned}$

Operations
Symbolic Breadth-first
Search Discussion
Summary
If both outgoing arcs of an internal node n of a BDD lead to the

Reduced ordered BDDs
Reductions

Shannon reduction

Operation
Symbolic Breadth-fi
Search Discussion Summary

| Reduced ordered BDDS |
| :--- | :--- | :--- |
| Reductions |

BDD operations	諼
	E
	osmes

Goal: Devising a Symbolic Search Algorithm

■ We now put the pieces together to build a symbolic search algorithm for propositional planning tasks.

- use BDDs as a black box data structure:
- care about provided operations and their time complexity
- do not care about their internal implementation

BDD Operations: Preliminaries					
All BDDs work on a fixed and totally ordered set of propositional variables. Complexity of operations given in terms of: - k, the number of BDD variables - \\| $B \\|$, the number of nodes in the BDD B					
			BDDs		
			Operations Basic BDD Operations Formulas and Singletons Renaming		
			Symbolic Breadth-first Search		
			Discussion		
			Summary		

BDD Operations (1)

BDD operations: logical/set atoms

- bdd-true(): build BDD representing all assignments
- in logic: \top
- time complexity: $O(1)$
- bdd-false(): build BDD representing \emptyset
- in logic: \perp
- time complexity: $O(1)$
- Efficient implementations are available as libraries, e.g.:
- CUDD, a high-performance BDD library
- libbdd, shipped with Ubuntu Linux

BDD Operations (2)

BDD operations: logical/set connectives

- bdd-complement (B) : build BDD representing $\overline{r(B)}$
- in logic: $\neg \varphi$
- time complexity: $O(\|B\|)$ (or $O(1)$)
\square bdd-union $\left(B, B^{\prime}\right)$: build BDD representing $r(B) \cup r\left(B^{\prime}\right)$
- in logic: $(\varphi \vee \psi)$
- time complexity: $O\left(\|B\| \cdot\left\|B^{\prime}\right\|\right)$

BDD Operations (3)

- analogously:
- bdd-intersection $\left(B, B^{\prime}\right)$: $r(B) \cap r\left(B^{\prime}\right),(\varphi \wedge \psi)$
- bdd-setdifference $\left(B, B^{\prime}\right): r(B) \backslash r\left(B^{\prime}\right),(\varphi \wedge \neg \psi)$
- bdd-implies $\left(B, B^{\prime}\right): \overline{r(B)} \cup r\left(B^{\prime}\right),(\varphi \rightarrow \psi)$
- bdd-equiv $\left(B, B^{\prime}\right):\left(r(B) \cap r\left(B^{\prime}\right)\right) \cup\left(\overline{r(B)} \cap r\left(B^{\prime}\right)\right),(\varphi \leftrightarrow \psi)$

Conditioning: Formulas	
	こ
The last two basic BDD operations are a bit more unusual and require some preliminary remarks.	bdDs
	$\begin{aligned} & \text { Operations } \\ & \text { Basic } \\ & \text { Oporations } \end{aligned}$
Conditioning a variable v in a formula φ to \mathbf{T} or \mathbf{F}, written $\varphi[\mathbf{T} / v]$ or $\varphi[\mathbf{F} / v]$, means restricting v to a particular truth value:	
	Symbolic Breadth-first Search
	Discussion
Examples:	Summary
- $(A \wedge(B \vee \neg C))[\mathbf{T} / B]=(A \wedge(T \vee \neg C)) \equiv A$	
- $(A \wedge(B \vee \neg C))[\mathbf{F} / B]=(A \wedge(\perp \vee \neg C)) \equiv A \wedge \neg C$	

BDD operations: Boolean tests
■ bdd-includes (B, I) : return true iff $I \in r(B)$
\square in logic: $I=\varphi$?

- time complexity: $O(k)$
\square bdd-equals $\left(B, B^{\prime}\right)$: return true iff $r(B)=r\left(B^{\prime}\right)$
- in logic: $\varphi \equiv \psi$?
- time complexity: $O(1)$ (due to canonical representation)

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S : $S[F / v]$ and $S[T / v]$ restrict S to elements with the given value for v and remove v from the domain of definition:

Example:

$$
\begin{aligned}
& S=\{ \{A \mapsto \mathbf{F}, B \mapsto \mathbf{F}, C \mapsto \mathbf{F}\}, \\
&\{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}, \\
&\{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}, C \mapsto \mathbf{T}\}\} \\
& \rightsquigarrow S[\mathbf{T} / B]=\{\{A \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}, \\
&\{A \mapsto \mathbf{T}, C \mapsto \mathbf{T}\}\}
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& \square=\{\{A \mapsto \mathbf{F}, B \mapsto \mathbf{F}, C \mapsto \mathbf{F}\}, \\
&\{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}, \\
&\{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}, C \mapsto \mathbf{T}\}\} \\
& \rightsquigarrow \exists B S=\{\{A \mapsto \mathbf{F}, C \mapsto \mathbf{F}\}, \\
&\{A \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}, \\
&\{A \mapsto \mathbf{T}, C \mapsto \mathbf{T}\}\} \\
& \rightsquigarrow \exists C S=\{\{A \mapsto \mathbf{F}, B \mapsto \mathbf{F}\}, \\
&\{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}\}\}
\end{aligned}
$$

Singleton BDDs

- We can convert a single truth assignment I into a BDD representing $\{I\}$ by computing the conjunction of all literals true in I.
- bdd-atom, bdd-complement and bdd-intersection
- We denote this computation with bdd-singleton($/$).
\square When done in the correct order, this takes time $O(k)$.

How Hard Can That Be?					
For formulas, renaming is a simple (linear-time) operation.For a BDD B, it is equally simple $(O(\\|B\\|)$) when renaming between variables that are adjacent in the variable order.In general, it requires $O\left(\\|B\\|^{2}\right)$, using the equivalence $\varphi[X \rightarrow Y] \equiv \exists X(\varphi \wedge(X \leftrightarrow Y))$					
	bids				
	Operations				
	Symbolic Breadth-firs Search				
	Discussion				

Renaming

BDDs

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula φ, written $\varphi[X \rightarrow Y]$, means replacing all occurrences of X by Y in φ.
We require that Y is not present in φ initially.
Example:
$\square=(A \wedge(B \vee \neg C))$
$\rightsquigarrow \varphi[A \rightarrow D]=(D \wedge(B \vee \neg C))$
(

Symbolic Breadth-first search with progression and BDDs			$$
Symbolic progression breadth-first search			bDDs
def bfs-progression($V, I, O, \gamma)$:			Operations
goal $:=\operatorname{models}(\gamma)$			Symbolic Breadth-ifist
reached $:=\{1\}$			
loop:			Discussion
if reached \cap goal $\neq \emptyset$: return solution found			
new-reached := reached \cup image (reached, O)			
if new-reached = reached:			
return no solution exists			
reached := new-reached			
Use bdd-singleton (bdd-complement, bdd-union and bdd-intersection).			
January 15th, 2018	B. Nebel, R. Mattüller, D. Speck - Al Planning	41/58	

Symbolic Breadth-first search with
progression and BDDs

Symbolic progression breadth-first search
def bfs-progression (V, I, O, γ) :
goal $:=$ models (γ)
reached $:=\{/\}$
Symbolic
Breadth-first
Search
Discussion
loop:
Summary
if reached \cap goal $\neq \emptyset$:
return solution found
new-reached := reached \cup image(reached, O)
if new-reached = reached:
return no solution exists
reached := new-reached
Use bdd-union.

January 15th, 2018

Symbolic Breadth-first search with
progression and BDDs

Symbolic progression breadth-first search
def bfs-progression (V, I, O, γ) :
goal $:=\operatorname{models}(\gamma)$
reached $:=\{I\}$
loop:
if reached \cap goal $\neq \emptyset$:
return solution found
new-reached := reached \cup image $(r e a c h e d, ~ O)$
if new-reached = reached:
return no solution exists
reached := new-reached
Use bdd-equals.

January 15th, 2018
B. Nebel, R. Mattmüller, D. Speck - Al Planning

The image function
Motivation

- computes the set of states (as a BDD) that can be reached by applying some operator $o \in O$ in some state $s \in$ reached.

We have seen something similar already...

[^0]Translating operators into formulae

Definition (operators in propositional logic)

Let $o=\langle\chi, e\rangle$ be an operator and V a set of state variables.
Define $\tau_{V}(o)$ as the conjunction of

$$
\begin{align*}
& \chi \tag{1}\\
& \bigwedge_{v \in V}\left(E P C_{V}(e) \vee\left(v \wedge \neg E P C_{\neg V}(e)\right)\right) \leftrightarrow V^{\prime} \tag{2}\\
& \bigwedge_{v \in V} \neg\left(E P C_{V}(e) \wedge E P C_{\neg V}(e)\right) \tag{3}
\end{align*}
$$

(1) The precondition of o is satisfied
(2) The new value of v, represented by v^{\prime}, is 1 if it became 1 or if the old value was 1 and it did not become 0 .
(3) None of the state variables is assigned both 0 and 1.

Note: (1) + (3) encodes applicability of the operator.
January 15th, 2018
B. Nebel, R. Mattmüller, D. Speck - Al Planning

The image function
Idea

- The formula $\tau_{V}(o)$ describes all transitions $s \xrightarrow{\circ} s^{\prime}$ - induced by a single operator o
- in terms of variables V describing s
- and variables V^{\prime} describing s^{\prime}.
- The formula $\bigvee_{o \in O} \tau_{V}(o)$ describes state transitions by any operator in O.
- We can translate this formula to a BDD (over variables $V \cup V^{\prime}$) with bdd-formula.
- The resulting BDD is called the transition relation of the planning task, written as $T_{V}(O)$.

January 15th, 2018
B. Nebel, R. Mattmüller, D. Speck - Al Planning

Transition Relation as BDD
Example

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}\right\} \text { and } V^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\} \\
& O=\left\{\left\langle v_{1}, \neg v_{1}\right\rangle\right\} \rightsquigarrow T_{V}(O)=v_{1} \wedge \neg v_{1}^{\prime} \wedge\left(v_{2} \leftrightarrow v_{2}^{\prime}\right)
\end{aligned}
$$

Transition Relation as BDD

States:

- $v_{1} \wedge \neg v_{1}^{\prime} \wedge v_{2} \wedge v_{2}^{\prime}$
- $v_{1} \wedge \neg v_{1}^{\prime} \wedge \neg v_{2} \wedge \neg v_{2}^{\prime}$

The image function Definition	
Using the transition relation, we can compute image(reached, O) as follows: ```The image function def image(reached, O): B:= TV (O) B:= bdd-intersection(B,reached) for each v\inV: B:= bdd-forget(B,v) for each v\inV: B := bdd-rename(}B,\mp@subsup{v}{}{\prime},v return B```	BDDs Operations Symbolic Breadth-first Search Discussion Summary
$\begin{array}{ll}\text { January 15th, } 2018 & \text { B. Nebel, R. Mattmüller, D. Speck - Al Planning }\end{array}$	47/58

| The image function |
| :--- | :--- |
| Definition | Using the transition relation, we can compute \quad as follows:

```
The image function
Definition
Using the transition relation, we can compute
Ds image(reached, O) as follows:
The image function
def image(reached, \(O\) ):
\(B:=T_{V}(O)\)
\(B:=\) bdd-intersection( \(B\),reached)
for each \(v \in V\) :
\(B:=\) bdd-forget \((B, v)\)
for each \(v \in V\) :
\(B:=\) bdd-rename \(\left(B, v^{\prime}, v\right)\)
return \(B\)
```

Thus, image indeed computes the set of successors of reached using operators O.

January 15th, 2018

Discussion

- This completes the discussion of a (basic) symbolic search algorithm for classical planning.

For good performance, we need a good variable ordering.

- We ignored the aspect of solution extraction.

This needs some extra work, but is not a major challenge.

- Variables that refer to the same state variable
- In practice, some steps can be performed slightly more before and after operator application (v and v^{\prime}) should be neighbors in the transition relation BDD. efficiently, but these are comparatively minor details.

Extensions Symbolic Heuristic Search	
represent heuristic as multiple BDDs H_{0}, H_{1}, \ldots split BDD B according to their h-value - bdd-intersection $\left(B, H_{0}\right)$, bdd-intersection $\left(B, H_{1}\right), \ldots$ - can be costly can increase or decrease the sizes of the BDDs - in the worst case exponentially - even with the perfect heuristic h^{*} no theoretical guarentees Does not pay off in practice! explicit search + symbolic heuristics: very effective	BDDs Operations Symbolic Breadth-first Search Discussion Summary
January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck - Al Planning	54/58

Literature

Randal E. Bryant.Graph-Based Algorithms for Boolean Function
Manipulation.
IEEE Transactions on Computers 35.8, pp. 677-691,
1986. \Rightarrow Reduced ordered BDDs.

圊 Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993. \Rightarrow Symbolic search with BDDs.

[^0]: How to do this?

