
Principles of AI Planning
13. Planning with binary decision diagrams

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller and David Speck
January 15th, 2018

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Binary decision diagrams

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 2 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Dealing with large state spaces

One way to explore very large state spaces is to use
selective exploration methods (such as heuristic search)
that only explore a fraction of states.
Another method is to concisely represent large sets of
states and deal with large state sets at the same time.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 3 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Basic Ideas

Come up with a good data structure for sets of states.
Hope: (at least some) exponentially large state sets can
be represented as polynomial-size data structures.
Simulate a standard search algorithm like breadth-first
search using these set representations.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 4 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Breadth-first search with progression and
state sets

Symbolic progression breadth-first search
def bfs-progression(V , I, O, γ):

goal := models(γ)
reached := {I}
loop:

if reached∩goal 6= /0:
return solution found

new-reached := reached∪ image(reached,O)
if new-reached = reached:

return no solution exists
reached := new-reached

 If we can implement operations models, {I}, ∩, 6= /0, ∪, img
and = efficiently, this is a reasonable algorithm.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 5 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Formulae to represent state sets

We have previously considered boolean formulae as a
means of representing set of states.
Compared to explicit representations of state sets,
boolean formulae have very nice performance
characteristics.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 6 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Performance characteristics
Explicit representations vs. formulae

Let k be the number of state variables, |S| the number of
states in S and ‖S‖ the size of the representation of S.

Sorted vector Hash table Formula
s ∈ S? O(k log |S|) O(k) O(‖S‖)
S := S∪{s} O(k log |S|+ |S|) O(k) O(k)
S := S \{s} O(k log |S|+ |S|) O(k) O(k)
S∪S′ O(k|S|+k|S′|) O(k|S|+k|S′|) O(1)
S∩S′ O(k|S|+k|S′|) O(k|S|+k|S′|) O(1)
S \S′ O(k|S|+k|S′|) O(k|S|+k|S′|) O(1)
S O(k2k) O(k2k) O(1)
{s | s(v) = 1} O(k2k) O(k2k) O(1)
S = /0? O(1) O(1) co-NP-complete
S = S′? O(k|S|) O(k|S|) co-NP-complete
|S| O(1) O(1) #P-complete

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 7 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Which operations are important?

Explicit representations such as hash tables are not
suitable because their size grows linearly with the number
of represented states.
Formulae are very efficient for some operations, but not
very well suited for other important operations needed by
the progression algorithm.

Examples: S 6= /0?, S = S′?

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 8 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Canonical Representations

One of the sources of difficulty is that formulae allow
many different representations for a given set.

For example, all unsatisfiable formulae represent /0.
This makes equality tests expensive.
We are interested in canonical representations, i.e.
representations for which there is only one possible
representation for every state set.
Reduced ordered binary decision diagrams (BDDs) are
an example of an efficient canonical representation.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 9 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Performance characteristics
Formulae vs. BDDs

Let k be the number of state variables, |S| the number of
states in S and ‖S‖ the size of the representation of S.

Formula BDD
s ∈ S? O(‖S‖) O(k)
S := S∪{s} O(k) O(k)
S := S \{s} O(k) O(k)
S∪S′ O(1) O(‖S‖‖S′‖)
S∩S′ O(1) O(‖S‖‖S′‖)
S \S′ O(1) O(‖S‖‖S′‖)
S O(1) O(‖S‖)
{s | s(v) = 1} O(1) O(1)
S = /0? co-NP-complete O(1)
S = S′? co-NP-complete O(1)
|S| #P-complete O(‖S‖)

Remark: Optimizations allow BDDs with complementation (S)
in constant time, but we will not discuss this here.
January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 10 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

BDD example

Possible BDD for (u∧v)∨w
u

v

w w

0 1 0 1

0

1

0 1

0

1

01

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 11 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Binary decision diagrams
Definition

Definition (BDD)
Let V be a set of propositional variables.
A binary decision diagram (BDD) over V is a directed acyclic
graph with labeled arcs and labeled vertices satisfying the
following conditions:

There is exactly one node without incoming arcs.
All sinks (nodes without outgoing arcs) are labeled 0 or 1.
All other nodes are labeled with a variable v ∈ V and have
exactly two outgoing arcs, labeled 0 and 1.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 12 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Binary decision diagrams
Terminology

BDD terminology
The node without incoming arcs is called the root.
The labeling variable of an internal node is called the
decision variable of the node.
The nodes reached from node n via the arc labeled
i ∈ {0,1} is called the i-successor of n.
The BDDs which only consist of a single sink are called
the zero BDD and one BDD, respectively.

Observation: If B is a BDD and n is a node of B, then the
subgraph induced by all nodes reachable from n is also a
BDD.

This BDD is called the BDD rooted at n.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 13 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

BDD semantics

Testing whether a BDD includes a variable assignment
def bdd-includes(B: BDD, I: variable assignment):

Set n to the root of B.
while n is not a sink:

Set v to the decision variable of n.
Set n to the I(v)-successor of n.

return true if n is labeled 1, false if it is labeled 0.

Definition (set represented by a BDD)
Let B be a BDD over variables V . The set represented by B, in
symbols r(B) consists of all variable assignments
I : V →{0,1} for which bdd-includes(B, I) returns true.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 14 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Set represemted by a BDD
Example

Possible states for V = {v1,v2,v3}

¬v1∧¬v2∧¬v3
¬v1∧¬v2∧v3
¬v1∧v2∧¬v3
¬v1∧v2∧v3

v1∧¬v2∧¬v3
v1∧¬v2∧v3
v1∧v2∧¬v3
v1∧v2∧v3

Which states are represented by this BDD?
v1

v2

1

v3

0
0

0
1

1

0

1

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 15 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Set represemted by a BDD
Example

Possible states for V = {v1,v2,v3}

% ¬v1∧¬v2∧¬v3
" ¬v1∧¬v2∧v3
% ¬v1∧v2∧¬v3
" ¬v1∧v2∧v3

% v1∧¬v2∧¬v3
" v1∧¬v2∧v3
" v1∧v2∧¬v3
" v1∧v2∧v3

Which states are represented by this BDD?
v1

v2

1

v3

0
0

0
1

1

0

1

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 15 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Ordered BDDs
Motivation

In general, BDDs are not a canonical representation for sets of
valuations. Here is a simple counter-example (V = {u,v})):

BDDs for u∧¬v with different variable order
u

v

0 1

0

1

01

v

u

1 0

0

1

01

Both BDDs represent the same state set, namely the singleton
set {{u 7→ 1,v 7→ 0}}.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 16 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Ordered BDDs
Definition

As a first step towards a canonical representation, we will
in the following assume that the set of variables V is
totally ordered by some ordering ≺.
In particular, we will only use variables v1,v2,v3, . . . and
assume the ordering vi ≺ vj iff i < j.

Definition (ordered BDD)
A BDD is ordered with respect to ≺ iff for each arc from an
internal node with decision variable u to an internal node with
decision variable v, we have u ≺ v.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 17 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Ordered BDDs
Example

Ordered and unordered BDD
v1

v2

0 1

0

1

01

v2

v1

1 0

0

1

01

According to our definitions, the left BDD is ordered, the right
one is not.
Note: Often in literature, a BDD is called ordered if on all paths
from the root to a sink variables appear in the same order.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 18 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Reduced ordered BDDs
Are ordered BDDs canonical?

Two equivalent BDDs that can be reduced
v1

v2

v3 v3

0 1 0 1

0

1

0 1

0

1

01

v1

v2

v3 v3

0 1

0

1

0
1

0 1

0 1

Ordered BDDs are not canonical: Both ordered BDDs
represent the same set.
However, ordered BDDs can easily be made canonical.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 19 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Reduced ordered BDDs
Reductions

There are two important operations on BDDs that do not
change the set represented by it:

Definition (Isomorphism reduction)
If the BDDs rooted at two different nodes n and n′ are
isomorphic, then all incoming arcs of n′ can be redirected to n,
and all parts of the BDD no longer reachable from the root
removed.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 20 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Reduced ordered BDDs
Reductions

Isomorphism reduction
v1

v2

1

v3

0

0

0

1

1
v3

0

01

0

1

1

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 21 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Reduced ordered BDDs
Reductions

Isomorphism reduction
v1

v2

1

v3

0

0

0

1

1

0

1

1

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 21 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Reduced ordered BDDs
Reductions

Isomorphism reduction
v1

v2

1

v3

0

0

0

1

1

0

1

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 21 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Reduced ordered BDDs
Reductions

There are two important operations on BDDs that do not
change the set represented by it:

Definition (Shannon reduction)
If both outgoing arcs of an internal node n of a BDD lead to the
same node m, then n can be removed from the BDD, with all
incoming arcs of n going to m instead.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 22 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Reduced ordered BDDs
Reductions

Shannon reduction
v1

v2

v3

0 1

0

1

0
1

0

v3

0 1

1

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 23 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Reduced ordered BDDs
Reductions

Shannon reduction
v1

v2

v3

0 1

0

1

0
1

0

1

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 23 / 58

BDDs
Motivation

Definition

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Definition

Definition (reduced ordered BDD)
An ordered BDD is reduced iff it does not admit any
isomorphism reduction or Shannon reduction.

Theorem (Bryant 1986)
For every state set S and a fixed variable ordering, there exists
exactly one reduced ordered BDD representing S.

Moreover, given any ordered BDD B, the equivalent reduced
ordered BDD can be computed in linear time in the size of B.

 Reduced ordered BDDs are the canonical representation
we were looking for.
From now on, we simply say BDD for reduced ordered BDD.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 24 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

BDD operations

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 25 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

Goal: Devising a Symbolic Search Algorithm

We now put the pieces together to build
a symbolic search algorithm for propositional planning
tasks.
use BDDs as a black box data structure:

care about provided operations and their time complexity
do not care about their internal implementation

Efficient implementations are available as libraries, e.g.:
CUDD, a high-performance BDD library
libbdd, shipped with Ubuntu Linux

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 26 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

BDD Operations: Preliminaries

All BDDs work on a fixed and totally ordered
set of propositional variables.
Complexity of operations given in terms of:

k, the number of BDD variables
‖B‖, the number of nodes in the BDD B

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 27 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

BDD Operations (1)

BDD operations: logical/set atoms
bdd-true(): build BDD representing all assignments

in logic: >
time complexity: O(1)

bdd-false(): build BDD representing /0
in logic: ⊥
time complexity: O(1)

bdd-atom(v): build BDD representing {s | s(v) = 1}
in logic: v
time complexity: O(1)

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 28 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

BDD Operations (2)

BDD operations: logical/set connectives
bdd-complement(B): build BDD representing r(B)

in logic: ¬ϕ

time complexity: O(‖B‖) (or O(1))
bdd-union(B, B′): build BDD representing r(B)∪ r(B′)

in logic: (ϕ ∨ψ)
time complexity: O(‖B‖ · ‖B′‖)

analogously:
bdd-intersection(B, B′): r(B)∩ r(B′), (ϕ ∧ψ)
bdd-setdifference(B, B′): r(B)\ r(B′), (ϕ ∧¬ψ)
bdd-implies(B, B′): r(B)∪ r(B′), (ϕ → ψ)
bdd-equiv(B, B′): (r(B)∩ r(B′))∪ (r(B)∩ r(B′)), (ϕ ↔ ψ)

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 29 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

BDD Operations (3)

BDD operations: Boolean tests
bdd-includes(B, I): return true iff I ∈ r(B)

in logic: I |= ϕ?
time complexity: O(k)

bdd-equals(B, B′): return true iff r(B) = r(B′)
in logic: ϕ ≡ ψ?
time complexity: O(1) (due to canonical representation)

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 30 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula ϕ to T or F,
written ϕ [T/v] or ϕ [F/v], means restricting v
to a particular truth value:

Examples:
(A∧ (B∨¬C))[T/B] = (A∧ (>∨¬C))≡ A
(A∧ (B∨¬C))[F/B] = (A∧ (⊥∨¬C))≡ A∧¬C

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 31 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S:
S[F/v] and S[T/v] restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:
S = {{A 7→ F,B 7→ F,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ T}}
 S[T/B] = {{A 7→ T,C 7→ F},

S[T/B] = {

{A 7→ T,C 7→ T}}

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 32 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

Forgetting

Forgetting (a.k.a. existential abstraction) is similar to
conditioning:
we allow either truth value for v and remove the variable.

We write this as ∃v ϕ (for formulas) and ∃v S (for sets).

Formally:
∃v ϕ = ϕ [T/v]∨ϕ [F/v]
∃v S = S[T/v]∪S[F/v]

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 33 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

Forgetting: Example

Examples:
S = {{A 7→ F,B 7→ F,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ T}}
 ∃BS = {{A 7→ F,C 7→ F},

∃BS = {

{A 7→ T,C 7→ F},

∃BS = {

{A 7→ T,C 7→ T}}
 ∃CS = {{A 7→ F,B 7→ F},

∃CS = {

{A 7→ T,B 7→ T}}

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 34 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

BDD Operations (4)

BDD operations: conditioning and forgetting
bdd-condition(B, v, t) where t ∈ {T,F}:
build BDD representing r(B)[t/v]

in logic: ϕ [t/v]
time complexity: O(‖B‖)

bdd-forget(B, v):
build BDD representing ∃v r(B)

in logic: ∃v ϕ (= ϕ [T/v]∨ϕ [F/v])
time complexity: O(‖B‖2)

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 35 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

Formulas to BDDs

With the logical/set operations, we can convert
propositional formulas ϕ into BDDs representing the
models of ϕ .

bdd-atom, bdd-complement, bdd-union,
We denote this computation with bdd-formula(ϕ).
Each individual logical connective takes polynomial time,
but converting a full formula of length n can take O(2n)
time. (How is this possible?)

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 36 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

Singleton BDDs

We can convert a single truth assignment I
into a BDD representing {I} by computing
the conjunction of all literals true in I.

bdd-atom, bdd-complement and bdd-intersection
We denote this computation with bdd-singleton(I).
When done in the correct order, this takes time O(k).

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 37 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

Renaming

We will need to support one final operation on formulas:
renaming.

Renaming X to Y in formula ϕ , written ϕ [X → Y],
means replacing all occurrences of X by Y in ϕ .

We require that Y is not present in ϕ initially.

Example:
ϕ = (A∧ (B∨¬C))

 ϕ [A→ D] = (D∧ (B∨¬C))

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 38 / 58

BDDs

Operations
Basic BDD
Operations

Formulas and
Singletons

Renaming

Symbolic
Breadth-first
Search

Discussion

Summary

How Hard Can That Be?

For formulas, renaming is a simple (linear-time) operation.
For a BDD B, it is equally simple (O(‖B‖)) when renaming
between variables that are adjacent in the variable order.
In general, it requires O(‖B‖2), using the equivalence
ϕ [X → Y]≡ ∃X (ϕ ∧ (X ↔ Y))

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 39 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary
Symbolic Breadth-first
Search

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 40 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Symbolic Breadth-first search with
progression and BDDs

Symbolic progression breadth-first search
def bfs-progression(V , I, O, γ):

goal := models(γ)
reached := {I}
loop:

if reached∩goal 6= /0:
return solution found

new-reached := reached∪ image(reached, O)
if new-reached = reached:

return no solution exists
reached := new-reached

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 41 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Symbolic Breadth-first search with
progression and BDDs

Symbolic progression breadth-first search
def bfs-progression(V , I, O, γ):

goal := models(γ)
reached := {I}
loop:

if reached∩goal 6= /0:
return solution found

new-reached := reached∪ image(reached, O)
if new-reached = reached:

return no solution exists
reached := new-reached

Use bdd-formula (bdd-complement, bdd-union and
bdd-intersection).
January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 41 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Symbolic Breadth-first search with
progression and BDDs

Symbolic progression breadth-first search
def bfs-progression(V , I, O, γ):

goal := models(γ)
reached := {I}
loop:

if reached∩goal 6= /0:
return solution found

new-reached := reached∪ image(reached, O)
if new-reached = reached:

return no solution exists
reached := new-reached

Use bdd-singleton (bdd-complement, bdd-union and
bdd-intersection).
January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 41 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Symbolic Breadth-first search with
progression and BDDs

Symbolic progression breadth-first search
def bfs-progression(V , I, O, γ):

goal := models(γ)
reached := {I}
loop:

if reached∩goal 6= /0:
return solution found

new-reached := reached∪ image(reached, O)
if new-reached = reached:

return no solution exists
reached := new-reached

Use bdd-intersection, bdd-false and bdd-equals.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 41 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Symbolic Breadth-first search with
progression and BDDs

Symbolic progression breadth-first search
def bfs-progression(V , I, O, γ):

goal := models(γ)
reached := {I}
loop:

if reached∩goal 6= /0:
return solution found

new-reached := reached∪ image(reached, O)
if new-reached = reached:

return no solution exists
reached := new-reached

Use bdd-union.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 41 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Symbolic Breadth-first search with
progression and BDDs

Symbolic progression breadth-first search
def bfs-progression(V , I, O, γ):

goal := models(γ)
reached := {I}
loop:

if reached∩goal 6= /0:
return solution found

new-reached := reached∪ image(reached, O)
if new-reached = reached:

return no solution exists
reached := new-reached

Use bdd-equals.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 41 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Symbolic Breadth-first search with
progression and BDDs

Symbolic progression breadth-first search
def bfs-progression(V , I, O, γ):

goal := models(γ)
reached := {I}
loop:

if reached∩goal 6= /0:
return solution found

new-reached := reached∪ image(reached, O)
if new-reached = reached:

return no solution exists
reached := new-reached

How to do this?

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 41 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

The image function
Motivation

We need an operation that
for a set of states reached (given as a BDD)
and a set of operators O
computes the set of states (as a BDD) that can be
reached by applying some operator o ∈O in some state
s ∈ reached.

We have seen something similar already. . .

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 42 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Translating operators into formulae

Definition (operators in propositional logic)
Let o = 〈χ,e〉 be an operator and V a set of state variables.
Define τV (o) as the conjunction of

χ (1)∧
v∈V (EPCv (e)∨ (v ∧¬EPC¬v (e)))↔ v ′ (2)∧
v∈V ¬(EPCv (e)∧EPC¬v (e)) (3)

(1) The precondition of o is satisfied
(2) The new value of v, represented by v ′, is 1 if it became 1

or if the old value was 1 and it did not become 0.
(3) None of the state variables is assigned both 0 and 1.

Note: (1) + (3) encodes applicability of the operator.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 43 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

The image function
Idea

The formula τV (o) describes all transitions s o−→ s′
induced by a single operator o
in terms of variables V describing s
and variables V ′ describing s′.

The formula
∨

o∈O τV (o) describes state transitions
by any operator in O.
We can translate this formula to a BDD
(over variables V ∪V ′) with bdd-formula.
The resulting BDD is called the transition relation
of the planning task, written as TV (O).

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 44 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Transition Relation as formula
Example

V = {v1,v2} and V ′ = {v ′1,v ′2}
O = {〈v1,¬v1〉}

Transition Relation

TV (O) =
∨
o∈O

τV (o) = τV (〈v1,¬v1〉)

= v1
∧ (EPCv1(¬v1)∨ (v1∧¬EPC¬v1(¬v1)))↔ v ′1)
∧ (EPCv2(¬v1)∨ (v2∧¬EPC¬v2(¬v1)))↔ v ′2)
∧ (¬(EPCv1(¬v1)∧EPC¬v1(¬v1)))
∧ (¬(EPCv2(¬v1)∧EPC¬v2(¬v1)))

=? = v1∧¬v ′1∧ (v2↔ v ′2)

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 45 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Transition Relation as BDD
Example

V = {v1,v2} and V ′ = {v ′1,v ′2}
O = {〈v1,¬v1〉} TV (O) = v1∧¬v ′1∧ (v2↔ v ′2)

Transition Relation as BDD

States:
v1∧¬v ′1∧v2∧v ′2
v1∧¬v ′1∧¬v2∧¬v ′2

v1

v ′1

v2

v ′2 v ′2

0 1

0

1

0

1 0 1

01

0 1

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 46 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

The image function
Definition

Using the transition relation, we can compute
image(reached,O) as follows:

The image function
def image(reached, O):

B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B,v)
for each v ∈ V :

B := bdd-rename(B,v ′,v)
return B

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 47 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

The image function
Definition

Using the transition relation, we can compute
image(reached,O) as follows:

The image function
def image(reached, O):

B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B,v)
for each v ∈ V :

B := bdd-rename(B,v ′,v)
return B

This describes the set of state pairs
in terms of variables V ∪V ′.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 47 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

The image function
Definition

Using the transition relation, we can compute
image(reached,O) as follows:

The image function
def image(reached, O):

B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B,v)
for each v ∈ V :

B := bdd-rename(B,v ′,v)
return B

This describes the set of state pairs 〈s,s′〉 where s′ is a
successor of s and s ∈ reached in terms of variables V ∪V ′.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 47 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

The image function
Definition

Using the transition relation, we can compute
image(reached,O) as follows:

The image function
def image(reached, O):

B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B,v)
for each v ∈ V :

B := bdd-rename(B,v ′,v)
return B

This describes the set of states s′ which are successors
of some state s ∈ reached in terms of variables V ′.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 47 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

The image function
Definition

Using the transition relation, we can compute
image(reached,O) as follows:

The image function
def image(reached, O):

B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B,v)
for each v ∈ V :

B := bdd-rename(B,v ′,v)
return B

This describes the set of states s′ which are successors
of some state s ∈ reached in terms of variables V .

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 47 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

The image function
Definition

Using the transition relation, we can compute
image(reached,O) as follows:

The image function
def image(reached, O):

B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B,v)
for each v ∈ V :

B := bdd-rename(B,v ′,v)
return B

Thus, image indeed computes the set of successors of
reached using operators O.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 47 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

The image function
Example

V = {v1,v2} and V ′ = {v ′1,v ′2}
O = {〈v1,¬v1〉} TV (O) = v1∧¬v ′1∧ (v2↔ v ′2)

Let reached = v1 B = bdd-intersection(TV (O),
reached = v1) B = bdd-forget(B, v1) B = bdd-forget(B, v2)
B = bdd-rename(B, v ′1, v1) B = bdd-rename(B, v ′2, v2)
States:

v1∧¬v2
v1∧v2
v1∧¬v ′1∧v2∧v ′2
v1∧¬v ′1∧¬v2∧¬v ′2
¬v ′1∧v2∧v ′2
¬v ′1∧¬v2∧¬v ′2
¬v ′1∧v ′2
¬v ′1∧¬v ′2
¬v1∧v ′2
¬v1∧¬v ′2
¬v1∧v2
¬v1∧¬v2

How many states conside-
ring V ∪V ′?

0 1

v1

v ′1

v2

v ′2 v ′2

0 10

1

0

1 0 1

01

0 1

01
01January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 48 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

SummaryDiscussion

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 49 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Discussion

This completes the discussion of a (basic)
symbolic search algorithm for classical planning.
We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.
In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 50 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Variable Orders

For good performance, we need a good variable ordering.
Variables that refer to the same state variable
before and after operator application (v and v ′)
should be neighbors in the transition relation BDD.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 51 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Finite-Domain Variables and Variable Orders

The algorithm can easily be extended to FDR tasks
by using dlog2ne BDD variables to represent
a state variable with n possible values.

Variables related to the same FDR variable
should be kept together in the BDD variable ordering
(but still interleaving primed and unprimed variables).
Automatic conversion from STRIPS to SAS+

was first explored in the context of symbolic search.
It was found critical for performance.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 52 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Extensions
Overview

Symbolic search can be extended to. . .
regression and bidirectional search:
this is very easy and often effective
uniform-cost search:
requires some work, but not too difficult in principle
heuristic search?

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 53 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Extensions
Symbolic Heuristic Search

represent heuristic as multiple BDDs H0,H1, . . .

split BDD B according to their h-value
bdd-intersection(B, H0), bdd-intersection(B, H1), . . .
can be costly

can increase or decrease the sizes of the BDDs
in the worst case exponentially
even with the perfect heuristic h∗

no theoretical guarentees
Does not pay off in practice!
explicit search + symbolic heuristics: very effective

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 54 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Literature

Randal E. Bryant.
Graph-Based Algorithms for Boolean Function
Manipulation.
IEEE Transactions on Computers 35.8, pp. 677–691,
1986.⇒ Reduced ordered BDDs.
Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.⇒ Symbolic search with BDDs.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 55 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Literature

Álvaro Torralba.
Symbolic Search and Abstraction Heuristics
for Cost-Optimal Planning.
PhD Thesis, 2015.⇒ State of the art of symbolic search
planning.

David Speck, Florian Geißer and Robert Mattmüller.
When Perfect is not Good Enough: On the Search
Behaviour of Symbolic Heuristic Search
Proc. ICAPS 2020, 2020.⇒ Symbolic Heuristic Search.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 56 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

SummarySummary

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 57 / 58

BDDs

Operations

Symbolic
Breadth-first
Search

Discussion

Summary

Summary

Symbolic search operates on sets of states
instead of individual states as in explicit-state search.
State sets and transition relations can be represented as
BDDs.
Based on this, we can implement a blind breadth-first
search in an efficient way.
A good variable ordering is crucial for performance.

January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – AI Planning 58 / 58

	Binary decision diagrams
	Motivation
	Definition

	BDD operations
	Basic BDD Operations
	Formulas and Singletons
	Renaming

	Symbolic Breadth-first Search
	Discussion
	Summary

