

B. Nebel, R. Mattmüller, D. Speck - Al Planning

Breadth-first search with progression and state sets	BURG
Symbolic progression breadth-first search	BDDs
def bfs-progression(V, I, O, γ):	Motivation Definition
$goal := models(\gamma)$	Operations
reached := { <i>I</i> }	Symbolic Proadth first
loop:	Search
if reached ∩ goal <mark>≠ 0</mark> :	Discussion
return solution found	Summary
new-reached := reached∪image(reached,O)	
if new-reached = reached:	
return no solution exists	
reached := new-reached	
\rightsquigarrow If we can implement operations <i>models</i> , { <i>I</i> }, ∩, ≠ \emptyset , ∪, <i>img</i> and = efficiently, this is a reasonable algorithm.	
January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – Al Planning 5 / 58	

	NUT RI	
Formulae to represent state sets		BURG
	Z	FRE
		BDDs Motivation Definition
		Operations
We have previously considered boolean formulae as means of representing set of states.	а	Symbolic Breadth-first Search
Compared to explicit representations of state sets,		Discussion
January 15th. 2018 B. Nebel, R. Mattmüller, D. Speck – Al Planning	6 / 58	Summary
Jalilatiy 15tri, 2010 D. 1966er, H. Matunoner, D. Opeor, Arthanning	0/00	
Which operations are important?		BURG
	S	FRE

- Explicit representations such as hash tables are not suitable because their size grows linearly with the number of represented states.
- Formulae are very efficient for some operations, but not very well suited for other important operations needed by the progression algorithm.
 - Examples: $S \neq \emptyset$?, S = S'?

BDDs

Motivation

Definition

Operations

Symbolic

Search

Summary

Breadth-first

Canonical Representations

BDDs

Motivation

Definition

Operations

Breadth-first

Symbolic

Search

One of the sources of difficulty is that formulae allow many different representations for a given set.

■ For example, all unsatisfiable formulae represent Ø.

This makes equality tests expensive.

- We are interested in canonical representations, i.e. representations for which there is only one possible representation for every state set.
- Reduced ordered binary decision diagrams (BDDs) are an example of an efficient canonical representation.

January 15th, 2018

B. Nebel, R. Mattmüller, D. Speck - Al Planning

Binary decision diagrams Terminology

	FREIBURG
	BDDs
	Motivation
	Definition
ڊ ڊ	Operations

13/58

Symbolic Breadth-first Search

BDD terminology

- The node without incoming arcs is called the root.
- The labeling variable of an internal node is called the decision variable of the node.
- The nodes reached from node *n* via the arc labeled $i \in \{0, 1\}$ is called the *i*-successor of *n*.
- The BDDs which only consist of a single sink are called the zero BDD and one BDD, respectively.

Observation: If B is a BDD and n is a node of B, then the subgraph induced by all nodes reachable from n is also a BDD.

This BDD is called the BDD rooted at *n*.

January 15th, 2018

B. Nebel, R. Mattmüller, D. Speck – Al Planning

BDD semantics

14/58

BDDs

Motivation

Definition

Search

Testing whether a BDD includes a variable assignment

def bdd-includes(<i>B</i> : BDD, <i>I</i> : variable assignment):
Set <i>n</i> to the root of <i>B</i> .
while <i>n</i> is not a sink:
Set v to the decision variable of n.
Set <i>n</i> to the $I(v)$ -successor of <i>n</i> .
return true if <i>n</i> is labeled 1. false if it is labeled 0.

Definition (set represented by a BDD)

Let *B* be a BDD over variables *V*. The set represented by *B*, in symbols r(B) consists of all variable assignments $I: V \rightarrow \{0, 1\}$ for which *bdd-includes*(*B*,*I*) returns true.

- January 15th, 2018 B. N
- B. Nebel, R. Mattmüller, D. Speck Al Planning

 As a first step towards a canonical representation, we will in the following assume that the set of variables <i>V</i> is totally ordered by some ordering ≺. In particular, we will only use variables v₁, v₂, v₃, and assume the ordering v_i ≺ v_j iff i < j. 	Ordered BDI			BURG
 As a first step towards a canonical representation, we will in the following assume that the set of variables <i>V</i> is totally ordered by some ordering ≺. In particular, we will only use variables v₁, v₂, v₃, and assume the ordering v_i ≺ v_j iff i < j. 				N H H
 totally ordered by some ordering ≺. In particular, we will only use variables v₁, v₂, v₃, and assume the ordering v_i ≺ v_j iff i < j. 	As a first stee in the follow	owards a canonical representat assume that the set of variable	tion, we will es <i>V</i> is	BDDs Motivat Definiti Opera
Definition (ordered PDD)	totally order	by some ordering ≺. e will only use variables v ₁ ,v ₂ ,v	v_3, \ldots and	Symb Bread Searc Discu
	Definition (orde	sering $v_i \prec v_j$ in $i < j$.		Sumr
A BDD is ordered with respect to \prec iff for each arc from an internal node with decision variable <i>u</i> to an internal node with decision variable <i>v</i> , we have $u \prec v$.	A BDD is ordered internal node with decision variable	ith respect to \prec iff for each arc ecision variable <i>u</i> to an internal we have $u \prec v$.	from an I node with	
January 15th, 2018 B. Nebel, R. Mattmüller, D. Speck – Al Planning 17 / 58	January 15th, 2018	Nebel, R. Mattmüller, D. Speck – Al Planning	17 / 58	

Reduced ordered BDDs Reductions

There are two important operations on BDDs that do not change the set represented by it:

Definition (Isomorphism reduction)

If the BDDs rooted at two different nodes n and n' are isomorphic, then all incoming arcs of n' can be redirected to n, and all parts of the BDD no longer reachable from the root removed.

January 15th, 2018

B. Nebel, R. Mattmüller, D. Speck - Al Planning

Reduced ordered BDDs Reductions

January 15th, 2018

B. Nebel, R. Mattmüller, D. Speck - Al Planning

22 / 58

B. Nebel, R. Mattmüller, D. Speck - Al Planning

Forgetting: E	Example	
Examples: $S = \{ \{A \mapsto $	$F, B \mapsto F, C \mapsto F\},$ $T, B \mapsto T, C \mapsto F\},$ $T, B \mapsto T, C \mapsto T\}$ $\mapsto F, C \mapsto F\},$ $\mapsto T, B \mapsto F\},$ $\mapsto T, B \mapsto T\}$	BDDs Boperations Boperations Formulae and Singletons Remaining Symbolic Breadth-first Search Discussion Summary
January 15th, 2018	B. Nebel, R. Mattmüller, D. Speck – Al Planning	34 / 58

January 15th, 2018

B. Nebel, R. Mattmüller, D. Speck - Al Planning

Symbolic B progression	readth-first search with and BDDs	BURG
		L S S S S S S S S S S S S S S S S S S S
Symbolic prog	gression breadth-first search	BDDs
def bfs-progre	ssion(V, I, O, γ):	Operations
goal := mo reached :=	$pdels(\gamma) = \{I\}$	Symbolic Breadth-first Search
loop:		Discussion
if read r new-r if new r	ched∩goal ≠ 0: eturn solution found reached := reached∪image(reached, O v-reached = reached: eturn no solution exists	Summary
reach	led := new-reached	
January 15th, 2018	B. Nebel, R. Mattmüller, D. Speck – Al Planning	41 / 58

Symbolic Br progression a	eadth-first search with and BDDs		
		Z	
Symbolic prog	ression breadth-first search		BDDs
def bfs-progress	sion(V, I, O, γ):		Operations
goal := mod reached := •	$ e s(\gamma) $		Symbolic Breadth-first Search
loop:			Discussion
if reach rei new-rei if new-rei rei reachea	hed∩goal ≠ 0: turn solution found ached := reached∪image(reached, O reached = reached: turn no solution exists d := new-reached)	Summary
Use bdd-formula bdd-intersection	a (<i>bdd-complement, bdd-union</i> and).		
January 15th, 2018	B. Nebel, R. Mattmüller, D. Speck – Al Planning	41 / 58	

January 15th, 2018

Summary			BURG
		5	BDDs
			Operations
Symbolic search opera instead of individual sta	tes on <mark>sets of states</mark> tes as in explicit-state searc	ch.	Symbolic Breadth-first Search
 State sets and transition BDDs. 	n relations can be represent	ted as	Discussion Summary
Based on this, we can i search in an efficient was search in an efficien	mplement a blind breadth-fi ay.	rst	
A good variable orderin	g is crucial for performance		
January 15th, 2018 B. Nebel, R. Mattr	nüller, D. Speck – Al Planning	58 / 58	