Principles of AI Planning

13. Planning as search: Partial-Order Reduction

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

Preliminaries

Stubborn Sets

Conclusion

Motivation

- Worst case: Heuristic search may explore exponentially more states than necessary, even if heuristic is almost perfect (Helmert and Röger, 2008).
- Example: A* search in GRIPPER domain explores all permutations of ball transportations if heuristic is off only by a small constant.
- Idea: Complement heuristic search with orthogonal technique(s) to reduce size of explored state space.
- Desired properties of this technique: preservation of completeness and, if possible, optimality.

Preliminaries

Stubborn Sets

Conclusion

Idea:

- Enforce particular ordering among operators.
- Ignore all other orderings.

Example

January 8th, 2020

Motivation

Preliminaries

Stubborn Sets

Preliminaries

Setting Operator

Dependencies

Necessary Enabling Sets and Disjunctive Action Landmarks

Stubborn Sets

Conclusion

Preliminaries

Setting

Assumption: For the rest of the chapter, we assume that all planning tasks are SAS⁺ planning tasks $\Pi = (V, I, O, \gamma)$.

For convenience, we assume that operators have the form $o = \langle pre(o), eff(o) \rangle$, where pre(o) and eff(o) are both partial states over *V*, i.e., partial functions mapping variables *v* to values in \mathcal{D}_v . Similarly, we assume that γ is a partial state describing the goal.

Example

Operator $o = \langle pre(o), eff(o) \rangle$ with $pre(o) = \{v_1 \mapsto d_1, v_5 \mapsto d_5\}$ and $eff(o) = \{v_2 \mapsto d_2, v_3 \mapsto d_3\}$ corresponds to $o = \langle \chi, e \rangle$ with $\chi = (v_1 = d_1 \land v_5 = d_5)$ and $e = (v_2 := d_2 \land v_3 := d_3)$.

Motivatio

Preliminaries

Setting

Operator Dependencies

Necessary Enabling Sets and Disjunctive Action Landmarks

Stubborn Sets

Definition (Operators)

Let $\Pi = (V, I, O, \gamma)$ be a SAS⁺ planning task and $o \in O$ an operator. Then

- prevars(o) := vars(pre(o)) are the variables that occur in the precondition of o.
- effvars(o) := vars(eff(o)) are the variables that occur in the
 effect of o.
- o reads $v \in V$ iff $v \in prevars(o)$.
- o modifies $v \in V$ iff $v \in effvars(o)$.

Variable $v \in V$ is goal-related iff $v \in vars(\gamma)$.

Assumption: *effvars*(o) $\neq \emptyset$ for all $o \in O$.

Motivation

Preliminaries

Setting

Operator Dependencies

Necessary Enabling Sets and Disjunctive Action Landmarks

Stubborn Sets

Definition (Operator dependencies)

Let $\Pi = \langle V, O, I, \gamma \rangle$ be a planning task and $o, o' \in O$.

- *o* disables *o'* iff there exists $v \in effvars(o) \cap prevars(o')$ such that $eff(o)(v) \neq pre(o')(v)$.
- 2 *o* enables *o'* iff there exists $v \in effvars(o) \cap prevars(o')$ such that eff(o)(v) = pre(o')(v).
- 3 *o* and *o'* conflict iff there is $v \in effvars(o) \cap effvars(o')$ such that $eff(o)(v) \neq eff(o')(v)$.
- o and o' interfere iff o disables o', or o' disables o, or o and o' conflict.
- 5 o and o' are commutative iff o and o' do not interfere, and neither o enables o', nor o' enables o.

UNI FREIBURG

Motivation

Preliminaries

Setting

Operator Dependencies

Necessary Enabling Sets and Disjunctive Action Landmarks

Stubborn Sets

Example

 $put\text{-}on\text{-}left = \langle pos = home \land left = f, left := t \rangle$ $put\text{-}on\text{-}right = \langle pos = home \land right = f, right := t \rangle$ $go\text{-}to\text{-}uni = \langle left = t \land right = t, pos := uni \rangle$ $go\text{-}to\text{-}gym = \langle left = t \land right = t, pos := gym \rangle$

Then:

- go-to-uni and go-to-gym disable put-on-left and put-on-right.
- put-on-left and put-on-right enable go-to-uni and go-to-gym.
- go-to-uni and go-to-gym conflict.
- put-on-left and put-on-right are commutative.

Preliminaries

Settina

Operator Dependencies

Necessary Enabling Sets and Disjunctive Action Landmarks

Stubborn Sets

Necessary Enabling Sets and Disjunctive Action Landmarks

Definition (Necessary enabling set)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task, *s* a state, and $o \in O$ an operator that is not applicable in *s*. A set *N* of operators is a necessary enabling set (NES) for *o* in *s* if all operator sequences that lead from *s* to a goal state and include *o* contain an operator in *N* before the first occurrence of *o*.

Note: NESs not uniquely determined for given *o* and *s*. (E.g., supersets of NESs are still NESs.)

Motivation

Preliminaries

Setting

Operator Dependencies

Necessary Enabling Sets and Disjunctive Action Landmarks

Stubborn Sets

Necessary Enabling Sets and Disjunctive Action Landmarks

Definition (Disjunctive action landmark)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task and *s* a state. A disjunctive action landmark (DAL) *L* in *s* is a set of operators such that all operator sequences that lead from *s* to a goal state contain some operator in *L*.

Observation

For state *s* and operator *o* that is not applicable in *s*, disjunctive action landmarks for task $\langle V, I, O, pre(o) \rangle$ are necessary enabling sets for *o* in *s*.

Motivation

Preliminaries

Setting

Operator Dependencies

Necessary Enabling Sets and Disjunctive Action Landmarks

Stubborn Sets

Necessary Enabling Sets and Disjunctive Action Landmarks

Proof

Let L be such a disjunctive action landmark.

Then each operator sequence that leads from s to a state satisfying pre(o) contains some operator in L.

Thus, each operator sequence that leads from s to a goal state and includes o contains an operator in L before the first occurrence of o.

Therefore, *L* is an NES for *o* in *s*.

Preliminaries

Setting

Operator Dependencies

Necessary Enabling Sets and Disjunctive Action Landmarks

Stubborn Sets

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets

Some Experiments

Conclusion

Stubborn Sets

If, in state *s*, some set of operators can be applied in any order and the order does not matter, we want to commit to one such order and ignore all other orders.

Idea:

Identify operators that can be postponed since they are independent of all operators that are not postponed.

E.g., put-on-right could be postponed, since it is independent of put-on-left (that is not postponed).

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets Some Experimen

Conclusion

Idea (more precisely): Identify operators that should not be postponed, and postpone the rest.

Question: When should an operator o not be postponed?

Answer:

- Base case: If o may be immediately relevant to reaching (part of) the goal, or
- Inductive case I: If o may be immediately relevant to contributing to making another operator applicable that should not be postponed, or
- Inductive case II: If *o* might not be applicable any more if we postponed it, or if its effect might conflict with the effect of another operator that should not be postponed ($\approx o$ interferes with such an operator).

Let's formalize the above answer:

Definition (Strong stubborn set)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task and *s* a state. A set $T_s \subseteq O$ is a strong stubborn set in *s* if

- **1** T_s contains a disjunctive action landmark in s, and
- 2 for all $o \in T_s$ that are not applicable in s, T_s contains a necessary enabling set for o and s, and
- 3 for all $o \in T_s$ that are applicable in s, T_s contains all operators that interfere with o.

Instead of applying all applicable operators in s only apply those that are applicable and contained in T_s .

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators Weak Stubborn

Algorithms

Properties of Stubborn Sets Some Experiment

Conclusion

Example

Strong Stubborn Sets

 $s = \{pos \mapsto home, left \mapsto f, right \mapsto f\}, \gamma = \{pos \mapsto uni\}$ put-on-left = $\langle pos = home \land left = f, left := t \rangle$ put-on-right = $\langle pos = home \land right = f, right := t \rangle$ go-to-uni = $\langle \text{left} = t \land \text{right} = t, \text{pos} := \text{uni} \rangle$

- Step 1: DAL in *s* is {go-to-uni} $\rightarrow T_s := \{go-to-uni\}$.
- Step 2: go-to-uni not applicable in s. One possible NES for go-to-uni in *s* is {put-on-left} $\rightsquigarrow T_s := T_s \cup \{\text{put-on-left}\}.$
- Step 3: put-on-left is applicable in s. The only operator that interferes with it, go-to-uni, is already in T_s .
- Hence, $T_s = \{go-to-uni, put-on-left\}, and T_s restricted to the$ applicable operators is {put-on-left}. During search, only apply put-on-left (not put-on-right).

January 8th, 2020

B. Nebel, R. Mattmüller – Al Planning

Preliminaries

Sets

Strong Stubborn Sole

Properties of

Strong Stubborn Sets

Example

Let
$$V = \{u_1, u_2, v, w\}, s = \{u_1 \mapsto 0, u_2 \mapsto 0, v \mapsto 0, w \mapsto 0\}$$

 $\gamma = \{v \mapsto 0, u_1 \mapsto 1, u_2 \mapsto 1\}, \text{ and } O = \{o_1, o_2, o_3\}, \text{ where:}$
 $o_1 = \langle u_1 = 0, u_1 := 1 \land w := 2 \rangle,$
 $o_2 = \langle u_2 = 0, u_2 := 1 \land w := 2 \rangle,$
 $o_3 = \langle u_1 = 0 \land u_2 = 0, v := 1 \land w := 1 \rangle.$

Strong stubborn set:

- Step 1: Include o_1 (or o_2) in T_s as DAL.
- Step 2: Include o_3 in T_8 since it interferes with o_1 (or o_2).
- Step 3: Include o_2 (or o_1) in T_s since it interferes with o_3 .

 \rightarrow all applicable operators included in T_s , no pruning.

Question: Can we do better than that in this example?

January 8th, 2020

B. Nebel, R. Mattmüller – Al Planning

.

Preliminaries

Sets

Strong Stubborn Sole

Properties of

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets

Some Experiment:

Conclusion

Definition (Domain transition graph)

Let $\Pi = (V, I, O, \gamma)$ be a SAS⁺ planning task and $v \in V$. The domain transition graph for v is the directed graph $DTG(v) = \langle \mathscr{D}_v, E \rangle$ where $(d, d') \in E$ iff there is an operator $o \in O$ with

•
$$eff(o)(v) = d'$$
, and

■ $v \notin prevars(o)$ or pre(o)(v) = d.

Example

move-a-b =
$$\langle pos = a, pos := b \rangle$$

move-b-c = $\langle pos = b, pos := c \rangle$
move-c-d = $\langle pos = c, pos := d \rangle$
reset = $\langle \top, pos := a \land othervar := otherval$

Then *DTG*(pos):

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets

Some Experiments

Definition (Active operators)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task and let *s* be a state. The set of active operators $Act(s) \subseteq O$ in *s* is defined as the set of operators such that for all $o \in Act(s)$:

- For every variable v ∈ prevars(o), there is a path in DTG(v) from s(v) to pre(o)(v). If v is goal-related, then there is also a path from pre(o)(v) to the goal value γ(v).
- For every goal-related variable $v \in effvars(o)$, there is a path in DTG(v) from eff(o)(v) to the goal value $\gamma(v)$.

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets Some Experimen

Proposition

- **1** Act(s) can be identified efficiently for a given state *s* by considering paths in the projection of Π onto *v*.
- 2 Operators not in Act(s) can be treated as nonexistent when reasoning about s because they are not applicable in all states reachable from s, or they lead to a dead-end from s.

Proof

Homework: Specify efficient algorithm for identification of Act(s).

2 Obvious.

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets Some Experiment

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets

Conclusion

Remark 1: Even when excluding inactive operators, this preserves completeness and even optimality of a search algorithm (see proof below).

Remark 2: Excluding inactive operators can "cascade" in the sense that additional active operators need not be considered.

Definition (Strong stubborn set with active operator pruning)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task and *s* a state. A set $T_s \subseteq O$ is a strong stubborn set in *s* if

- **1** T_s contains a disjunctive action landmark in *s*, and
- 2 for all $o \in T_s$ that are not applicable in s, T_s contains a necessary enabling set for o and s, and
- 3 for all $o \in T_s$ that are applicable in s, T_s contains all operators that are active in s and interfere with o.

Instead of applying all applicable operators in s only apply those that are applicable and contained in T_s .

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets

Conclusion

Strong Stubborn Sets

Why operator activity matters

Recall the previous example where strong stubborn sets without active operator pruning were useless.

Example

$$s = \{u_1 \mapsto 0, u_2 \mapsto 0, v \mapsto 0, w \mapsto 0\},$$

$$\gamma = \{v \mapsto 0, u_1 \mapsto 1, u_2 \mapsto 1\}$$

$$\bullet o_1 = \langle u_1 = 0, u_1 := 1 \land w := 2 \rangle$$

$$\bullet o_2 = \langle u_2 = 0, u_2 := 1 \land w := 2 \rangle$$

$$o_3 = \langle u_1 = 0 \land u_2 = 0, v := 1 \land w := 1 \rangle$$

Now, with active operator pruning:

Step 1: Include o_1 (or o_2) in T_s as DAL.

Step 2: Operator o_3 is not active in any reachable state. $\rightarrow o_3$ not in T_s , although it interferes with o_1 (or o_2).

January 8th, 2020

B. Nebel, R. Mattmüller - Al Planning

Motivation Preliminaries

Stubborn

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets

Some Experiments

Strong Stubborn Sets

Why operator activity matters

Example (Example, ctd.)

Now, with active operator pruning:

- Step 1: Include o_1 (or o_2) in T_s as DAL.
- Step 2: Operator o_3 is not active in any reachable state. $\rightarrow o_3$ not in T_s , although it interferes with o_1 (or o_2).
- Hence, e.g., $T_s = \{o_1\}$ strong stubborn set (with active operator pruning) in *s*.
- Even active operator o_2 is not included in $T_s = \{o_1\}$.

 \rightsquigarrow some pruning occurs.

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets

Conclusion

With weak stubborn sets, some operators that disable an operator in T_s need not be included in T_s .

Therefore, weak stubborn sets potentially allow more pruning than strong stubborn sets.

Definition (Weak stubborn set)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task and *s* a state. A set $T_s \subseteq O$ is a weak stubborn set in *s* if

- **1** T_s contains a disjunctive action landmark in s, and
- 2 for all $o \in T_s$ that are not applicable in s, T_s contains a necessary enabling set for o and s, and
- If or all $o \in T_s$ that are applicable in s, T_s contains the active operators in s that have conflicting effects with o or that are disabled by o.

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets Some Experiments

Conclusion

January 8th, 2020

B. Nebel, R. Mattmüller - Al Planning

For weak stubborn sets, it suffices to include active operators o' that are disabled or conflict with applicable operators $o \in T_s$. However, o' does not need to be included if o' disables an applicable operator $o \in T_s$.

No computational overhead of computing weak stubborn sets over computing strong stubborn sets.

Theorem

In the best case, weak stubborn sets admit exponentially more pruning than strong stubborn sets.

Proof

Homework.

January 8th, 2020

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets Some Experiment

compute-DAL: Compute a disjunctive action landmark.

Precedure compute-DAL

def compute-DAL(γ): select $v \in vars(\gamma)$ with $s(v) \neq \gamma(v)$ $L \leftarrow \{o' \in Act(s) \mid eff(o')(v) = \gamma(v)\}$ return L

Selection of $v \in vars(\gamma)$ arbitrary. Any variable will do. Selection heuristics?

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets Some Experiments

Conclusion

Precedure compute-NES

def compute-NES(*o*,*s*): select $v \in prevars(o)$ with $s(v) \neq pre(o)(v)$ $N \leftarrow \{o' \in Act(s) \mid eff(o')(v) = pre(o)(v)\}$ return N

Selection of $v \in prevars(o)$ arbitrary. Any variable will do. Selection heuristics?

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets Some Experiments

Conclusion

compute-interfering-operators: Compute interfering operators.

Precedure compute-interfering-operators (for strong SS)

def compute-interfering-operators(*o*): disablers $\leftarrow \{o' \in O \mid o' \text{ disables } o\}$ disablees $\leftarrow \{o' \in O \mid o \text{ disables } o'\}$ conflicting $\leftarrow \{o' \in O \mid o \text{ and } o' \text{ conflict}\}$ return disablers \cup disablees \cup conflicting

Precedure compute-interfering-operators (for weak SS)

def compute-interfering-operators(*o*): disablees $\leftarrow \{o' \in O \mid o \text{ disables } o'\}$ conflicting $\leftarrow \{o' \in O \mid o \text{ and } o' \text{ conflict}\}$ return disablees \cup conflicting NU

_

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets Some Experiments

Algorithms

Computing (strong and weak) stubborn sets for planning can be achieved with a fixpoint iteration until the constraints of T_s are satisfied:

compute-stubborn-set: Compute (strong or weak) stubborn set.

- Precedure compute-stubborn-set
- **def** compute-stubborn-set(*s*):

 $T_s \leftarrow \text{compute-DAL}(\gamma)$ while no fixed-point of T_s reached **do** for $o \in T_s$ applicable in s: $T_s \leftarrow T_s \cup \text{compute-interfering-operators}(o)$ for $o \in T_s$ not applicable in s: $T_s \leftarrow T_s \cup \text{compute-NES}(o, s)$ end while return T_s

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets Some Experiments

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets

Conclusion

Observation: stubborn sets are state-dependent, but not path-dependent.

This allows filtering the applicable operators in s in graph search algorithms like A^{*} that perform duplicate detection, too.

Instead of applying all applicable operators app(s) in s, only apply operators in $T_{app(s)} := T_s \cap app(s)$.

. . .

34 / 41

We show by induction that A^{*} restricting successor generation to $T_{app(s)}$ is optimal.

Let T_s be a weak stubborn set and $\pi = o_1, \ldots, o_n$ be an optimal plan that starts in s.

Proof

Theorem

preserving.

Let $T_{app(s)} := T_s \cap app(s)$ for a weak stubborn set T_s .

Weak stubborn sets are completeness and optimality

We show that for all states *s* from which an optimal plan consisting of n > 0 operators exists, $T_{app(s)}$ contains an operator that starts such a plan.

Preliminaries

Properties of Stubborn Sets

Preservation of Completeness and Optimality

Proof (ctd.)

As T_s contains a disjunctive action landmark, π must contain an operator from T_s .

Let o_k be the operator with smallest index in π that is also contained in T_s , i.e., $o_k \in T_s$ and $\{o_1, \ldots, o_{k-1}\} \cap T_s = \emptyset$. We observe:

o_k ∈ *app*(*s*): otherwise by definition of weak stubborn sets, a necessary enabling set *N* for *o_k* in *s* would have to be contained in *T_s*, and at least one operator from *N* would have to occur before *o_k* in *π* to enable *o_k*, contradicting that *o_k* was chosen with smallest index.

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets

Conclusion

January 8th, 2020

2. . . .

Proof (ctd.)

- 1. ...
- 2. o_k is does not disable any of the operators o_1, \ldots, o_{k-1} , and all these operators have non-conflicting effects with o_k : otherwise, as $o_k \in app(s)$, and by definition of weak stubborn sets, at least one of o_1, \ldots, o_{k-1} would have to be contained in T_s , again contradicting the assumption.

Hence, we can move o_k to the front:

 $o_k, o_1, \dots, o_{k-1}, o_{k+1}, \dots, o_n$ is also a plan for Π .

It has the same cost as π and is hence optimal.

Thus, we have found an optimal plan of length *n* started by an operator $o_k \in T_{app(s)}$, completing the proof.

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators

Weak Stubborn Sets

Algorithms

Properties of Stubborn Sets

Conclusion

Remark: The argument to move o_k to the front also holds for strong stubborn sets: in this case, o_k is not even disabled by any of o_1, \ldots, o_{k-1} (and hence, o_k is independent of o_1, \ldots, o_{k-1}), which is a stronger property than needed in the proof.

Corollary

Strong stubborn sets are completeness and optimality preserving.

Some Experiments: Overview

Optimal Planning, A* with LM-cut Heuristic, Selected Domains

A*

Coverage

+SSS

Nodes generated

+SSS

A*

Motivati
Prelimin
Stubbor Sets
Strong Stu Sets
Active Ope
Weak Stub Sets
Algorithms
Properties Stubborn S

Some Experiments

Conclusion

PARCPRINTER-08 (30)	18	+12	2455181	<1%
PARCPRINTER-OPT11 (20)	13	+7	2454533	<1%
WOODWORKING-OPT08 (30)	17	+10	26796212	<1%
WOODWORKING-OPT11 (20)	12	+7	26795517	<1%
SATELLITE (36)	7	+5	5116312	2%
ROVERS (40)	7	+2	1900691	22%
AIRPORT (50)	28	± 0	545072	93%
OPENSTACKS-OPT08 (30)	19	+2	56584063	51%
OPENSTACKS-OPT11 (20)	14	+2	56456969	51%
DRIVERLOG (20)	13	+1	3679376	82%
SCANALYZER-08 (30)	15	-3	14203012	100%
SCANALYZER-OPT11 (20)	12	-3	14202884	100%
PARKING-OPT11 (20)	3	-1	560914	100%
SOKOBAN-OPTO8 (30)	30	-1	20519270	100%
VISITALL-OPT11 (20)	11	-1	1991169	100%
Remaining domains (980)	544	± 0	436017004	93%
SUM (1396)	763	+39	670278179	77%

Domain (problems)

Some Experiments

Weak compared to strong stubborn sets

		÷.			
			- 22		

Preliminaries

Stubborn
Sets
Strong Stub

Sets

Maak Stubbara

Sets

Algorithms

Properties of Stubborn Sets

Some Experiments

Conclusion

Domain (problems)	Cove SSS	erage WSS	Nodes ge SSS	# problems w. diff. gen.	
OPENSTACKS-OPT08 (30)	21	±0	152711917	99.936%	18
OPENSTACKS-OPT11 (20)	16	±υ	152642101	99.936%	16
PATHWAYS-NONEG (30)	5	± 0	162347	99.702%	2
PSR-SMALL (50)	49	± 0	18119489	99.998%	6
SATELLITE (36)	12	± 0	70299721	92.804%	12

 \Rightarrow In practice (or, at least, in the standard benchmark problems) there is no significant difference between weak and strong stubborn sets.

Preliminaries

Stubborn Sets

Conclusion

Conclusion

B. Nebel, R. Mattmüller – Al Planning

41 / 41

Class of such techniques: partial-order reduction (POR)
One such technique: strong/weak stubborn sets
Can lead to substantial pruning compared to plain A*.

Need for techniques orthogonal to heuristic search,

One idea: Commit to one order of operators if they are

Many other POR techniques exist.

independent. Prune other orders.

complementing heuristics.

Other pruning techniques exist as well, e.g., symmetry reduction.

Preliminaries

Stubborn Sets

Conclusion

