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Worst case: Heuristic search may explore exponentially
more states than necessary, even if heuristic is almost
perfect (Helmert and Röger, 2008).
Example: A* search in Gripper domain explores all
permutations of ball transportations if heuristic is off only
by a small constant.
Idea: Complement heuristic search with orthogonal
technique(s) to reduce size of explored state space.
Desired properties of this technique: preservation of
completeness and, if possible, optimality.
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Idea:
Enforce particular ordering among operators.
Ignore all other orderings.

Example

put-on-left-shoe put-on-right-shoe

put-on-right-shoe put-on-left-shoe
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Setting

Assumption: For the rest of the chapter, we assume that all
planning tasks are SAS+ planning tasks Π = (V , I,O,γ).
For convenience, we assume that operators have the form
o = 〈pre(o),eff (o)〉, where pre(o) and eff (o) are both partial
states over V , i.e., partial functions mapping variables v to
values in Dv . Similarly, we assume that γ is a partial state
describing the goal.

Example
Operator o = 〈pre(o),eff (o)〉 with

pre(o) = {v1 7→ d1,v5 7→ d5} and
eff (o) = {v2 7→ d2,v3 7→ d3}

corresponds to o = 〈χ,e〉 with
χ = (v1 = d1∧v5 = d5) and e = (v2 := d2∧v3 := d3).
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Basic Definitions

Definition (Operators)
Let Π = (V , I,O,γ) be a SAS+ planning task and o ∈O an
operator. Then

prevars(o) := vars(pre(o)) are the variables that occur in
the precondition of o.
effvars(o) := vars(eff (o)) are the variables that occur in the
effect of o.
o reads v ∈ V iff v ∈ prevars(o).
o modifies v ∈ V iff v ∈ effvars(o).

Variable v ∈ V is goal-related iff v ∈ vars(γ).

Assumption: effvars(o) 6= /0 for all o ∈O.
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Operator Dependencies

Definition (Operator dependencies)
Let Π = 〈V ,O, I,γ〉 be a planning task and o,o′ ∈O.

1 o disables o′ iff there exists v ∈ effvars(o)∩prevars(o′)
such that eff (o)(v) 6= pre(o′)(v).

2 o enables o′ iff there exists v ∈ effvars(o)∩prevars(o′)
such that eff (o)(v) = pre(o′)(v).

3 o and o′ conflict iff there is v ∈ effvars(o)∩effvars(o′) such
that eff (o)(v) 6= eff (o′)(v).

4 o and o′ interfere iff o disables o′, or o′ disables o, or o
and o′ conflict.

5 o and o′ are commutative iff o and o′ do not interfere, and
neither o enables o′, nor o′ enables o.
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Example

put-on-left = 〈pos = home∧ left = f, left := t〉
put-on-right = 〈pos = home∧ right = f, right := t〉

go-to-uni = 〈left = t∧ right = t,pos := uni〉
go-to-gym = 〈left = t∧ right = t,pos := gym〉

Then:

go-to-uni and go-to-gym disable put-on-left and put-on-right.

put-on-left and put-on-right enable go-to-uni and go-to-gym.

go-to-uni and go-to-gym conflict.

put-on-left and put-on-right are commutative.
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Necessary Enabling Sets and Disjunctive
Action Landmarks

Definition (Necessary enabling set)
Let Π = 〈V , I,O,γ〉 be a planning task, s a state, and o ∈O an
operator that is not applicable in s. A set N of operators is a
necessary enabling set (NES) for o in s if all operator
sequences that lead from s to a goal state and include o
contain an operator in N before the first occurrence of o.

Note: NESs not uniquely determined for given o and s.
(E.g., supersets of NESs are still NESs.)
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Necessary Enabling Sets and Disjunctive
Action Landmarks

Definition (Disjunctive action landmark)
Let Π = 〈V , I,O,γ〉 be a planning task and s a state. A
disjunctive action landmark (DAL) L in s is a set of operators
such that all operator sequences that lead from s to a goal
state contain some operator in L.

Observation
For state s and operator o that is not applicable in s,
disjunctive action landmarks for task 〈V , I,O,pre(o)〉 are
necessary enabling sets for o in s.
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Necessary Enabling Sets and Disjunctive
Action Landmarks

Proof
Let L be such a disjunctive action landmark.
Then each operator sequence that leads from s to a state
satisfying pre(o) contains some operator in L.
Thus, each operator sequence that leads from s to a goal state
and includes o contains an operator in L before the first
occurrence of o.
Therefore, L is an NES for o in s.
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Back to the motivation:
If, in state s, some set of operators can be applied in any order
and the order does not matter, we want to commit to one such
order and ignore all other orders.

Idea:
Identify operators that can be postponed since they are
independent of all operators that are not postponed.
E.g., put-on-right could be postponed, since it is independent
of put-on-left (that is not postponed).
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Idea (more precisely): Identify operators that should not be
postponed, and postpone the rest.

Question: When should an operator o not be postponed?

Answer:
1 Base case: If o may be immediately relevant to reaching

(part of) the goal, or
2 Inductive case I: If o may be immediately relevant to

contributing to making another operator applicable that
should not be postponed, or

3 Inductive case II: If o might not be applicable any more if
we postponed it, or if its effect might conflict with the
effect of another operator that should not be postponed
(≈ o interferes with such an operator).
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Let’s formalize the above answer:

Definition (Strong stubborn set)
Let Π = 〈V , I,O,γ〉 be a planning task and s a state. A set
Ts ⊆O is a strong stubborn set in s if

1 Ts contains a disjunctive action landmark in s, and
2 for all o ∈ Ts that are not applicable in s, Ts contains a

necessary enabling set for o and s, and
3 for all o ∈ Ts that are applicable in s, Ts contains all

operators that interfere with o.

Instead of applying all applicable operators in s only apply
those that are applicable and contained in Ts.
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Example
s = {pos 7→ home, left 7→ f, right 7→ f}, γ = {pos 7→ uni}

put-on-left = 〈pos = home∧ left = f, left := t〉
put-on-right = 〈pos = home∧ right = f, right := t〉

go-to-uni = 〈left = t∧ right = t,pos := uni〉

Step 1: DAL in s is {go-to-uni} Ts := {go-to-uni}.

Step 2: go-to-uni not applicable in s. One possible NES for
go-to-uni in s is {put-on-left} Ts := Ts∪{put-on-left}.

Step 3: put-on-left is applicable in s. The only operator that
interferes with it, go-to-uni, is already in Ts.

Hence, Ts = {go-to-uni,put-on-left}, and Ts restricted to the
applicable operators is {put-on-left}. During search, only apply
put-on-left (not put-on-right).
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Example
Let V = {u1,u2,v,w}, s = {u1 7→ 0,u2 7→ 0,v 7→ 0,w 7→ 0},
γ = {v 7→ 0,u1 7→ 1,u2 7→ 1}, and O = {o1,o2,o3}, where:

o1 = 〈u1 = 0,u1 := 1∧w := 2〉,
o2 = 〈u2 = 0,u2 := 1∧w := 2〉,
o3 = 〈u1 = 0∧u2 = 0,v := 1∧w := 1〉.

Strong stubborn set:
Step 1: Include o1 (or o2) in Ts as DAL.
Step 2: Include o3 in Ts since it interferes with o1 (or o2).
Step 3: Include o2 (or o1) in Ts since it interferes with o3.

 all applicable operators included in Ts, no pruning.

Question: Can we do better than that in this example?
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Definition (Domain transition graph)
Let Π = (V , I,O,γ) be a SAS+ planning task and v ∈ V . The
domain transition graph for v is the directed graph
DTG(v) = 〈Dv ,E〉 where (d,d ′) ∈ E iff there is an operator
o ∈O with

eff (o)(v) = d ′, and
v /∈ prevars(o) or pre(o)(v) = d.
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Domain Transition Graphs

Example

move-a-b = 〈pos = a,pos := b〉
move-b-c = 〈pos = b,pos := c〉
move-c-d = 〈pos = c,pos := d〉

reset = 〈>,pos := a∧othervar := otherval〉

Then DTG(pos):

a b c d

January 8th, 2020 B. Nebel, R. Mattmüller – AI Planning 20 / 41



Motivation

Preliminaries

Stubborn
Sets
Strong Stubborn
Sets

Active Operators

Weak Stubborn
Sets

Algorithms

Properties of
Stubborn Sets

Some Experiments

Conclusion

Active Operators

Definition (Active operators)
Let Π = 〈V , I,O,γ〉 be a planning task and let s be a state. The
set of active operators Act(s)⊆O in s is defined as the set of
operators such that for all o ∈ Act(s):

For every variable v ∈ prevars(o), there is a path in
DTG(v) from s(v) to pre(o)(v). If v is goal-related, then
there is also a path from pre(o)(v) to the goal value γ(v).
For every goal-related variable v ∈ effvars(o), there is a
path in DTG(v) from eff (o)(v) to the goal value γ(v).
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Proposition
1 Act(s) can be identified efficiently for a given state s by

considering paths in the projection of Π onto v.
2 Operators not in Act(s) can be treated as nonexistent

when reasoning about s because they are not applicable
in all states reachable from s, or they lead to a dead-end
from s.

Proof
1 Homework: Specify efficient algorithm for identification of

Act(s).
2 Obvious.

January 8th, 2020 B. Nebel, R. Mattmüller – AI Planning 22 / 41



Motivation

Preliminaries

Stubborn
Sets
Strong Stubborn
Sets

Active Operators

Weak Stubborn
Sets

Algorithms

Properties of
Stubborn Sets

Some Experiments

Conclusion

Active Operators

Remark 1: Even when excluding inactive operators, this
preserves completeness and even optimality of a search
algorithm (see proof below).

Remark 2: Excluding inactive operators can “cascade” in the
sense that additional active operators need not be considered.
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Strong Stubborn Sets

Definition (Strong stubborn set with active operator
pruning)
Let Π = 〈V , I,O,γ〉 be a planning task and s a state. A set
Ts ⊆O is a strong stubborn set in s if

1 Ts contains a disjunctive action landmark in s, and
2 for all o ∈ Ts that are not applicable in s, Ts contains a

necessary enabling set for o and s, and
3 for all o ∈ Ts that are applicable in s, Ts contains all

operators that are active in s and interfere with o.

Instead of applying all applicable operators in s only apply
those that are applicable and contained in Ts.
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Strong Stubborn Sets
Why operator activity matters

Recall the previous example where strong stubborn sets
without active operator pruning were useless.

Example
s = {u1 7→ 0,u2 7→ 0,v 7→ 0,w 7→ 0},
γ = {v 7→ 0,u1 7→ 1,u2 7→ 1}
o1 = 〈u1 = 0,u1 := 1∧w := 2〉
o2 = 〈u2 = 0,u2 := 1∧w := 2〉
o3 = 〈u1 = 0∧u2 = 0,v := 1∧w := 1〉

Now, with active operator pruning:
Step 1: Include o1 (or o2) in Ts as DAL.
Step 2: Operator o3 is not active in any reachable state.
 o3 not in Ts, although it interferes with o1 (or o2).
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Strong Stubborn Sets
Why operator activity matters

Example (Example, ctd.)
Now, with active operator pruning:

Step 1: Include o1 (or o2) in Ts as DAL.
Step 2: Operator o3 is not active in any reachable state.
 o3 not in Ts, although it interferes with o1 (or o2).
Hence, e. g., Ts = {o1} strong stubborn set (with active
operator pruning) in s.
Even active operator o2 is not included in Ts = {o1}.

 some pruning occurs.
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Weak Stubborn Sets

With weak stubborn sets, some operators that disable an
operator in Ts need not be included in Ts.
Therefore, weak stubborn sets potentially allow more pruning
than strong stubborn sets.

Definition (Weak stubborn set)
Let Π = 〈V , I,O,γ〉 be a planning task and s a state. A set
Ts ⊆O is a weak stubborn set in s if

1 Ts contains a disjunctive action landmark in s, and
2 for all o ∈ Ts that are not applicable in s, Ts contains a

necessary enabling set for o and s, and
3 for all o ∈ Ts that are applicable in s, Ts contains the

active operators in s that have conflicting effects with o or
that are disabled by o.
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Weak Stubborn Sets

For weak stubborn sets, it suffices to include active operators
o′ that are disabled or conflict with applicable operators o ∈ Ts.
However, o′ does not need to be included if o′ disables an
applicable operator o ∈ Ts.

No computational overhead of computing weak stubborn sets
over computing strong stubborn sets.

Theorem
In the best case, weak stubborn sets admit exponentially more
pruning than strong stubborn sets.

Proof
Homework.
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Algorithms

compute-DAL: Compute a disjunctive action landmark.

Precedure compute-DAL
def compute-DAL(γ):

select v ∈ vars(γ) with s(v) 6= γ(v)
L←{o′ ∈ Act(s) | eff (o′)(v) = γ(v)}
return L

Selection of v ∈ vars(γ) arbitrary. Any variable will do.
Selection heuristics?
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compute-NES: Compute a necessary enabling set.

Precedure compute-NES
def compute-NES(o,s):

select v ∈ prevars(o) with s(v) 6= pre(o)(v)
N←{o′ ∈ Act(s) | eff (o′)(v) = pre(o)(v)}
return N

Selection of v ∈ prevars(o) arbitrary. Any variable will do.
Selection heuristics?
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compute-interfering-operators: Compute interfering operators.

Precedure compute-interfering-operators (for strong SS)
def compute-interfering-operators(o):

disablers←{o′ ∈O | o′ disables o}
disablees←{o′ ∈O | o disables o′}
conflicting←{o′ ∈O | o and o′ conflict}
return disablers∪disablees∪conflicting

Precedure compute-interfering-operators (for weak SS)
def compute-interfering-operators(o):

disablees←{o′ ∈O | o disables o′}
conflicting←{o′ ∈O | o and o′ conflict}
return disablees∪conflicting
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Algorithms

Computing (strong and weak) stubborn sets for planning can
be achieved with a fixpoint iteration until the constraints of Ts
are satisfied:
compute-stubborn-set: Compute (strong or weak) stubborn set.

Precedure compute-stubborn-set
def compute-stubborn-set(s):

Ts← compute-DAL(γ)
while no fixed-point of Ts reached do

for o ∈ Ts applicable in s:
Ts← Ts ∪ compute-interfering-operators(o)

for o ∈ Ts not applicable in s:
Ts← Ts ∪ compute-NES(o, s)

end while
return Ts
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Integration into A*

Observation: stubborn sets are state-dependent, but not
path-dependent.

This allows filtering the applicable operators in s in graph
search algorithms like A∗ that perform duplicate detection, too.

Instead of applying all applicable operators app(s) in s, only
apply operators in Tapp(s) := Ts∩app(s).
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Preservation of Completeness and Optimality

Theorem
Weak stubborn sets are completeness and optimality
preserving.

Proof
Let Tapp(s) := Ts∩app(s) for a weak stubborn set Ts.
We show that for all states s from which an optimal plan
consisting of n> 0 operators exists, Tapp(s) contains an
operator that starts such a plan.
We show by induction that A∗ restricting successor generation
to Tapp(s) is optimal.
Let Ts be a weak stubborn set and π = o1, . . . ,on be an optimal
plan that starts in s.
. . .
January 8th, 2020 B. Nebel, R. Mattmüller – AI Planning 34 / 41
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Preservation of Completeness and Optimality

Proof (ctd.)
As Ts contains a disjunctive action landmark, π must contain
an operator from Ts.
Let ok be the operator with smallest index in π that is also
contained in Ts, i.e., ok ∈ Ts and {o1, . . . ,ok−1}∩Ts = /0.
We observe:
1. ok ∈ app(s): otherwise by definition of weak stubborn

sets, a necessary enabling set N for ok in s would have to
be contained in Ts, and at least one operator from N
would have to occur before ok in π to enable ok ,
contradicting that ok was chosen with smallest index.

2. . . .
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Preservation of Completeness and Optimality

Proof (ctd.)
1. . . .
2. ok is does not disable any of the operators o1, . . . ,ok−1,

and all these operators have non-conflicting effects with
ok : otherwise, as ok ∈ app(s), and by definition of weak
stubborn sets, at least one of o1, . . . ,ok−1 would have to
be contained in Ts, again contradicting the assumption.

Hence, we can move ok to the front:
ok ,o1, . . . ,ok−1,ok+1, . . . ,on is also a plan for Π.
It has the same cost as π and is hence optimal.
Thus, we have found an optimal plan of length n started by an
operator ok ∈ Tapp(s), completing the proof.
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Preservation of Completeness and Optimality

Remark: The argument to move ok to the front also holds for
strong stubborn sets: in this case, ok is not even disabled by
any of o1, . . . ,ok−1 (and hence, ok is independent of
o1, . . . ,ok−1), which is a stronger property than needed in the
proof.

Corollary
Strong stubborn sets are completeness and optimality
preserving.
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Some Experiments: Overview
Optimal Planning, A* with LM-cut Heuristic, Selected Domains

Coverage Nodes generated
Domain (problems) A∗ +SSS A∗ +SSS

parcprinter-08 (30) 18 +12 2455181 <1%
parcprinter-opt11 (20) 13 +7 2454533 <1%
woodworking-opt08 (30) 17 +10 26796212 <1%
woodworking-opt11 (20) 12 +7 26795517 <1%
satellite (36) 7 +5 5116312 2%
rovers (40) 7 +2 1900691 22%
airport (50) 28 ±0 545072 93%
openstacks-opt08 (30) 19 +2 56584063 51%
openstacks-opt11 (20) 14 +2 56456969 51%
driverlog (20) 13 +1 3679376 82%
scanalyzer-08 (30) 15 −3 14203012 100%
scanalyzer-opt11 (20) 12 −3 14202884 100%
parking-opt11 (20) 3 −1 560914 100%
sokoban-opt08 (30) 30 −1 20519270 100%
visitall-opt11 (20) 11 −1 1991169 100%

Remaining domains (980) 544 ±0 436017004 93%

SUM (1396) 763 +39 670278179 77%
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Some Experiments
Weak compared to strong stubborn sets

Coverage Nodes generated # problems
Domain (problems) SSS WSS SSS WSS w. diff. gen.

openstacks-opt08 (30) 21 ±0 152711917 99.936% 18
openstacks-opt11 (20) 16 ±0 152642101 99.936% 16
pathways-noneg (30) 5 ±0 162347 99.702% 2
psr-small (50) 49 ±0 18119489 99.998% 6
satellite (36) 12 ±0 70299721 92.804% 12

⇒ In practice (or, at least, in the standard benchmark problems) there is no significant
difference between weak and strong stubborn sets.
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Need for techniques orthogonal to heuristic search,
complementing heuristics.
One idea: Commit to one order of operators if they are
independent. Prune other orders.
Class of such techniques: partial-order reduction (POR)
One such technique: strong/weak stubborn sets
Can lead to substantial pruning compared to plain A*.
Many other POR techniques exist.
Other pruning techniques exist as well, e.g., symmetry
reduction.
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