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Motivation: declarative heuristics

Previous chapters:

“Procedural” method for obtaining a heuristic
Solve an easier version of the problem.

We have studied two common simplification methods:
relaxation and abstraction.

This chapter:

“Declarative” method for obtaining a heuristic
Declaratively describe the information we want the
heuristic estimator to exploit.
Let a computer find a heuristic that fits the declarative
description.
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Motivation: potential heuristics

Example (potential heuristic in chess)
Evaluation function for chess position s
(from White’s perspective; the higher, the better):

h(s) = 9 · (Q−q) +5 · (R−r) +
3 · (B−b) +3 · (N−n) +1 · (P−p)

whereQ,q,R,r, . . . is the number of white and black
queens, rooks, etc. still on the board.

Question: Can we derive a similar heuristic for planning?
Answer: Yes! (Even declaratively!)
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Potential heuristics

Potential heuristics: idea
Heuristic design as an optimization problem:

Define simple numerical state features f1, . . . , fn.
Consider heuristics that are linear combinations of
features:

h(s) = w1f1(s) + · · ·+wnfn(s)

with weights (potentials) wi ∈ R.
Find potentials for which h is admissible and
well-informed.

Motivation:
declarative approach to heuristic design
heuristic very fast to compute if features are
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Potential heuristics

Definition (feature)
A (state) feature for a planning task is a numerical function
defined on the states of the task: f : S→ R.

Atomic features test if some atom is true in a state.

Definition (atomic feature)
Let v = d be an atom of an FDR planning task.
Then the atomic feature fv=d is defined as:

fv=d (s) =

{
1 if s |= v = d
0 otherwise

 atomic features ≈ facts
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Definition (potential heuristic)
A potential heuristic for a set of features F = {f1, . . . , fn} is a
heuristic function h defined as a linear combination of the
features:

h(s) = w1f1(s) + · · ·+wnfn(s)

with weights (potentials) wi ∈ R.

We only consider atomic potential heuristics, which are
based on the set of all atomic features.
Example for a task with state variables v1 and v2 and
Dv1 = Dv2 = {d1,d2,d3}:

h(s) = 3fv1=d1 + 1/2fv1=d2−2fv1=d3 + 5/2fv2=d1
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How to set the weights?

We want to find good atomic potential heuristics:
admissible
consistent
well-informed

Question: How to achieve this?
Answer: Linear programming.
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Linear Programming

Goal: solve a system of linear inequalities over n real-valued
variables while optimizing some linear objective function.

Example (Production domain)
Two sorts of items with time requirements and profit per item.

Cutting Assembly Postproc. Profit per item
(x) sort 1 25 60 68 30
(y) sort 2 75 60 34 40
per day ≤ 450 ≤ 480 ≤ 476 maximize!

Aim: Find numbers of pieces x of sort 1 and y of sort 2
produced per day such that resource constraints are met and
objective function is maximized.

January 8th, 2020 B. Nebel, R. Mattmüller – AI Planning 10 / 33



Motivation

Potential
Heuristics
General Idea

Digression I: Linear
Programming

Digression II:
Transition Normal
Form

Definition and
Properties

Summary

Linear Programming

Example (ctd., formalization)

maximize z = 30x +40y subject to: (1)
x ≥ 0, y ≥ 0 (2)

25x +75y ≤ 450 (3)
60x +60y ≤ 480 (4)
68x +34y ≤ 476 (5)

Line (1): Objective function
Inequalities (2)–(5): Admissible solutions
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Linear Programming

Example (ctd., visualization)

max z = 30x +40y (1)
x ≥ 0, y ≥ 0 (2)
y ≤ 6− 1/3 x (3)
y ≤ 8−x (4)
y ≤ 14−2x (5)

x

y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9

10
11
12
13
14

0

y = 6− 1/3 x
y = 8−x

y = 14−2x

z = 290 ⇒ optimal solution at (3,5)
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Linear Programming

Definition (Linear program)
A linear program (LP) over variables x1, . . . ,xn consists of

m linear constraints of the form
n

∑
i=1

ajixi ≤ bj

with aji ∈ R for all j = 1, . . . ,m and i = 1, . . . ,n, and
a linear objective function to be maximized (xi ≥ 0):

n

∑
i=1

cixi

with ci ∈ R for all i = 1, . . . ,n.
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Linear Programming

Solution of an LP:
assignment of values to the xi satisfying the constraints and
maximizing the objective function.

Solution algorithms:
Usually: simplex algorithm (worst-case exponential).
There are also polynomial-time algorithms.
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Transition normal form

Standard description of LP-based derivation of potentials
assumes transition normal form.

Assumption (for the rest of the chapter): only SAS+ tasks.

Notation: variables occurring in conditions and effects.

Definition (vars(ϕ),vars(e))
For a logical formula ϕ over finite-domain variables V , vars(ϕ)
denotes the set of finite-domain variables occurring in ϕ .
For an effect e over finite-domain variables V , vars(e) denotes
the set of finite-domain variables occurring in e.
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Transition normal form

Definition (transition normal form)
An SAS+ planning task Π = 〈V , I,O,γ〉 is in transition normal
form (TNF) if

for all o ∈O, vars(pre(o)) = vars(eff (o)), and
vars(γ) = V .

In words, an operator in TNF must mention the same variables
in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).
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Converting operators to TNF: violations

There are two ways in which an operator o can violate TNF:
There exists a variable v ∈ vars(pre(o))\vars(eff (o)).
There exists a variable v ∈ vars(eff (o))\vars(pre(o)).

The first case is easy to address: if v = d is a precondition with
no effect on v, just add the effect v := d.

Example (TNF: adding effects)
Let o = 〈x = 0∧y = 0,y := 1〉.
Fix: rewrite o = 〈x = 0∧y = 0,x := 0∧y := 1〉.
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Converting operators to TNF: violations

The second case is more difficult: if we have the effect v := d
but no precondition on v, how can we add a precondition on v
without changing the meaning of the operator (and without
introducing exponentially many new operators)?

Example (TNF: adding precondition)
Let o = 〈>,y1 := 1∧·· ·∧yn := 1〉 with Dyi = {0,1} for all i.
One possible fix: rewrite o as set of operators

o00...0 = 〈y1 = 0∧y2 = 0∧·· ·∧yn = 0, y1 := 1∧·· ·∧yn := 1〉
o00...1 = 〈y1 = 0∧y2 = 0∧·· ·∧yn = 1, y1 := 1∧·· ·∧yn := 1〉

...
o11...1 = 〈y1 = 1∧y2 = 1∧·· ·∧yn = 1, y1 := 1∧·· ·∧yn := 1〉

Problem: 2n new operators (exponentially many!)
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Converting operators to TNF: violations

The second case is more difficult: if we have the effect v := d
but no precondition on v, how can we add a precondition on v
without changing the meaning of the operator (and without
introducing exponentially many new operators)?

Example (TNF: adding precondition (ctd.))
Let o = 〈>,y1 := 1∧·· ·∧yn := 1〉 with Dyi = {0,1} for all i.
Better fix: rewrite o = 〈y1 = don’t_care∧y2 =
don’t_care∧·· ·∧yn = don’t_care, y1 := 1∧·· ·∧yn := 1〉 and
make sure that every variable can take its don’t_care value for
free.
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Converting Operators to TNF

Formally:
1 For every variable v, add a new auxiliary value u to its

domain.
2 For every variable v and value d ∈Dv \{u}, add a new

operator to change the value of v from d to u at no cost:
〈v = d,v := u〉.

3 For all operators o and all variables
v ∈ vars(eff (o))\vars(pre(o)), add the precondition v = u
to pre(o).

Properties:
Transformation can be computed in linear time.
Due to the auxiliary values, there are new states and
transitions in the induced transition system, but all path
costs between original states remain the same.
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Converting Goals to TNF

The auxiliary value idea can also be used to convert the
goal γ to TNF.
For every variable v /∈ vars(γ), add the condition v = u to γ .

With these ideas, every SAS+ planning task can be converted
into transition normal form in linear time.
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Producers and consumers

Assume that Π = 〈V , I,O,γ〉 is in TNF.

Definition (producers and consumers)
Fact v = d is produced by operator o ∈O
if v = d is an effect of o, but not a precondition of o.
Fact v = d is consumed by operator o ∈O
if v = d is a precondition of o, but not an effect of o.
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Admissible and consistent potential heuristics

Assume feature set F = {fv=d |v ∈ V ,d ∈Dv} and
corresponding potentials W = {wv=d |v ∈ V ,d ∈Dv}.
Constraints on potentials characterize (= are necessary and
sufficient for) admissible and consistent atomic potential
heuristics:

Goal-awareness constraint

∑
goal fact v=d

wv=d = 0

Example (Goal-awareness constraint)
V = {x,y}, Dx = Dy = {0,1,u}, γ = (x = 1∧y = u).
Goal-awareness constraint: wx=1 +wy=u = 0.

January 8th, 2020 B. Nebel, R. Mattmüller – AI Planning 23 / 33



Motivation

Potential
Heuristics
General Idea

Digression I: Linear
Programming

Digression II:
Transition Normal
Form

Definition and
Properties

Summary

Admissible and consistent potential heuristics

Theorem
For a task in TNF, a potential heuristic with feature set
F = {fv=d |v ∈ V ,d ∈Dv} and corresponding potentials
W = {wv=d |v ∈ V ,d ∈Dv} that satisfy the goal-awareness
constraint is goal-aware.

Proof.
See blackboard.
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Admissible and consistent potential heuristics

Consistency constraints (for all operators o ∈O)

∑
fact v=d consumed by o

wv=d − ∑
fact v=d produced by o

wv=d ≤ cost(o)

Example (Consistency constraint)
V = {x,y}, Dx = Dy = {0,1,u},
o = 〈x = 0∧y = 0,x := 0∧y := 1〉 with cost(o) = 1.
Then o consumes y = 0 and produces y = 1.
Consistency constraint for o: wy=0−wy=1 ≤ 1.
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Admissible and consistent potential heuristics

Theorem
For a task in TNF, a potential heuristic with feature set
F = {fv=d |v ∈ V ,d ∈Dv} and corresponding potentials
W = {wv=d |v ∈ V ,d ∈Dv} that satisfy the consistency
constraints for all operators o is consistent.

Proof.
Homework exercise.
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Admissible and consistent potential heuristics

Remarks:
all linear constraints LP
goal-aware and consistent admissible and consistent
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Well-informed potential heuristics

How to find a well-informed potential heuristic?
 encode quality metric in the objective function and use LP
solver to find a heuristic maximizing it

Examples:
maximize heuristic value of a given state
(e.g., initial state)
maximize average heuristic value of all states
(including unreachable ones)
maximize average heuristic value of some sample states
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Well-informed potential heuristics

LP encoding for maximizing heuristic value of initial state while
guaranteeing goal-awareness and consistency:

maximize ∑
fact v=d satisfied in s0

wv=d subject to:

goal constraint
consistency constraint for o for all o
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Remarks

Further constraints can be added to the LP to obtain
stronger heuristics.
The hard work is done by the LP solver.
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Declarative method for obtaining a heuristic
Potential heuristics are linear combinations of features.
Needed: features and weights (potentials)
Features: facts (for us; can be generalized)
Potentials: computed by solving an LP, given constraints
that encode goal-awareness and consistency, and an
objective function to maximize heuristic value.
Necessary prerequisite: without loss of generality, task is
in transition normal form (same variables in preconditions
and effects, all variables mentioned in the goal).
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Credit

Slides heavily based on those by Gabriele Röger and Thomas
Keller (Uni Basel).
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