Definition: Agent Architecture

An agent architecture proposes a particular methodology for building an autonomous agent: Set of component modules and interaction of these modules determines how perception and current state of the agent determine its next action and next internal state.

Agents: Standard View

![Diagram of agents and environment](image)

- **Sensors** → **percepts** → **Internal representation of the world state** → **Next action (intention/plan)** → **Actuator**
- **Environment**
 - **Objects**
 - **Matter**
 - **Surfaces**
 - **Other Agents**

Function `TABLE-DRIVEN-AGENT(percept)`

```plaintext
function TABLE-DRIVEN-AGENT(percept) {
    global table, percepts
    percepts ← APPEND(percepts, percept)
    action ← LookUp(percepts, table)
    return action
end function
```

- Epistemic state is the list of percepts so far perceived.
- Practical reasoning based on look-up table.
- How large will the look-up table grow?
Simple Reflex Agent

function SIMPLE-REFLEX-AGENT(percept)
 global rules
 state ← INTERPRET-INPUT(percept)
 rule ← RULE-MATCH(state, rules)
 action ← RULE-ACTION(rule)
 return action
end function

- Epistemic state is just the current percept.
- Practical reasoning based on condition-action rules.

Swarms of Simple Reflex Agents

- Swarm formation control: How to design programs that result into a particular swarm formation when executed on each simple reflex agent. Video: EPFL Formation

Formation Control: General Setting

- Problem
 - Form an approximation of a simple geometric object (shape)
 - Problem not yet solved in general!
 - Algorithms exists that make simplifying assumptions about the agents’ capabilities and the shape.
- Assumptions shared by the algorithms proposed by Sugihara & Suzuki (1996)
 - Each robot can see all the other robots
 - Shapes are connected
 - But ...
 - Total number of robots unknown
 - No common frame of reference (i.e., one cannot program the robots “to meet at point (X, Y)” or “to move north”)
 - Robots cannot communicate with each other
 - Local decision making

Formation Control: CIRCLE

- Problem: Move a group of robots such that they will eventually approximate a circle of a given diameter D.
- Algorithm [Sugihara & Suzuki, 1996]: The robot R continuously monitors the position of a farthest robot R_{far} and a nearest robot R_{near}, and the distance d between R (itself) and R_{far}.
 1. If $d > D$, then R moves towards R_{far}
 2. If $d < D - \delta$, then R moves away from R_{far}
 3. If $D - \delta \leq d \leq D$, then R moves away from R_{near}
Formation Control: POLYGON

- **Problem:** Move a group of N robots such that they will eventually approximate an $n \ll N$-sided polygon.

- **Algorithm** [Sugihara & Suzuki, 1996]:
 1. Run the CIRCLE algorithm until each robot R can recognize its immediate left neighbor $l(R)$ and right neighbor $r(R)$.
 2. Selection of n robots to be the vertices of the n-sided polygon.
 3. All robots R execute the CONTRACTION algorithm:
 1. Continuously monitor the position of $l(R)$ and $r(R)$.
 2. Move toward the midpoint of the segment $l(R)r(R)$.

Formation Control: FILLCIRCLE

- **Problem:** Move a group of robots such that they will eventually distribute nearly uniformly within a circle of diameter D.

- **Algorithm** [Sugihara & Suzuki, 1996]: The robot R continuously monitors the position of a farthest robot R_{far} and a nearest robot R_{near}, and the distance d between R (itself) and R_{far}.
 1. If $d > D$, then R moves toward R_{far}.
 2. If $d \leq D$, then R moves away from R_{near}.

Formation Control: FILLPOLYGON

- **Problem:** Move a group of N robots such that they will eventually distribute nearly uniformly within an $n \ll N$-sided convex polygon.

- **Algorithm** [Sugihara & Suzuki, 1996]: First n robots are picked as vertices of the polygon and moved to the desired position. All other robots R execute FILLPOLYGON:
 1. If, as seen from R, all other robots lie in a wedge whose apex angle is less than π, then R moves into the wedge along the bisector of the apex.
 2. Otherwise, R moves away from the nearest robot.

Formation Control: LINE

- **Problem:** Move a group of robots such that they will eventually connect to points. (In fact, just a special case of FILLPOLYGON.)

- **Algorithm** [Sugihara & Suzuki, 1996]: First, two robots are picked as vertices of the line and moved to the desired position. All other robots R execute FILLPOLYGON.
When Memory Helps

- Simple reflex agent's do not make use of memory. This can be a severe limitation:
 - Imagine you are at a crossing and you have to decide to either go left or right. You go left and find out it's a dead end. You return to the crossing. Again, you have the choice between going left and going right ...
- Possible solutions:
 - Change the environment (pheromones, bread crumbs)
 - Put your previous actions and experiences into your memory

Reflex Agent With State

```plaintext
function REFLEX-AGENT-WITH-STATE(percept)
    global rules, state
    state ← UPDATE-STATE(state, percept)
    rule ← RULE-MATCH(state, rules)
    action ← RULE-ACTION(rule)
    state ← UPDATE-STATE(state, action)
    return action
end function
```

Epistemic state is updated over time (takes both state and percept into account and thus can also update currently unobserved aspects).

Practical reasoning is based on rules applied in this state and leads to another state update.

Agent-Based Modeling

Definition (Wilensky & Rand, 2015)
Agent-based modeling is a form of computational modeling whereby a phenomenon is modeled in terms of agents and their interactions.

- Agents are entities that have state variables and values (e.g., position, velocity, age, wealth)
 - Gas molecule agent: mass, speed, heading
 - Sheep agent: speed, weight, fleece
- Agents also have rules of behavior
 - Gas molecule: Rule to collide with another molecule
 - Sheep: Rule to eat grass
- Universal clock: At each tick, all agents invoke their rules.

Wolves and Moose

The populations of wolves and moose of Isle Royale have been observed for more than 50 years. Result: Dynamic variation rather than 'balance of nature'.

- More wolves
 - ... leads to less moose
 - ... leads to less wolves
 - ... leads to more moose.
Wolves and Moose: Classical Model

Lotka-Volterra model for wolf (w) and moose (m) populations:

\[
\frac{\delta m}{\delta t} = k_1 m - k_2 w m, \quad \frac{\delta w}{\delta t} = -k_3 w + k_4 k_2 w m
\]

Wolves and Moose: Agent-Based Model

- Spawn \(m \) moose and \(w \) wolves and invoke each agent's behavior in each loop:
 - ask moose [move death reproduce-sheep]
 - ask wolves [move set energy energy - 1 catch-sheep death reproduce-wolves]

Discussion: Pros and Cons

Differential Equations
- Pro: Mathematically well understood, analytical inference by using calculus, many tools available (e.g., Matlab)
- Con: Hard to explain, models phenomenon rather than behavior, harder to extend

Agent-Based Model
- Pro: Easy to understand and to explain to stakeholders, models individual behavior and observes emergent phenomenon, easy to extend
- Con: Tool support improves slowly, no analytical tools comparable to calculus

Modeling Traffic

- Observation: Traffic on the motorway produces certain patterns.
- Question: Can similar patterns be algorithmically reproduced?
- Agent-Based Simulation approach:
 - Modeling traffic on the motorway as a multi-agent system
 - Cars (drivers) as agents
 - Percepts: Distance to next car in front
 - Internal State: Current Speed
 - Actions: Speeding, braking
Nagel-Schreckenberg Model: Motivation

- **Research Question**: How do traffic jams emerge?
- **Research Hypothesis**: Might be due to the local behaviour of individual agents.
- **Approach**: Model traffic as a MAS and study the resulting system’s behavior. If the systems’ behavior matches empirical phenomenon, then the model might be an acceptable explanation.

Cellular Automaton

- A cellular automaton is a quad-tuple $A = (R, Q, N, \delta)$
- A cell space R
- A set Q of states each cell can be in
- A neighborhood $N : R \rightarrow 2^R$
- A transition function $\delta : Q^{|N|} \rightarrow Q$
 - For a probabilistic cellular automaton, δ is a probability distribution $P(r = q | N(r))$
- The configuration of A can be written as $x_1x_2 \ldots x_n$ with x_i being the state of the cell r_i.

Nagel-Schreckenberg Model: Representation

- Traffic is modeled as $A = (R, Q, N, \delta)$
- Entities of $R = \{c_1, c_2, \ldots\}$ stand for parts of the lane
 - Each cell corresponds to a discrete part of the lane (roughly the space needed by a car)
- $Q = \{0, \ldots, v_{\text{max}}, \text{free}\}$: Each cell is either occupied by one car with velocity $v \leq v_{\text{max}}$, or it is empty.
- $N(c_i) = \{c_i-v_{\text{max}}, \ldots, c_i+1\}$
- δ is realized by a set of four rules executed by each driver

Nagel-Schreckenberg Model: Rules

- Each car at cell c_i with velocity v performs four consecutive steps:
 - **Acceleration**: If $v < v_{\text{max}}$ and gap to next car is larger than $v + 1$, then increment speed by 1.
 - **Slowing down**: If the next car is at cell $i + j$ with $j \leq v$, then reduce speed to $j - 1$.
 - **Randomization**: If $v > 0$, then decrement v by 1 with probability p.
 - Car does not accelerate although it could (takes back Acceleration)
 - Car reached maximal velocity but slows down again
 - Overreaction when braking
 - **Car motion**: Move forward v cells.
Assume constant system density: \(\rho = \frac{|Ag|}{|R|} \).

For a fixed cell \(c_i \), time-averaged density over time interval \(T \):

\[
\bar{\rho}_T = \frac{1}{T} \sum_{t=0}^{T} n_i(t)
\]

...with \(n_i(t) = 1 \) if \(i \) is occupied, else \(n_i(t) = 0 \).

Time-averaged flow \(\bar{q} \) between \(i \) and \(i+1 \):

\[
\bar{q}_T = \frac{1}{T} \sum_{t=0}^{T} n_{i,i+1}(t)
\]

...with \(n_{i,i+1}(t) = 1 \) if some car moved between \(i \) and \(i+1 \) at \(t \), else \(n_{i,i+1}(t) = 0 \).

Goal-Based Agent

```plaintext
function Goal-Based-Agent(percept)
    global state, actions, goals
    state ← Update-State(state, percept)
    predictions ← Predict(state, actions)
    action ← Best-Action(predictions, goals)
    state ← Update-State(state, action)
    return action
end function
```

Practical reasoning more flexible due to explicitly representing actions and goals instead of rules, i.e., “Will the world state be consistent with my goals if I execute action A?”

Utility-Based Agent

```plaintext
function Utility-Based-Agent(percept)
    global state, actions, utilities
    state ← Update-State(state, percept)
    predictions ← Predict(state, actions)
    action ← Best-Action(predictions, utilities)
    state ← Update-State(state, action)
    return action
end function
```

Practical reasoning more decisive due to the ability to take utilities into account, i.e., “Is action A the best action among the available actions?”
Cognitive Agent: ACT-R

Activation

Entries in the declarative memory are called chunks.

Chunks have a degree of activation.

Activation of chunks activates associated chunks.

Chunks' activation decreases over time and falls below the retrieval threshold (forgetting).

Utility Learning

The rules of an ACT-R agent are called productions.

Production have utility:

\[U_i = P_i G - C_i \]

Probability of success:

\[P_i = \frac{\text{success}}{\text{success} + \text{failures}} \]

Cost equation:

\[C = \sum_j \frac{\text{effort}_j}{\text{successes} + \text{failures}} \]

\(G \): Some fixed importance of the current goal.

Production choice:

\[\text{Prob}_i = e^{U_i/\text{noise}} / \left(\sum_j e^{U_j/\text{noise}} \right) \]

BDI Agent

```plaintext
function BDI-Agent(percept)
    global beliefs, desires, intentions
    beliefs ← UPDATE-BELIEF(beliefs, percept)
    desires ← OPTIONS(beliefs, intentions)
    intentions ← FILTER(beliefs, intentions, desires)
    action ← MEANS-END-REASONING(intentions)
    beliefs ← UPDATE-BELIEF(action)
    return action
end function
```

BDI agents start out with some beliefs and intentions.

Intentions are goals the agent has actually chosen to bring about (can be adopted and dropped).

Beliefs and intentions constrain what the agent desires.

Together, B, D, and I determine the agent's future intentions.

BDI Frameworks

- Just to name a few
 - GOAL: https://goalapl.atlassian.net/wiki

Different technologies, e.g., Prolog-style knowledge bases vs. XML files vs. Java Objects.

Different formalizations of BDI, e.g., AgentSpeak, GOAL.
Cognitive Agents in GOAL

- GOAL emphasizes programming cognitive agents.
- Cognitive agents maintain a cognitive state that consists of knowledge and goals.
 - Knowledge: Facts the agent believes are true.
 - Goals: Facts the agent wants to be true.
- Cognitive state is represented in some knowledge representation (KR) language.
- Cognitive agents derive their choice of action from their knowledge and goals.

Example: The Vacuum World

- Percepts: dirt, orientation (N, S, E, W)
- Knowledge: In/2, dirt/0, clean/0. initial KB: In(0, 0), ¬clean
- Goal: clean [Note: clean cannot be perceived but must be inferred!]
- Actions: suck, step forward, turn right (90°)

Programming language GOAL

- Mind-body metaphor:
 - Agents (mind) are connected to controllable entities (body) living in some environment.
 - Agents receive percepts from the environment through their controlled entities.
 - Agents decide what the controlled entities will do.
- Controlled entities: a bot in Unreal Tournament, a robot, ...

GOAL Execution Cycle

