Recap

- Deontic logic: What an agent ought to bring about.
- Missing: What an agent desires and intends.

BDI Agent

```plaintext
function BDI-Agent(percept)
    global beliefs, desires, intentions
    beliefs ← Update-Belief(beliefs, percept)
    desires ← Options(beliefs, intentions)
    intentions ← Filter(beliefs, intentions, desires)
    action ← Means-End-Reasoning(intentions)
    beliefs ← Update-Belief(action)
    return action
end function
```

BDI agents start out with some beliefs and intentions.

- Intentions are goals the agent has actually chosen to bring about (can be adopted and dropped).
- Beliefs and intentions constrain what the agent desires.
- Together, B, D, and I determine the agent’s future intentions.

Signatures of main processes

- The alternatives for action (options) for an agent is a set of desires dependent on the agent’s beliefs and its intentions:

 \[\text{options} : 2^{\text{Bel}} \times 2^{\text{Int}} \rightarrow 2^{\text{Des}} \]

- To select between competing options, an agent uses a filter function. This choice depends on the agent’s beliefs, current options (desires), and intentions:

 \[\text{filter} : 2^{\text{Bel}} \times 2^{\text{Des}} \times 2^{\text{Int}} \rightarrow 2^{\text{Int}} \]

⇒ Prior intentions serve as input! They provide a filter of admissibility for options, and thereby “provide a [...] purpose for deliberation, rather than merely a general injunction to do the best.” (Bratman, 1987, p. 33)
Intentions: Main properties

- Intentions drive means-ends reasoning: If I adopt an intention, I will attempt to achieve it.
- Intentions persist: Once adopted they will not be dropped until achieved, deemed unachievable, or reconsidered.
- Intentions constrain future deliberation: Filter of admissibility. Options inconsistent with current intentions will not be entertained.
- Intentions influence beliefs upon which future practical reasoning is based: Rationality requires that I believe that I can achieve my intentions.

Comparison: Intention vs. Desire

- Desires, similar to intentions, are states of affairs considered for achievement (or actions considered for execution), i.e., basic preferences of an agent.
- Unlike desires, intentions involve a commitment to bringing them about.
- Unlike desires, intentions must be consistent.

(Bratman, 1990, after Wooldridge, p. 67)

My desire to play basketball this afternoon is merely a potential influence of my conduct this afternoon. It must vie with my other relevant desires [...] before it is settled what I will do. In contrast, once I intend to play basketball this afternoon, the matter is settled: I normally need not continue to weigh the pros and cons. When the afternoon arrives, I will normally just proceed to execute my intentions.

Role in explanations

- “I want to have some icecream, and I believe there is icecream in the freeze, and I choose to have some icecream, therefore, I go to the freeze to get some icecream.”
- Each of these three clauses constitutes an adequate explanation.
- Beliefs, desires, and intentions are reason-giving forces.

Cohen & Levesque, 1990

- Ingredients:
 - Action and time
 - Belief and preference
 - Definition of intention

\[1\] The following notations are according to Meyer, Broersen, Herzig (2015). They slightly deviate from the original notations in Cohen, Levesque (1990).
A BDI Kripke model is a tuple $M = (W, R, B, P, V)$, where:

- W is a set of possible worlds.
- $R : I \times A \to W \times W$ is the accessibility relation for each action $i : \alpha$.
- (W, R) is a linear transition system.
- $B : I \to W \times W$ is the accessibility relation for each agent i.
 - Every B_i is serial, transitive, Euclidean ($KD45$).
- $P : I \to W \times W$ is the accessibility relation for each agent i.
 - Every P_i is serial (KD).
- $V : P \to 2^W$ maps atomic propositions to their extension $V(p) \subseteq W$.

Actions: Example I

Actions: Operators

- $M, w \models \text{Happ}_{i, \alpha} \varphi$ if and only if there is a $w' \in W$ such that $(w, w') \in R_{i, \alpha}$ and $M, w' \models \varphi$ (diamond operator).
- $M, w \models \text{Happ}_{i, \alpha} \varphi$ if $M, w \models \text{Happ}_{i, \alpha} \neg \varphi$ (box operator).
- $M, w \models \exists \alpha \text{Happ}_{i, \alpha} \varphi$ if there are agent i, action type α and $w' \in W$ such that $(w, w') \in R_{i, \alpha}$ and $M, w' \models \varphi$.

Actions: Example II

- $M, w_1 \models \text{Happ}_{1, \text{wakeUp}} \text{awake}$
- $M, w_2 \models \exists \alpha \text{Happ}_{1, \alpha} \exists \beta \text{Happ}_{1, \beta} \text{atLecture}$
Time

- $M, w \models X \varphi$ iff. $M, w' \models \varphi$ for some w' s.th. $(w, w') \in R_i \alpha$ for some $i : \alpha$.
- $M, w \models F \varphi$ iff. $M, w \models \varphi$ or $M, w \models XF \varphi$.
- $M, w \models G \varphi$ iff. $M, w \models \neg F \neg \varphi$.
- $M, w \models \psi U \varphi$ iff. $M, w \models \varphi$ or $(M, w \models \psi$ and $M, w' \models \psi U \varphi)$ for some w' s.th. $(w, w') \in R_i \alpha$ for some $i : \alpha$.

Belief and Preference

- $M, w \models Bel_i \varphi$ iff. for all w' s.th. $(w, w') \in B_i : M, w' \models \varphi$.
- $Know_i \varphi \overset{\text{def}}{=} \varphi \land Bel_i \varphi$.
- $M, w \models Pref_i \varphi$ iff. for all w' s.th. $(w, w') \in P_i : M, w' \models \varphi$.
- In the original $Pref$ is called $Goal$. Some authors call it $Choice$. It is meant to be a “chosen desire” (consistent!).

Properties

- For Bel, all properties for $KD45$ operators.
- For $Pref$, all properties for KD operators.
- $\models Bel_i \varphi \rightarrow Pref_i \varphi$ (Realism)
- $\models (Pref_i \varphi \land Bel_i (\varphi \rightarrow \psi)) \rightarrow Pref_i \psi$.

Time: Example

- $M, w_1 \models X (awake \land \text{atLecture})$
- $M, w_1 \models atSleep \land X FatSleep$
- $M, w_1 \models G (atSleep \leftrightarrow \neg awake)$
- $M, w_1 \models F \exists \alpha \text{Happ}_{1: \alpha} \text{atLecture}$

Belief and Preference: Example
Preferences alone are too weak

Because of realism, all believed propositions are preferred propositions. But it only makes sense for an agent to adopt some goal \(\varphi \) if \(\varphi \) is believed to be false.

Achievement Goal

- Agent \(i \) has the achievement goal that \(\varphi \) iff \(i \) prefers that \(\varphi \) is eventually true and believes that \(\varphi \) is currently false:
 \[
 \text{AGoal}_i \varphi \overset{\text{def}}{=} \text{Pref}_i \varphi \land \text{Bel}_i \neg \varphi
 \]

Example

In the Netflix-vs.-Lecture dilemma:
- \(M, w_1 \not\models \text{AGoal}_1 (\text{asleep}) \)
- \(M, w_1 \models \text{AGoal}_1 (\text{watching}) \)

Achievement Goal: Properties

- \(\not\models \text{AGoal}_i \neg \varphi \rightarrow \neg \text{AGoal}_i \varphi \).
 - Check that \(\text{AGoal}_i \neg \varphi \land \text{AGoal}_i \varphi \) is unsatisfiable, because the achievement goal that \(\neg \varphi \) implies to believe \(\varphi \), and the achievement goal that \(\varphi \) implies to believe \(\neg \varphi \). This contradicts axiom D (Bel_\(\varphi \) \rightarrow Bel_\(\neg \varphi \)).
- \(\not\models \text{AGoal}_i (\varphi \land \psi) \rightarrow \text{AGoal}_i \varphi \land \text{AGoal}_i \psi \) (for exercise).
- \(\not\models \text{AGoal}_i \varphi \land \text{AGoal}_i \psi \rightarrow \text{AGoal}_i (\varphi \land \psi) \).
- \(\not\models \text{AGoal}_i (\varphi \lor \psi) \rightarrow \text{AGoal}_i \varphi \lor \text{AGoal}_i \psi \).
- \(\not\models \text{AGoal}_i \varphi \lor \text{AGoal}_i \psi \rightarrow \text{AGoal}_i (\varphi \lor \psi) \).

“Lisa has the goal to listen to the lecture and she has the goal to have dinner” vs. “Lisa has the goal to listen to the lecture and to have dinner”

- \(l : \text{goLect} \quad l : \text{goMensa} \quad l : \text{atLecture} \quad l : \text{haveLunch} \)
- \(M, w_1 \models \text{AGoal}_1 (\text{atLecture}) \land \text{AGoal}_1 (\text{haveLunch}) \)
- \(M, w_1 \not\models \text{AGoal}_1 (\text{atLecture} \land \text{haveLunch}) \)
\[\neg A\text{Goal}_i(\varphi \lor \psi) \rightarrow A\text{Goal}_i\varphi \lor A\text{Goal}_i\psi. \]

“Paul asks Lisa whether she likes him.” (Paul does not prefer any of the two possible answers.)

\[p : \text{hearAnswer} \]

\[w_1 : \text{like} \]

\[w_2 : \text{like} \]

\[p : \text{hearAnswer} \]

\[w_1 : \text{dislike} \]

\[w_2 : \text{dislike} \]

\[M, w_1 \models A\text{Goal}_p(\text{Know}_p\text{like} \lor \text{Know}_p\text{dislike}) \]

\[M, w_1 \not\models A\text{Goal}_p(\text{Know}_p\text{like}) \]

\[M, w_1 \not\models A\text{Goal}_p(\text{Know}_p\text{dislike}) \]

\[\neg \text{Achievement Goal: Too weak for Intention} \]

Agents can change their preferences whenever they like:
Lack of commitment!

\[i : \text{goUni} \]

\[w_1 : \text{atUni} \]

\[w_2 : \text{atLecture} \]

\[i : \text{goUni} \]

\[w_1 : \text{atUni} \]

\[w_2 : \text{goMensa} \]

\[\neg M, w_1 \models A\text{Goal}_i(\text{haveLunch}) \]

\[M, w_1 \not\models A\text{Goal}_i(\text{atLecture}) \]

\[\text{Reason: } M, w_1 \not\models \text{Bel}_{i}(\neg\text{atLecture}) \]

\[M, w_1 \not\models A\text{Goal}_i(\text{atLecture} \lor \text{haveLunch}) \]

\[\text{Reason: } M, w_1 \not\models \text{Bel}_{i}(\neg(\text{atLecture} \lor \text{haveLunch})) \]

The Nell problem

Say a problem solver is confronted with the classic situation of a heroine, called Nell, having been tied to the tracks while a train approaches. The problem solver, called Dudley, knows that “If Nell is going to be mashed, I must remove her from the tracks.” When Dudley deduces that he must do something, he looks for, and eventually executes, a plan for doing it. This will involve finding out where Nell is, and making a navigation plan to get to her location. Assume that he knows where she is, and he is not too far away; then the fact that the plan will be carried out will be added to Dudley’s world model. Dudley must have some kind of database consistency maintainer to make sure that the plan is deleted if it is no longer necessary. Unfortunately, as soon as an apparently successful plan is added to the world model, the consistency maintainer will notice that “Nell is going to be mashed” is no longer true. But that removes any justification for the plan, so it goes too. But that means “Nell is going to be mashed” is no longer contradictory, so it comes back in. And so forth.
Commitment

Cohen & Levesque’s intentions involve commitment. Having a commitment means having a persistent goal, viz., a goal the agent only abandons if (s)he comes to believe that the goal is fulfilled or unreachable. This is called single-minded commitment.

Other forms of commitment:

- Blind commitment: The agent maintains its intention until it is actually achieved.
- Open-minded commitment: The agent maintains its intention as long as it is still believed possible. It may e.g. be rendered impossible by adapting new intentions.

Persistent Goal

- Agent i has the persistent goal that φ iff i has the achievement goal that φ and will keep that goal until it is either fulfilled or believed to be out of reach:

$$PGoal_i\varphi \overset{\text{def}}{=} AGoal_i\varphi \land (AGoal_i\varphi)U(Bel_i\varphi \lor Bel_i\neg\varphi)$$

Intention

- Agent i has the intention that φ iff i has the persistent goal that φ and believes that (s)he can achieve φ by an action.

$$Intend_i\varphi \overset{\text{def}}{=} PGoal_i\varphi \land Bel_iF\exists\alpha\text{Happ}_{i,\alpha}\varphi$$

Intending is acting! An agent 1 cannot intend that some other agent 2 does something. However, 1 may intend to make 2 do something.

Viz., $Intend_i\text{Happ}_{2,\text{act}}\top$ expands to

$$PGoal_i\text{Happ}_{2,\text{act}}\top \land Bel_iF\exists\alpha\text{Happ}_{i,\alpha}\text{Happ}_{2,\text{act}}\top$$

Proof

We provide a model for $Intend_i\varphi \land Bel_i(\varphi \rightarrow \psi) \land \neg Intend_i\psi$:

John intends to go to the dentist. He believes that going to the dentist always implies pain. At the dentist, John gets some painkiller.
Dentist Example

1: goDent | walking

1: recTreat | treatment

Applications of Logics in MAS

- **Specification**
 - The intended behavior of a MAS can be specified using a logical specification language. The concrete program is derived from the specification (manually, in most cases).

- **Verification**
 - Once a program P is built, one wishes to be able to prove that it behaves according to its specification ϕ, i.e., $P \models \phi$.

- **Agent programming**
 - Agents themselves can be realized as deductive reasoners:
 - What an agent knows is represented as formulae of a formal language. The agent can reason about these formulae to derive new formulae, or to determine what to do next.

Model Checking

- **Definition**
 - Model checking is an automated technique that, given a finite-state model of a system and a formal property, systematically checks whether this property holds for (a given state in) that model.

 - Model of the system \Rightarrow How the system actually behaves.
 - Formal properties \Rightarrow How the system should behave.
 - Safety: something bad never happens
 - Liveness: something good eventually happens
 - Fairness: if something may happen frequently, it will happen

Runtime Verification

- **Definition**
 - Runtime verification is the discipline of computer science that deals with the study, development, and application of verification techniques that allow checking whether a run of a system under scrutiny satisfies or violates a given correctness property.

 \Rightarrow Testing using formal methods.
Requirements

- **Question:** Does a given BDI agent act right (viz., according to some specified properties)?
- **Required**
 - Representation of the agent's execution.
 - Language to specify the wanted properties.
 - Algorithm to check if some given properties hold in some representation of an execution.

Remark: Runtime Verification

- **Sketch**
 1. Observe the execution of the system to be verified (e.g., log state of the environment, mental state of the agents, the agents' actions).
 2. Represent the execution log using the semantics of Cohen & Levesque.
 3. Model check representation against the agents' specification, e.g.:
 - $G(goldNear \rightarrow Intend(hasGold))$
 - $G(Bel(goldNear) \rightarrow Intend(hasGold))$
 - $G(battLow \rightarrow Intend(\neg battLow))$
 4. Find time points where the specification evaluates false \Rightarrow Fault detection.

Literature