Principles of AI Planning

Prof. Dr. B. Nebel, Dr. R. Mattmüller
University of Freiburg
D. Speck, D. Drexler

Department of Computer Science
Winter Semester 2018/2019

Exercise Sheet 8

Due: Friday, December 14th, 2018

Send your solution to drexlerd@tf.uni-freiburg.de or submit a hardcopy before the lecture.
Exercise 8.1 (Abstraction heuristics, $2+4$ points)
A state of a 15 -puzzle planning task is given as a permutation $\left\langle b, t_{1}, \ldots, t_{15}\right\rangle$ of $\{1, \ldots, 16\}$, where b denotes the empty tile (blank) and all other components denote the positions of the tiles.
Let $T^{1}=\left\{t_{1}^{1}, \ldots, t_{n}^{1}\right\}, T^{2}=\left\{t_{1}^{2}, \ldots, t_{m}^{2}\right\}$ with $1 \leq n, m \leq 14$ be a partitioning of $\left\{t_{1}, \ldots, t_{15}\right\}$ (i.e., $T^{1} \cup T^{2}=\left\{t_{1}, \ldots, t_{15}\right\}$ and $T^{1} \cap T^{2}=\emptyset$). Consider the following abstractions:

- $\alpha_{1}\left(\left\langle b, t_{1}, \ldots, t_{15}\right\rangle\right)=\left\langle b, t_{1}^{1}, \ldots, t_{m}^{1}\right\rangle$
- $\alpha_{2}\left(\left\langle b, t_{1}, \ldots, t_{15}\right\rangle\right)=\left\langle b, t_{1}^{2}, \ldots, t_{n}^{2}\right\rangle$
- $\alpha_{3}\left(\left\langle b, t_{1}, \ldots, t_{15}\right\rangle\right)=\left\langle t_{1}^{1}, \ldots, t_{m}^{1}\right\rangle$
- $\alpha_{4}\left(\left\langle b, t_{1}, \ldots, t_{15}\right\rangle\right)=\left\langle t_{1}^{2}, \ldots, t_{n}^{2}\right\rangle$

For $1 \leq i \leq 4$, the heuristic estimates of h_{i} are equal to lengths of optimal plans in the respective abstractions (e.g., $h_{i}(s)=h^{*}\left(\alpha_{i}(s)\right)$. Show that:
(a) $h_{1}+h_{2}$ is not admissible.
(b) $h_{3}+h_{4}$ is admissible.

Hint: A heuristic is admissible if it is goal-aware and consistent.
Exercise 8.2 (Affecting labels vs. orthogonality, 4 points)
Recall: For a transition system \mathcal{A} and a label ℓ of \mathcal{A}, we say that ℓ affects \mathcal{A} if \mathcal{A} has a transition $\langle s, \ell, t\rangle$ with $s \neq t$.
Prove the following: Let \mathcal{A}_{i} be an abstraction of some transition system \mathcal{T} with abstraction mapping α_{i} for $i \in\{1,2\}$. If no label of \mathcal{T} affects both \mathcal{A}_{1} and \mathcal{A}_{2}, then α_{1} and α_{2} are orthogonal.

You may and should solve the exercise sheets in groups of two. Please state both names on your solution.

