Principles of AI Planning

Prof. Dr. B. Nebel, Dr. R. MattmüllerD. Speck, D. DrexlerWinter Semester 2018/2019

University of Freiburg Department of Computer Science

Exercise Sheet 8 Due: Friday, December 14th, 2018

Send your solution to drexlerd@tf.uni-freiburg.de or submit a hardcopy before the lecture.

Exercise 8.1 (Abstraction heuristics, 2+4 points)

A state of a 15-puzzle planning task is given as a permutation $\langle b, t_1, \ldots, t_{15} \rangle$ of $\{1, \ldots, 16\}$, where b denotes the empty tile (blank) and all other components denote the positions of the tiles. Let $T^1 = \{t_1^1, \ldots, t_n^1\}, T^2 = \{t_1^2, \ldots, t_m^2\}$ with $1 \le n, m \le 14$ be a partitioning of $\{t_1, \ldots, t_{15}\}$ (i.e., $T^1 \cup T^2 = \{t_1, \ldots, t_{15}\}$ and $T^1 \cap T^2 = \emptyset$). Consider the following abstractions:

- $\alpha_1(\langle b, t_1, \dots, t_{15} \rangle) = \langle b, t_1^1, \dots, t_m^1 \rangle$
- $\alpha_2(\langle b, t_1, \dots, t_{15} \rangle) = \langle b, t_1^2, \dots, t_n^2 \rangle$
- $\alpha_3(\langle b, t_1, \dots, t_{15} \rangle) = \langle t_1^1, \dots, t_m^1 \rangle$
- $\alpha_4(\langle b, t_1, \dots, t_{15} \rangle) = \langle t_1^2, \dots, t_n^2 \rangle$

For $1 \le i \le 4$, the heuristic estimates of h_i are equal to lengths of optimal plans in the respective abstractions (e.g., $h_i(s) = h^*(\alpha_i(s))$). Show that:

- (a) $h_1 + h_2$ is not admissible.
- (b) $h_3 + h_4$ is admissible.

Hint: A heuristic is admissible if it is goal-aware and consistent.

Exercise 8.2 (Affecting labels vs. orthogonality, 4 points)

Recall: For a transition system \mathcal{A} and a label ℓ of \mathcal{A} , we say that ℓ affects \mathcal{A} if \mathcal{A} has a transition $\langle s, \ell, t \rangle$ with $s \neq t$.

Prove the following: Let \mathcal{A}_i be an abstraction of some transition system \mathcal{T} with abstraction mapping α_i for $i \in \{1, 2\}$. If no label of \mathcal{T} affects both \mathcal{A}_1 and \mathcal{A}_2 , then α_1 and α_2 are orthogonal.

You may and should solve the exercise sheets in groups of two. Please state both names on your solution.