Principles of AI Planning

Prof. Dr. B. Nebel, Dr. R. Mattmüller
University of Freiburg
D. Speck, D. Drexler

Department of Computer Science
Winter Semester 2018/2019

Exercise Sheet 7
 Due: Friday, December 7th, 2018

Send your solution to drexlerd@tf.uni-freiburg.de or submit a hardcopy before the lecture.
Exercise 7.1 (Relaxed planning graph and heuristics, $2+2$ points)
Consider the relaxed planning task Π^{+}with variables $A=\{a, b, c, d, e\}$, operators $O=\left\{o_{1}, o_{2}, o_{3}\right\}$, $o_{1}=\langle d, c \wedge(c \triangleright e)\rangle, o_{2}=\langle c, a\rangle, o_{3}=\langle a, b\rangle$, goal $\gamma=b \wedge e$ and initial state $s=\{a \mapsto 0, b \mapsto$ $0, c \mapsto 0, d \mapsto 1, e \mapsto 0\}$. Solve the following exercises by drawing the relaxed planning graph for the lowest depth k that is necessary to extract a solution.
(a) Calculate $h_{\mathrm{sa}}(s)$ for Π^{+}.
(b) Calculate $h_{\mathrm{FF}}(s)$ for Π^{+}.

Exercise 7.2 (Finite-domain representation, $2+2+2$ points)
Consider the propositional Blocksworld planning task $\Pi=\langle A, I, O, \gamma\rangle$, with

- the set of variables

$$
\begin{aligned}
A=\{ & \{\text {-clear, } B \text {-clear, } C \text {-clear }, A \text {-on- } B, A \text {-on- } C, A \text {-on- } T, \\
& B \text {-on-A, } B \text {-on- } C, B \text {-on- } T, C \text {-on- } A, C \text {-on- } B, C \text {-on- } T\}
\end{aligned}
$$

- $I(a)=1$ for $a \in\{B$-on-T, A-on-B, A-clear, C-on- T, C-clear $\}$, $I(a)=0$, else.
- O contains the actions

$$
\begin{aligned}
\text { move- } X \text { - } Y \text { - } Z= & \langle X \text {-on- } Y \wedge X \text {-clear } \wedge Z \text {-clear }, \\
& \neg X \text {-on- } Y \wedge Y \text {-clear } \wedge X \text {-on- } Z \wedge \neg Z \text {-clear }\rangle \\
\text { move- } X \text {-Table- } Z= & \langle X \text {-on- } T \wedge X \text {-clear } \wedge Z \text {-clear }, \\
& \neg X \text {-on- } T \wedge X \text {-on- } Z \wedge \neg Z \text {-clear }\rangle \\
\text { move- } X \text { - } Y \text {-Table }= & \langle X \text {-on- } Y \wedge X \text {-clear }, \\
& \neg X \text {-on- } Y \wedge Y \text {-clear } \wedge X \text {-on- } T\rangle
\end{aligned}
$$

for pair-wise distinct $X, Y, Z \in\{A, B, C\}$

- $\gamma=B$-on- $C \wedge C$-on- A.
(a) The following mutex groups can be found for Π :

$$
\begin{aligned}
& L_{1}=\{B \text {-on-A,C-on-A, } A \text {-clear }\} \\
& L_{2}=\{A \text {-on- } B, C \text {-on-B, B-clear }\} \\
& L_{3}=\{A \text {-on-C, B-on-C, C-clear }\} \\
& L_{4}=\{A-o n-B, A-\text { on- } C, A-o n-T\} \\
& L_{5}=\{B-\text { on- } A, B-\text { on- } C, B-o n-T\} \\
& L_{6}=\{C \text {-on- } A, C \text {-on- } B, C \text {-on- } T\}
\end{aligned}
$$

Specify a planning task Π^{\prime} that is equivalent to Π and in finite-domain representation by using these mutex groups. Please name the variables in a reasonable way (e.g., analogously to the examples given in the lecture).
(b) Specify the propositional planning task $\Pi^{\prime \prime}$ that is induced by Π^{\prime}.
(c) How are both planning tasks Π and $\Pi^{\prime \prime}$ related? Is a plan for Π always a plan for $\Pi^{\prime \prime}$ and vice versa?

You may and should solve the exercise sheets in groups of two. Please state both names on your solution.

