Principles of AI Planning

Prof. Dr. B. Nebel, Dr. R. MattmüllerD. Speck, D. DrexlerWinter Semester 2018/2019

University of Freiburg Department of Computer Science

Exercise Sheet 6 Due: Friday, November 30st, 2018

Send your solution to drexlerd@tf.uni-freiburg.de or submit a hardcopy before the lecture.

Exercise 6.1 (Inaccuracy of h_{max} , 2 points)

Prove that the heuristic h_{\max} is arbitrarily inaccurate, i.e., for all $c \in \mathbb{R}^+$ there exists a relaxed planning task $\Pi = \langle A, I, O^+, \gamma \rangle$ such that $c \cdot h_{\max}(I) \leq h^+(I) \neq 0$.

Exercise 6.2 (Stability of h_{add} , 5 points)

Show that it is important to test for stability when computing h_{add} by giving an example where you get an unnecessarily high overestimation when not performing this test.

Hint: The solution to this exercise is a planning task and its relaxed planning graph where h_{add} is higher in the goal node in layer k than in the goal node of layer j > k.

Exercise 6.3 (Relaxed planning graph and heuristics, 1.5+1.5 points)

Consider the relaxed planning task Π^+ with variables $A = \{a, b, c, d, e\}$, operators $O = \{o_1, o_2, o_3\}$, $o_1 = \langle d, c \land (c \triangleright e) \rangle$, $o_2 = \langle c, a \rangle$, $o_3 = \langle a, b \rangle$, goal $\gamma = b \land e$ and initial state $s = \{a \mapsto 0, b \mapsto 0, c \mapsto 0, d \mapsto 1, e \mapsto 0\}$. Solve the following exercises by drawing the relaxed planning graph for the lowest depth k that is necessary to extract a solution.

- (a) Calculate $h_{\max}(s)$ for Π^+ .
- (b) Calculate $h_{add}(s)$ for Π^+ .

You may and should solve the exercise sheets in groups of two. Please state both names on your solution.